Использование систем искусственного интеллекта

История развития и области применения искусственного интеллекта. Основные направления в моделировании ИИ. Эволюция систем управления производством. Тест Тьюринга и интуитивный подход. Искусственный интеллект в индустрии. Применение символьной логики.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 16.03.2011
Размер файла 446,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Использование систем искусственного интеллекта

Содержание

1. История AI

2. Подходы к пониманию проблемы

3. Области применения искусственного интеллекта

Заключение

Литература

1. История развития AI

Как и любая основополагающая наука "Искусственный интеллект" имеет достаточно богатую историю. Можно выделить как теоретическую, так и экспериментальную части. Суть науки "Искусственный интеллект" лучше всего отражают слова "Дух в машине", при этом не столь важно развитие отдельно понятий о машине и духе, как важно их сочетание. Но в то же время понятно, что чем более развиты представления о машине, чем они более совершенны с одной стороны, и чем мы более знаем о духе с другой стороны - тем о более скажем так мощном ИИ мы можем говорить. Но отличает науку "Искусственный интеллект" от Вычислительной техники (Информатики) с одной стороны и от Медицины (Биологии) с другой - это именно связь одного с другим. И только при наличии этой связи мы можем говорить о достижениях в области ИИ, а не отдельно в областях Информатики или Биологии. Этому вопросу уделяется особенно большое значение в теоретической части, а для подтверждения теорий как и в других науках используется эксперимент. Но исторически появление теорий и первых экспериментов всегда разнесено во времени. Поэтому начала теории обычно относят к философии искусственного интеллекта, и только с появлением первых экспериментов теория приобретает самостоятельное значение. Причем саму теорию "Искусственного интеллекта", которая сейчас находится на рубеже с философией, не нужно совмещать с теорией математических, алгоритмических, робототехнических, физиологических и прочих методов, которые имеют собственное значение в соответствующих науках. Сейчас четкого различия между рядом связанных наук и собственно "Искусственным интеллектом" найти очень сложно, а тем более различить теоретические и экспериментальный разделы науки.

Исторически сложились три основных направления в моделировании ИИ.

В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д.

Второй подход в качестве объекта исследования рассматривает ИИ. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.

Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.

Самыми первыми интеллектуальными задачами, которые стали решаться при помощи ЭВМ были логические игры (шашки, шахматы), доказательство теорем. Хотя, правда здесь надо отметить еще кибернетические игрушки типа "электронной мыши" Клода Шеннона, которая управлялась сложной релейной схемой. Эта мышка могла "исследовать" лабиринт, и находить выход из него. А кроме того, помещенная в уже известный ей лабиринт, она не искала выход, а сразу же, не заглядывая в тупиковые ходы, выходила из лабиринта.

Американский кибернетик А. Самуэль составил для вычислительной машины программу, которая позволяет ей играть в шашки, причем в ходе игры машина обучается или, по крайней мере, создает впечатление, что обучается, улучшая свою игру на основе накопленного опыта. В 1962 г. эта программа сразилась с Р. Нили, сильнейшим шашистом в США и победила.

Каким образом машине удалось достичь столь высокого класса игры?

Естественно, что в машину были программно заложены правила игры так, что выбор очередного хода был подчинен этим правилам. На каждой стадии игры машина выбирала очередной ход из множества возможных ходов согласно некоторому критерию качества игры. В шашках (как и в шахматах) обычно невыгодно терять свои фигуры, и, напротив, выгодно брать фигуры противника. Игрок (будь он человек или машина), который сохраняет подвижность своих фигур и право выбора ходов и в то же время держит под боем большое число полей на доске, обычно играет лучше своего противника, не придающего значения этим элементам игры. Описанные критерии хорошей игры сохраняют свою силу на протяжении всей игры, но есть и другие критерии, которые относятся к отдельным ее стадиям -- дебюту, миттэндшпилю, эндшпилю.

Разумно сочетая такие критерии (например в виде линейной комбинации с экспериментально подбираемыми коэффициентами или более сложным образом), можно для оценки очередного хода машины получить некоторый числовой показатель эффективности -- оценочную функцию. Тогда машина, сравнив между собой показатели эффективности очередных ходов, выберет ход, соответствующий наибольшему показателю. Подобная автоматизация выбора очередного хода не обязательно обеспечивает оптимальный выбор, но все же это какой-то выбор, и на его основе машина может продолжать игру, совершенствуя свою стратегию (образ действия) в процессе обучения на прошлом опыте. Формально обучение состоит в подстройке параметров (коэффициентов) оценочной функции на основе анализа проведенных ходов и игр с учетом их исхода.

По мнению А. Самуэля, машина, использующая этот вид обучения, может научиться играть лучше, чем средний игрок, за относительно короткий период времени. Можно сказать, что все эти элементы интеллекта, продемонстрированные машиной в процессе игры в шашки, сообщены ей автором программы. Отчасти это так. Но не следует забывать, что программа эта не является "жесткой", заранее продуманной во всех деталях. Она совершенствует свою стратегию игры в процессе самообучения. И хотя процесс "мышления" у машины существенно отличен оттого, что происходит в мозгу играющего в шашки человека, она способна у него выиграть.

Ярким примером сложной интеллектуальной игры до недавнего времени являлись шахматы. В 1974 г. состоялся международный шахматный турнир машин, снабженных соответствующими программами. Как известно, победу на этом турнире одержала советская машина с шахматной программой "Каисса".

Почему здесь употреблено "до недавнего времени"? Дело в том, что недавние события показали, что несмотря на довольно большую сложность шахмат, и невозможность, в связи с этим произвести полный перебор ходов, возможность перебора их на большую глубину, чем обычно, очень увеличивает шансы на победу. К примеру, по сообщениям в печати, компьютер фирмы IBM, победивший Каспарова, имел 256 процессоров, каждый из которых имел 4 Гб дисковой памяти и 128 Мб оперативной. Весь этот комплекс мог просчитывать более 100'000'000 ходов в секунду. До недавнего времени редкостью был компьютер, могущий делать такое количество целочисленных операций в секунду, а здесь мы говорим о ходах, которые должны быть сгенерированы и для которых просчитаны оценочные функции. Хотя с другой стороны, этот пример говорит о могуществе и универсальности переборных алгоритмов.

В настоящее время существуют и успешно применяются программы, позволяющие машинам играть в деловые или военные игры, имеющие большое прикладное значение. Здесь также чрезвычайно важно придать программам присущие человеку способность к обучению и адаптации. Одной из наиболее интересных интеллектуальных задач, также имеющей огромное прикладное значение, является задача обучения распознавания образов и ситуаций. Решением ее занимались и продолжают заниматься представители различных наук -- физиологи, психологи, математики, инженеры. Такой интерес к задаче стимулировался фантастическими перспективами широкого практического использования результатов теоретических исследований: читающие автоматы, системы ИИ, ставящие медицинские диагнозы, п роводящие криминалистическую экспертизу и т. п., а также роботы, способные распознавать и анализировать сложные сенсорные ситуации.

В 1957 г. американский физиолог Ф. Розенблатт предложил модель зрительного восприятия и распознавания -- перцептрон. Появление машины, способной обучаться понятиям и распознавать предъявляемые объекты, оказалось чрезвычайно интересным н е только физиологам, но и представителям других областей знания и породило большой поток теоретических и экспериментальных исследований.

Перцептрон или любая программа, имитирующая процесс распознавания, работают в двух режимах: в режиме обучения и в режиме распознавания. В режиме обучения некто (человек, машина, робот или природа), играющий роль учителя, предъявляет машине объекты и о каждом их них сообщает, к какому понятию (классу) он принадлежит. По этим данным строится решающее правило, являющееся, по существу, формальным описанием понятий. В режиме распознавания машине предъявляются новые объекты (вообще говоря, отличные от ранее предъявленных), и она должна их классифицировать, по возможности, правильно.

Проблема обучения распознаванию тесно связана с другой интеллектуальной задачей -- проблемой перевода с одного языка на другой, а также обучения машины языку. При достаточно формальной обработке и классификации основных грамматических правил и приемов пользования словарем можно создать вполне удовлетворительный алгоритм для перевода, скажем научного или делового текста. Для некоторых языков такие системы были созданы еще в конце 60-г. Однако для того, чтобы связно перевести достаточно большой разговорный текст, необходимо понимать его смысл. Работы над такими программами ведутся уже давно, но до полного успеха еще далеко. Имеются также программы, обеспечивающие диалог между человеком и машиной на урезанном естественном языке.

Что же касается моделирования логического мышления, то хорошей модельной задачей здесь может служить задача автоматизации доказательства теорем. Начиная с 1960 г., был разработан ряд программ, способных находить доказательства теорем в исчислении предикатов первого порядка. Эти программы обладают, по словам американского специалиста в области ИИ Дж. Маккатти, "здравым смыслом", т. е. способностью делать дедуктивные заключения.

В программе К. Грина и др., реализующей вопросно-ответную систему, знания записываются на языке логики предикатов в виде набора аксиом, а вопросы, задаваемые машине, формулируются как подлежащие доказательству теоремы. Большой интерес представляет "интеллектуальная" программа американского математика Хао Ванга. Эта программа за 3 минуты работы IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8.5 мин выдала доказательства еще 130 более сложных теорем, часть их которых еще не была выведена математиками. Правда, до сих пор ни одна программа не вывела и не доказала ни одной теоремы, которая бы, что называется "позарез" была бы нужна математикам и была бы принципиально новой.

Очень большим направлением систем ИИ является роботехника. В чем основное отличие интеллекта робота от интеллекта универсальных вычислительных машин?

Для ответа на этот вопрос уместно вспомнить принадлежащее великому русскому физиологу И. М. Сеченову высказывание: "… все бесконечное разнообразие внешних проявлений мозговой деятельности сводится окончательно лишь к одному явлению -- мышечному движению". Другими словами, вся интеллектуальная деятельность человека направлена в конечном счете на активное взаимодействие с внешним миром посредством движений. Точно так же элементы интеллекта робота служат прежде всего для организации его целенаправленных движений. В то же время основное назначение чисто компьютерных систем ИИ состоит в решении интеллектуальных задач, носящих абстрактный или вспомогательный характер, которые обычно не связаны ни с восприятием окружающей среды с помощью искусственных органов чувств, ни с организацией движений исполнительных механизмов.

Первых роботов трудно назвать интеллектуальными. Только в 60-х годах появились очуствленные роботы, которые управлялись универсальными компьютерами. К примеру в 1969 г. в Электротехнической лаборатории (Япония) началась разработка проекта "промышленный интеллектуальный робот". Цель этой разработки -- создание очуствленного манипуляционного робота с элементами искусственного интеллекта для выполнения сборочно-монтажных работ с визуальным контролем.

Манипулятор робота имеет шесть степеней свободы и управляется мини-ЭВМ NEAC-3100 (объем оперативной памяти 32000 слов, объем внешней памяти на магнитных дисках 273000 слов), формирующей требуемое программное движение, которое отрабатывается следящей электрогидравлической системой. Схват манипулятора оснащен тактильными датчиками.

В качестве системы зрительного восприятия используются две телевизионные камеры, снабженные красно-зелено-синими фильтрами для распознавания цвета предметов. Поле зрения телевизионной камеры разбито на 64*64 ячеек. В результате обработки полученной информации грубо определяется область, занимаемая интересующим робота предметом. Далее, с целью детального изучения этого предмета выявленная область вновь делится на 4096 ячеек. В том случае, когда предмет не помещается в выбранное "окошко ", оно автоматически перемещается, подобно тому, как человек скользит взглядом по предмету. Робот Электротехнической лаборатории был способен распознавать простые предметы, ограниченные плоскостями и цилиндрическими поверхностями при специальном освещении. Стоимость данного экспериментального образца составляла примерно 400000 долларов.

Постепенно характеристики роботов монотонно улучшались, Но до сих пор они еще далеки по понятливости от человека, хотя некоторые операции уже выполняют на уровне лучших жонглеров. К примеру удерживают на лезвии ножа шарик от настольного тенниса.

Еще пожалуй здесь можно выделить работы киевского Института кибернетики, где под руководством Н. М. Амосова и В. М. Глушкова (ныне покойного) ведется комплекс исследований, направленных на разработку элементов интеллекта роботов. Особо е внимание в этих исследованиях уделяется проблемам распознавания изображений и речи, логического вывода (автоматического доказательства теорем) и управления с помощью нейроподобных сетей.

К примеру можно рассмотреть созданный еще в 70-х годах макет транспортного автономного интегрального робота (ТАИР). Конструктивно ТАИР представляет собой трехколесное шасси, на котором смонтирована сенсорная система и блок управления. Сенсорная система включает в себя следующие средства очуствления: оптический дальномер, навигационная система с двумя радиомаяками и компасом, контактные датчики, датчики углов наклона тележки, таймер и др. И особенность, которая отличает ТАИР от многих других систем, созданных у нас и за рубежом, это то, что в его составе нет компьютера в том виде, к которому мы привыкли. Основу системы управления составляет бортовая нейроподобная сеть, на которой реализуются различные алгоритмы обработки сенсорной информации, планирования поведения и управления движением робота.

В конце данного очень краткого обзора рассмотрим примеры крупномасштабных экспертных систем.

MICIN -- экспертная система для медицинской диагностики. Разработана группой по инфекционным заболеваниям Стенфордского университета. Ставит соответствующий диагноз, исходя из представленных ей симптомов, и рекомендует курс медикаментозного лечения любой из диагностированных инфекций. База данных состоит из 450 правил.

PUFF -- анализ нарушения дыхания. Данная система представляет собой MICIN, из которой удалили данные по инфекциям и вставили данные о легочных заболеваниях.

DENDRAL -- распознавание химических структур. Данная система старейшая, из имеющих звание экспертных. Первые версии данной системы появились еще в 1965 году во все том же Стенфордском университете. По пользователь дает системе DENDRAL некоторую информацию о веществе, а также данные спектрометрии (инфракрасной, ядерного магнитного резонанса и масс-спектрометрии), и та в свою очередь выдает диагноз в виде соответствующей химической структуры.

PROSPECTOR -- экспертная система, созданная для содействия поиску коммерчески оправданных месторождений полезных ископаемых.

2. Подходы к пониманию проблемы

Единого ответа на вопрос чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки.

Тест Тьюринга и интуитивный подход

Основная статья: Тест Тьюринга

Эмпирический тест, идея которого была предложена Аланом Тьюрингом в статье «Вычислительные машины и разум» (англ. Computing Machinery and Intelligence), опубликованной в 1950 году в философском журнале «Mind». Целью данного теста является определение возможности искусственного мышления, близкого к человеческому.

Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы -- ввести человека в заблуждение, заставив сделать неверный выбор». Все участники теста не видят друг друга.

· Самый общий подход предполагает, что ИИ будет способен проявлять поведение, не отличающееся от человеческого, причём, в нормальных ситуациях. Эта идея является обобщением подхода теста Тьюринга, который утверждает, что машина станет разумной тогда, когда будет способна поддерживать разговор с обычным человеком, и тот не сможет понять, что говорит с машиной (разговор идёт по переписке).

· Писатели-фантасты часто предлагают ещё один подход: ИИ возникнет тогда, когда машина будет способна чувствовать и творить. Так, хозяин Эндрю Мартина из «Двухсотлетнего человека» начинает относиться к нему как к человеку, когда тот создаёт игрушку по собственному проекту. А Дейта из Звёздного пути, будучи способным к коммуникации и научению, мечтает обрести эмоции и интуицию.

Символьный подход

Исторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп, первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этими средствами интеллекта. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами. От умения выделить только существенную информацию зависит эффективность и результативность решения задачи.

Но широта классов задач, эффективно решаемых человеческим разумом, требует невероятной гибкости в методах абстрагирования. А это недоступно при любом инженерном подходе, в котором исследователь выбирает методы решения, основываясь на способность быстро дать эффективное решение какой-то наиболее близкой этому исследователю задачи. То есть уже за реализованную в виде правил единственную модель абстрагирования и конструирования сущностей. Это выливается в значительные затраты ресурсов для непрофильных задач, то есть система от интеллекта возвращается к грубой силе на большинстве задач и сама суть интеллекта исчезает из проекта.

Основное применение символьной логики - это решение задач по выработке правил. Большинство исследований останавливается как раз на невозможности хотя бы обозначить новые возникшие трудности средствами выбранных на предыдущих этапах символьных системах. Тем более решить их и тем более обучить компьютер решать их или хотя бы идентифицировать и выходить из таких ситуаций.

Логический подход

Логический подход к созданию систем искусственного интеллекта направлен на создание экспертных систем с логическими моделями баз знаний с использованием языка предикатов.

Учебной моделью систем искусственного интеллекта в 1980-х годах был принят язык и система логического программирования Пролог. Базы знаний, записанные на языке Пролог, представляют наборы фактов и правил логического вывода, записанных на языке логических предикатов.

Логическая модель баз знаний позволяет записывать не только конкретные сведения и данные в форме фактов на языке Пролог, но и обобщенные сведения с помощью правил и процедур логического вывода и в том числе логических правил определения понятий, выражающих определённые знания как конкретные и обобщенные сведения.

В целом исследования проблем искусственного интеллекта в рамках логического подхода к проектированию баз знаний и экспертных систем направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, включая вопросы обучения студентов и школьников, а также подготовки пользователей и разработчиков таких интеллектуальных информационных систем.

Агентно-ориентированный подход

Последний подход, развиваемый с начала 1990-х годов называется агентно-ориентированным подходом, или подходом, основанным на использовании интеллектуальных (рациональных) агентов. Согласно этому подходу, интеллект -- это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков, и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов.

Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно сильнее изучаются алгоритмы поиска пути и принятия решений.

Гибридный подход

Гибридный подход предполагает, что только синергетическая комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.

3. Области применения искусственного интеллекта

Какие возможности предоставляет искусственный интеллект в наши дни? Краткий ответ на этот вопрос сформулировать сложно, поскольку в этом научном направлении существует слишком много подобластей, в которых выполняется очень много исследований. Ниже в качестве примеров перечислено лишь несколько приложений.

· Автономное планирование и составление расписаний. Работающая на удалении в сотни миллионов километров от Земли программа Remote Agent агентства NASA стала первой бортовой автономной программой планирования, предназначенной для управления процессами составления расписания операций для космического аппарата. Программа Remote Agent вырабатывала планы на основе целей высокого уровня, задаваемых с Земли, а также контролировала работу космического аппарата в ходе выполнения планов: обнаруживала, диагностировала и устраняла неполадки по мере их возникновения.

· Ведение игр. Программа Deep Blue компании IBM стала первой компьютерной программой, которой удалось победить чемпиона мира в шахматном матче, после того как она обыграла Гарри Каспарова со счетом 3,5:2,5 в показательном матче. Каспаров заявил, что ощущал напротив себя за шахматной доской присутствие «интеллекта нового типа». Журнал Newsweek описал этот матч под заголовком «Последний оборонительный рубеж мозга». Стоимость акций IBM выросла на 18 миллиардов долларов.

· Автономное управление. Система компьютерного зрения Alvinn была обучена вождению автомобиля, придерживаясь определенной полосы движения. В университете CMU эта система была размещена в микроавтобусе, управляемом компьютером NavLab, и использовалось для проезда по Соединенным Штатам; на протяжении 2850 миль система обеспечивала рулевое управление автомобилем в течение 98% времени. Человек брал на себя управление лишь в течение остальных 2%, главным образом на выездных пандусах. Компьютер NavLab был оборудован видеокамерами, которые передавали изображения дороги в систему Alvinn, а затем эта система вычисляла наилучшее направление движения, основываясь на опыте, полученном в предыдущих учебных пробегах.

· Диагностика. Медицинские диагностические программы, основанные на вероятностном анализе, сумели достичь уровня опытного врача в нескольких областях медицины. Хекерман описал случай, когда ведущий специалист в области патологии лимфатических узлов не согласился с диагнозом программы в особо сложном случае. Создатели программы предложили, чтобы этот врач запросил у компьютера пояснения по поводу данного диагноза. Машина указала основные факторы, повлиявшие на ее решение, и объяснила нюансы взаимодействия нескольких симптомов, наблюдавшихся в данном случае. В конечном итоге эксперт согласился с решением программы.

· Планирование снабжения. Во время кризиса в Персидском заливе в 1991 году в армии США была развернута система DART (Dynamic Analysis and Replanning) для обеспечения автоматизированного планирования поставок и составления графиков перевозок. Работа этой системы охватывала одновременно до 50 000 автомобилей, единиц груза и людей; в ней приходилось учитывать пункты отправления и назначения, маршруты, а также устранять конфликты между всеми параметрами. Методы планирования на основе искусственного интеллекта позволяли вырабатывать в течение считанных часов такие планы, для составления которых старыми методами потребовались бы недели. Представители агентства DARPA (Defense Advanced Research Project Agency -- Управление перспективных исследовательских программ) заявили, что одно лишь это приложение сторицей окупило тридцатилетние инвестиции в искусственный интеллект, сделанные этим агентством.

Робототехника. Многие хирурги теперь используют роботов-ассистентов в микрохирургии. Например, HipNav -- это система, в которой используются методы компьютерного зрения для создания трехмерной модели анатомии внутренних органов пациента, а затем применяется робототехническое управление для руководства процессом вставки протеза, заменяющего тазобедренный сустав.

· Понимание естественного языка и решение задач. Программа Proverb -- это компьютерная программа, которая решает кроссворды намного лучше, чем большинство людей; в ней используются ограничения, определяющие состав возможных заполнителей слов, большая база с данными о встречавшихся ранее кроссвордах, а также множество различных источников информации, включая словари и оперативные базы данных, таких как списки кинофильмов и актеров, которые играли в этих фильмах. Например, эта программа способна определить, что одним из решений, подходящих для ключа «Nice Story», является слово «ETAGE», поскольку ее база данных содержит пару ключ -- решение «Story in France/ETAGE», а сама программа распознает, что шаблоны «Nice X» и «X in France» часто имеют одно и то же решение. Программа не знает, что Nice (Ницца) -- город во Франции, но способна разгадать эту головоломку.

Новая информационная технология в системах управления производством

Эволюция систем управления производством

Как известно, управление технологическими процессами вплоть до 60-х годов основывалось на применении несложных регуляторов механического, электрического и пневматического типов, расчет которых базировался на линейных одномерных моделях.

Проектирование более сложных систем управления ограничивалось как возможностями технических средств и недостаточной теоретической базой, так и относительной простотой большинства технологических процессов того времени.

Примерно к тому же времени относятся первые попытки применения ЭВМ в планировании и управлении производством. Правда техническая база оставалась еще слабой. ЭВМ первого поколения, на которых базировалась разработка АСУ были мало пригодны для решения задач управления производством. Поэтому ЭВМ применялись в основном для бухгалтерского учета.

Применение ЭВМ второго поколения, а также работы в области методологии проектирования и внедрения АСУ позволили поставить задачу управления предприятием в рамках функциональных подсистем. Опыт эксплуатации АСУП, внедренных в конце 60-х годов, показал их эффективность, проявившуюся в улучшении планирования и учета производства. Но достигнутый научно-технический уровень АСУП не удовлетворял ни разработчиков, ни заказчиков. Невозможно было обрабатывать данные в реальном масштабе времени.

Высокоэффективные и надежные (для того времени) ЭВМ третьего поколения позволили перейти к более сложным формам организации систем управления тех. объектами. Поддержание процесса вблизи оптимальной рабочей точки обеспечивалось путем оперативного воздействия на него, т.е. значения вычисленных установок преобразуются в настройки регуляторов. Функции оператора-технолога сводятся к наблюдению и вмешательству при аварийных ситуациях. Однако для ряда промышленных объектов реализация данных форм организации систем управления оказалась невозможной. Тогда появились адаптивные самообучающиеся и самообучающиеся системы. Несмотря на то, что в теории обучающихся и самообучающихся автоматических систем были получены важные результаты, промышленное применение их было достаточно ограничено из-за отсутствия доступных инженерных методов синтеза и технической реализации алгоритмов таких систем.

Современные АСУ не могут обходиться без наличия в них специальных средств организации диалога с человеком. Конечные пользователи, осознавая возможности, которые может сегодня предоставить им вычислительная техник, претендуют на непосредственный контакт с ПК или интеллектуальными терминалами. В большинстве внедренных систем управления этот контакт ограничивается простейшими режимами диалога и помогает пользователю выбирать подходящий вычислительный алгоритм, определять и задавать свои предложения относительно вывода решения, представления результатов. Более развитые средства дают возможность организовывать диалог с самой моделью для осуществления ее информационных и структурных модификаций. Именно взаимодействие конечного пользователя с оптимизационными моделями в процессе принятия управленческих решений представляет в настоящее время наибольший интерес и значительные трудности.

ПСИИ - системы, базирующиеся на знаниях

Исторически теоретические наработки в области искусственного интеллекта велись в двух основных направлениях

Первое направление связано с попытками разработки интеллектуальных машин путем моделирования их биологического прототипа - человеческого мозга. Оптимизм кибернетиков 50-х годов, возлагавших надежды на данное направление не увенчался успехом ввиду непригодности для этих целей существовавших тогда аппаратных и программных средств.

Второе направление - разработка методов, приемов, устройств и программ для ЭВМ, обеспечивающих решение сложных математических и логических задач, позволяющих автоматизировать отдельные интеллектуальные действия человека. Первым шагом в этом направлении можно считать разработку GPS-универсального решателя задач. В его основу было положено представление об эвристическом поиске, в процессе которого обеспечивалось разбиение задачи на подзадачи до тех пор, пока не будет получена легко решаемая подзадача.

Попытки уйти от неоправдавших себя универсальных эвристик при решении интеллектуальных задач привели к заключению о том, что главное, чем располагает специалист, - это накопленный им в процессе своей профессиональной деятельности некоторый набор разнообразных приемов и неформальных правил. Впоследствии была разработана ЭС Dendral, базирующаяся на знаниях, которая явилась прототипом всех последующих ЭС.

Базовая структура “системы, базирующейся на знаниях” состоит из следующих блоков: базы знаний, содержащей знания о некоторой ограниченной предметной области; решателя, или блока логического вывода, осуществляющего активизацию знаний, соответствующих текущей ситуации; блока верификации БЗ, обеспечивающего добавление новых знаний и корректировку уже существующих; блока объяснения, позволяющего пользователю прослеживать всю цепочку рассуждений системы, приводящих к конечному результату, и, наконец, интерфейса, обеспечивающего удобную связь между пользователем и системой.

Существует множество доводов в пользу того, что ПСИИ могут и должны стать важнейшей составной частью в технологии современных производств.

Главная проблема, стоящая перед предприятием, в смысле управления, это проблема преодоления сложности при выборе из множества решений. Это может быть инженерный выбор решения, выбор расписания и т.д.

Управление производством требует обработки большого объема информации. Проблема получения информации с объектов в реальном времени решена. Появилась другая проблема: как уменьшить долю информации до уровня, который необходим для принятия решения? Потеря же информации может существенно сказать на конечном результате.

Нехватка времени на принятие решения - еще одна проблема, которая проявляется по мере усложнения производства. Не менее важна и проблема координации. Если проектирование не оптимально по отношению к стадиям производства, складирования, распределения, то это может увеличить цену производства и снизить качество изделий.

И, наконец, очень важный фактор - необходимость сохранения и распределения знаний отдельных опытных экспертов, полученных ими в процессе многолетней работы и большого практического опыта. Проблема извлечения знаний и их распределения - сегодня одна из главных проблем производственных организаций.

Таким образом, необходима автоматизация интеллектуальной деятельности человека в производственных системах управления.

Искусственный интеллект в индустрии

Первая успешно действующая коммерческая экспертная система, R1, появилась в компании DEC (Digital Equipment Corporation). Эта программа помогала составлять конфигурации для выполнения заказов на новые компьютерные системы; к 1986 году она позволяла компании DEC экономить примерно 40 миллионов долларов в год. К 1988 году группой искусственного интеллекта компании DEC было развернуто 40 экспертных систем, а в планах дальнейшего развертывания было предусмотрено еще большее количество таких систем.

В компании Du Pont применялось 100 систем, в разработке находилось еще 500, а достигнутая экономия составляла примерно 10 миллионов долларов в год. Почти в каждой крупной корпорации США была создана собственная группа искусственного интеллекта и либо применялись экспертные системы, либо проводились их исследования.

В 1981 году в Японии было объявлено о развертывании проекта создания компьютера «пятого поколения» -- 10-летнего плана по разработке интеллектуальных компьютеров, работающих под управлением языка Prolog.

В ответ на это в Соединенных Штатах была сформирована корпорация Microelectronics and Computer Technology Corporation (MCC) как научно-исследовательский консорциум, предназначенный для обеспечения конкурентоспособности американской промышленности.

И в том и в другом случае искусственный интеллект стал частью общего плана, включая его применение для проектирования микросхем и проведения исследований в области человеко-машинного интерфейса. Но амбициозные цели, поставленные перед специалистами в области искусственного интеллекта в проектах МСС и компьютеров пятого поколения, так и не были достигнуты.

Тем не менее в Британии был выпущен отчет Олви (Alvey), в котором предусматривалось возобновление финансирования, урезанного на основании отчета Лайтхилла.

В целом в индустрии искусственного интеллекта произошел бурный рост, начиная с нескольких миллионов долларов в 1980 году и заканчивая миллиардами долларов в 1988 году. Однако вскоре после этого наступил период, получивший название «зимы искусственного интеллекта», в течение которого пострадали многие компании, поскольку не сумели выполнить своих заманчивых обещаний.

Главный офис компании MCC. шт.Техас г.Остин

Военные технологии

Исследования в области нейронных сетей, позволяющих получить хорошие (хотя и приближенные) результаты при решении сложных задач управления, часто финансирует военное научное агентство DARPA. Пример - проект Smart Sensor Web, который предусматривает организацию распределенной сети разнообразных датчиков, синхронно работающих на поле боя. Каждый объект (стоимостью не более $300) в такой сети представляет собой источник данных - визуальных, электромагнитных, цифровых, инфракрасных, химических и т. п. Проект требует новых математических методов решения многомерных задач оптимизации. Ведутся работы по автоматическому распознаванию целей, анализу и предсказанию сбоев техники по отклонениям от типовых параметров ее работы (например, по звуку). Операция "Буря в пустыне" стала стимулом к развитию экспертных систем с продвинутым ИИ, применяемым в области снабжения. На разработках, связанных с технологиями машинного зрения, основано все высокоточное оружие В СМИ нередко можно прочитать о грядущих схватках самостоятельно действующих армий самоходных машин-роботов и беспилотных самолетов. Однако существует ряд нерешенных научных проблем, не позволяющих в ближайшие десятилетия превратить подобные прогнозы в реальность. Прежде всего это недостатки систем автоматического распознавания, не способных правильно анализировать видеоинформацию в масштабе реального времени. Не менее актуальны задачи разрешения коллизий в больших сообществах автономных устройств, абсолютно точного распознавания своих и чужих, выбора подлежащих уничтожению целей, алгоритмов поведения в незнакомой среде и т. п. Поэтому на практике военные пытаются достичь менее масштабных целей. Значительные усилия вкладываются в исследования по распознаванию речи, создаются экспертные и консультационные системы, призванные автоматизировать рутинные работы и снизить нагрузку на пилотов. Нейронные сети достаточно эффективно применяются для обработки сигналов сонаров и отличения подводных камней от мин. Генетические алгоритмы используются для эвристического поиска решения уравнений, определяющих работу военных устройств (систем ориентации, навигации), а также в задачах распознавания - для разделения искусственных и естественных объектов, распознавания типов военных машин, анализа изображения, получаемого от камеры с низким разрешением или инфракрасных датчиков.

искусственный интеллект моделирование

Заключение

Ключевым фактором, определяющим сегодня развитие ИИ-технологий, считается темп роста вычислительной мощности компьютеров, так как принципы работы человеческой психики по-прежнему остаются неясными (на доступном для моделирования уровне детализации). Поэтому тематика ИИ-конференций выглядит достаточно стандартно и по составу почти не меняется уже довольно давно.

Но рост производительности современных компьютеров в сочетании с повышением качества алгоритмов периодически делает возможным применение различных научных методов на практике. Так случилось с интеллектуальными игрушками, так происходит с домашними роботами. Снова будут интенсивно развиваться временно забытые методы простого перебора вариантов (как в шахматных программах), обходящиеся крайне упрощенным описанием объектов. Но с помощью такого подхода (главный ресурс для его успешного применения - производительность) удастся решить, как ожидается, множество самых разных задач (например, из области криптографии). Уверенно действовать автономным устройствам в сложном мире помогут достаточно простые, но ресурсоемкие алгоритмы адаптивного поведения. При этом ставится цель разрабатывать системы, не внешне похожие на человека, а действующие, как человек.

Ученые пытаются заглянуть и в более отдаленное будущее. Можно ли создать автономные устройства, способные при необходимости самостоятельно собирать себе подобные копии (размножаться)? Способна ли наука создать соответствующие алгоритмы? Сможем ли мы контролировать такие машины? Ответов на эти вопросы пока нет. Продолжится активное внедрение формальной логики в прикладные системы представления и обработки знаний. В то же время такая логика не способна полноценно отразить реальную жизнь, и произойдет интеграция различных систем логического вывода в единых оболочках. При этом, возможно, удастся перейти от концепции детального представления информации об объектах и приемов манипулирования этой информацией к более абстрактным формальным описаниям и применению универсальных механизмов вывода, а сами объекты будут характеризоваться небольшим массивом данных, основанных на вероятностных распределениях характеристик.

Сфера ИИ, ставшая зрелой наукой, развивается постепенно - медленно, но неуклонно продвигаясь вперед. Поэтому результаты достаточно хорошо прогнозируемы, хотя на этом пути не исключены и внезапные прорывы, связанные со стратегическими инициативами.

Литература

1. Ильясов Ф. Н. Разум искусственный и естественный//Известия АН Туркменской ССР, серия общественных наук. 1986. № 6. С. 46-54

2. Пенроуз. Р. Новый ум короля. О компьютерах, мышлении и законах физики. М.: УРСС, 2005. ISBN 5-354-00993-6

3. Гарри Гаррисон. Выбор по Тьюрингу. М.: Эксмо-Пресс, 1999. 480 с. ISBN 5-04-002906-3

4. В МИРЕ НАУКИ. (Scientific American. Издание на русском языке). 1990. № 3

5. Геннадий Осипов «Искусственный интеллект: состояние исследований и взгляд в будущее»

6. "Ростов Телеком" #34 (55) «Искусственный интеллект: новая информационная революция»

7. Хант Э. Искусственный интеллект = Artificial intelligence / Под ред. В. Л. Стефанюка. -- М.: Мир, 1978. -- 558 с. -- 17 700 экз.

8. Люгер Дж. Ф. Искусственный интеллект: стратегии и методы решения сложных проблем = Artificial Intelligence: Structures and Strategies for Complex Problem Solving / Под ред. Н. Н. Куссуль. -- 4-е изд.. -- М.: Вильямс, 2005. 864 с. -- 2000 экз. -- ISBN 5-8459-0437-4

Девятков В. В. Системы искусственного интеллекта / Гл. ред. И. Б. Фёдоров. М.: Изд-во МГТУ им. Н. Э. Баумана, 2001. -- 352 с. -- (Информатика в техническом университете). -- 3000 экз. -- ISBN 5-7038-1727-7

Размещено на Allbest.ru


Подобные документы

  • Искусственный интеллект – научное направление, связанное с машинным моделированием человеческих интеллектуальных функций. Черты искусственного интеллекта Развитие искусственного интеллекта, перспективные направления в его исследовании и моделировании.

    реферат [70,7 K], добавлен 18.11.2010

  • Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?

    реферат [49,0 K], добавлен 19.05.2006

  • История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.

    реферат [45,1 K], добавлен 20.11.2009

  • Области человеческой деятельности, в которых может применяться искусственный интеллект. Решение проблем искусственного интеллекта в компьютерных науках с применением проектирования баз знаний и экспертных систем. Автоматическое доказательство теорем.

    курсовая работа [41,3 K], добавлен 29.08.2013

  • Может ли искусственный интеллект на данном уровне развития техники и технологий превзойти интеллект человека. Может ли человек при контакте распознать искусственный интеллект. Основные возможности практического применения искусственного интеллекта.

    презентация [511,2 K], добавлен 04.03.2013

  • Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.

    презентация [3,0 M], добавлен 28.05.2015

  • Сущность искусственного интеллекта, сферы человеческой деятельности, в которых он распространен. История и этапы развития данного явления. Первые идеи и их воплощение. Законы робототехники. Использование искусственного интеллекта в коммерческих целях.

    реферат [40,8 K], добавлен 17.08.2015

  • История развития искусственного интеллекта в странах дальнего зарубежья, в России и в Республике Казахстан. Разработка проекта эффективного внедрения и адаптации искусственного интеллекта в человеческом социуме. Интеграция искусственного в естественное.

    научная работа [255,5 K], добавлен 23.12.2014

  • Применение методов искусственного интеллекта и современных компьютерных технологий для обработки табличных данных. Алгоритм муравья, его начальное размещение и перемещение. Правила соединения UFO-компонентов при моделировании шахтной транспортной системы.

    дипломная работа [860,8 K], добавлен 23.04.2011

  • Феномен мышления. Создание искусственного интеллекта. Механический, электронный, кибернетический, нейронный подход. Появление перцептрона. Искусственный интеллект представляет пример интеграции многих научных областей.

    реферат [27,2 K], добавлен 20.05.2003

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.