Организации шины IEEE 1394 – FireWire
Описание высокоскоростной последовательной шины FireWare, ее составляющие, спецификации (IEEE 1394, IEEE 1394a, IEEE 1394b, IEEE 1394.1, IEEE 1394c), принцип работы, кабель, топология, использование 1394 и построение сети. Внешние дисковые устройства.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 01.03.2011 |
Размер файла | 1,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
ГОУ ВПО «Ижевский государственный технический университет»
Факультет «Информатики и вычислительной техники»
Кафедра «Вычислительной техники»
Реферат на тему:
«Организации шины IEEE 1394 - FireWire»
Выполнил: студент группы 7-78-2
Проверил: Казаков В.С.
Ижевск 2010
Содержание
Введение
Описание высокоскоростной последовательной шины FireWare
Составляющие Firewire
Протокол IEEE 1394
Спецификации FireWire
1) IEEE 1394
2) IEEE 1394a
3) IEEE 1394b
4) IEEE 1394.1
5) IEEE 1394c
Принцип работы Firewire
Кабель Firewire
Топология Firewire
Использование 1394 (FireWire)
Внешние дисковые устройства
Построение сети на основе FireWire
Список литературы
Введение
В последнее время, в связи с бурным ростом возможностей компьютерной обработки видеоизображений в компьютерном мире возникла острейшая нужда в высокоскоростной шине, по которой было бы возможно передавать значительные потоки данных, и кроме этого, требовала всего нескольких проводов (т.е. была бы последовательной), позволяла бы строить "деревья", на которые можно было бы "нанизывать" различные периферийные устройства.
По скоростным характеристикам из существующих шин, допускающих подключение внешних устройств к компьютеру, подходит только SCSI, но она не удовлетворяет многим из условий, описанных выше.
Во-первых, для высокоскоростной передачи данных необходим вариант Ultra Wide SCSI, который требует разъемов с большим числом контактов, что делает практически невозможным размещение такого разъема на, например, цифровой видеокамере. Во-вторых, топология SCSI шины предполагает только последовательное подключение устройств к шине, что приводит как к необходимости иметь на внешнем устройстве два разъема и так и иметь в обязательном порядке терминатор для установки его на последнем разъеме в цепи. В-третьих, шина SCSI не предусматривает цепей питания для периферийных устройств и это приводит к обязательной необходимости внешнего источника питания для каждого из периферийных устройств. В-четвертых, шина SCSI не предусматривает "горячего" (т.е. без выключения питания и перезагрузки компьютера) подключения/отключения устройств на шине, за исключением жестких дисков с SCA разъемами.
Интерфейс USB, который очень подходит конструктивно (маленький разъем, есть цепи питания для периферийных устройств), не имеет необходимой для переноса больших потоков данных пропускной способности. Новый вариант USB (2.0), который начал разрабатываться в 1999 году, удовлетворяет практически всем требованиям к высокоскоростной шине, но завершена его разработка только в первом квартале 2000 года, а появились первые устройства с его поддержкой только в начале 2001 года.
Именно из-за ограничений имеющихся шин интерфейс IEEE-1394 (FireWire) стал широко внедряться в компьютерной индустрии в последние годы уходящего века. Так как название FireWire (огненный провод) принадлежит фирме Apple Computers и может использоваться только для описания изделий Apple или с ее разрешения, правильное название - IEEE-1394. Некоторые компании придумали собственное зарегистрированное название, например у Sony - iLink, Yamaha - mLAN, TI - Lynx, Creative - SB1394. Пока основная сфера применения IEEE-1394 - поддержка обмена данными между компьютером и видеокамерами и видеомагнитофонами DV стандарта. В связи с тем, что DV видеокамеры выпускались в конце 20-го века во все больших и больших количествах и при непрерывном падении стоимости, некоторые производители материнских плат уже в конце 1999 года объявили о выходе первых плат со встроенным контроллером IEEE-1394.
В частности, фирма ASUSTeK Computers выпустила материнскую плату P3B-1394 со встроенным контроллером IEEE-1394.
Новая сфера применения, получившая основное развитие с начала 2000 года - устройства хранения информации с интерфейсом IEEE-1394.
Начали выпускаться внешние боксы для установки в них любых IDE/ATAPI устройств с внешним интерфейсом IEEE-1394, питанием по этому же интерфейсу и возможностью "горячего" подключения к компьютеру.
В первую очередь такие устройства находят себе применение для обмена видеоинформацией, так как на один IDE жесткий диск сейчас возможно записать до нескольких десятков часов видео DV формата и, как правило, в компьютерах, предназначенных для обработки цифрового видео, есть контроллер интерфейса IEEE-1394.
Фирма Fujitsu также выпустила аналогичные накопители на магнитооптических дисках емкостью до 1.3 GBytes.
Самые массовые из устройств, в которых используется интерфейс IEEE-1394, цифровые видеокамеры, требуют скорости передачи данных всего 25 Mbits/s, но ряд периферийных устройств, таких как жесткие диски, сканеры требуют скоростей обмена выше 400 Mbits/s и в конце мая 2001 года был согласован следующий вариант стандарта, IEEE-1394b, предусматривающий повышение скорости передачи данных вдвое, т.е. до 800 Mbits/s.
Описание высокоскоростной последовательной шины FireWare
Стандарт для высокопроизводительной последовательной шины (High Performance Serial Bus), получивший официальное название IEEE 1394, был принят в 1995 году. Целью являлось создание шины, не уступающей параллельным шинам при существенном удешевлении и повышении удобства подключения (за счет перехода на последовательный интерфейс). Стандарт основан на шине FireWire, используемой Apple Computer в качестве дешевой альтернативы SCSI в компьютерах Macintosh и PowerMac. Название FireWire («огненный провод») теперь применяется и к реализациям IEEE 1394, оно сосуществует с кратким обозначением 1394. Другое название того же интерфейса -- iLink, а иногда и Digital Link -- используется фирмой Sony применительно к устройствам бытовой электроники. MultiMedia Connection -- имя, используемое в логотипе 1394 High Performance Serial Bus Trade Association (1394TA).
Стандарт поддерживает пропускную способность шины на уровнях 100, 200, 400 Мбит/с, 800 и 1600 Мбит/с. В зависимости от возможностей подключенных устройств одна пара устройств может обмениваться сигналами на скорости 100 Мбит/с, в то время как другая на той же шине - на скорости 400 Мбит/с. Такие высокие показатели пропускной способности последовательной шины практически исключают необходимость использования параллельных шин, основной задачей которых станет передача потоков данных, например несжатых видеосигналов, внутри компьютера.
Основные свойства шины FireWire перечислены ниже.
Многофункциональность. Шина обеспечивает цифровую связь до 63 устройств без применения дополнительной аппаратуры (хабов). Устройства бытовой электроники -- цифровые камкордеры (записывающие видеокамеры), камеры для видеоконференций, фотокамеры, приемники кабельного и спутникового телевидения, цифровые видеоплейеры (CD и DVD), акустические системы, цифровые музыкальные инструменты, а также периферийные устройства компьютеров (принтеры, сканеры, устройства дисковой памяти) и сами компьютеры могут объединяться в единую сеть.
Высокая скорость обмена и изохронные передачи. Шина позволяет даже на начальном уровне (S100) передавать одновременно два канала видео (30 кадров в секунду) широковещательного качества и стерео-аудиосигнал с качеством CD.
Низкая цена компонентов и кабеля.
Легкость установки и использования. FireWire расширяет технологию PnP. Система допускает динамическое (горячее) подключение и отключение устройств.
Устройства автоматически распознаются и конфигурируются при включении/отключении. Питание от шины (ток до 1,5 А) позволяет подключенным устройствам общаться с системой даже при отключении их питания. Управлять шиной и другими устройствами могут не только PC, но и другие «интеллектуальные» устройства бытовой электроники.
FireWire по инициативе VESA позиционируется как шина «домашней сети», объединяющей всю бытовую и компьютерную технику в единый комплекс. Эта сеть является одноранговой (peer-to-peer), чем существенно отличается от USB.
Основные достоинства шины FireWire:
1. цифровой интерфейс - позволяет передавать данные между цифровыми устройствами без потерь информации;
2. небольшой размер - тонкий кабель заменяет груду громоздких проводов;
3. простота в использовании - отсутствие терминаторов, идентификаторов устройств или предварительной установки ;
4. горячее подключение - возможность переконфигурировать шину без выключения компьютера;
5. небольшая стоимость для конечных пользователей;
6. различная скорость передачи данных - 100, 200 и 400 Мбит/с;
7. гибкая топология - равноправие устройств, допускающее различные конфигурации;
8. высокая скорость - возможность обработки мультимедиа-сигнала в реальном времени;
9. открытая архитектура - отсутствие необходимости использования специального программного обеспечения.
Благодаря этому шина Firewire может использоваться с:
1. компьютерами;
2. аудио и видео мультимедийными устройствами;
3. принтерами и сканерами;
4. жесткими дисками, массивами RAID;
5. цифровыми видеокамерами и видеомагнитофонами.
Составляющие Firewire
Функциональная схема интерфейса Firewire показана на рисунке 1. Здесь внизу находится физический уровень, на котором происходит перевод стыкуемых мультимедийных сигналов в компьютерные форматы или, наоборот, с формированием, кодированием/декодированием и арбитражем, определяющим, в каком порядке устройства Firewire, составляющие сеть, могут работать.
Рис. 1 Функциональная схема интерфейса Firewire
На уровне обрабатываются и формируются пакеты данных, организуется их прием и передача. Этих уровней достаточно для изохронной передачи данных, когда контроль за передаваемой и получаемой информацией не ведется. При асинхронной передаче данных такой контроль производится на программном уровне обработки, где данные проверяются и отправляются потребителю, если ошибок не обнаружено. В противном случае процедуры на нижнем уровне повторяются до устранения ошибок. Физический уровень может содержать несколько разъемов FireWire, причем два любых устройства IEEE 1394 могут соединяться между собой по схеме «точка -- точка»(point-to-point).
Физический уровень сети.
Кабельная сеть 1394 собирается по простым правилам -- все устройства соединяются друг с другом кабелями по любой топологии (древовидной, цепочечной, звездообразной). Каждое «полноразмерное» устройство (узел сети) обычно имеет три равноправных соединительных разъема. Некоторые малогабаритные устройства могут иметь только один разъем, что ограничивает возможные варианты их местоположения. Стандарт допускает и до 27 разъемов на одном устройстве, которое будет играть роль кабельного концентратора. Допускается множество вариантов подключения устройств, но со следующими ограничениями:
1) между любой парой узлов может быть не более 16 кабельных сегментов;
2) длина сегмента стандартного кабеля не должна превышать 4,5 м;
3) суммарная длина кабеля не должна превышать 72 м (применение более качественного кабеля позволяет ослабить влияние этого ограничения);
4) топология не должна иметь петель, хотя в последующих ревизиях предполагается автоматическое исключение петель в «патологических» конфигурациях.
Стандартный кабель 1394 содержит 6-проводов, заключенных в общий экран, и имеет однотипные 6-контактные разъемы на концах (рис. 4.6, а). Две витые пары используются для передачи сигналов (ТРА и ТРВ) раздельно для приемника и передатчика, два провода задействованы для питания устройств (8-40 В, до 1,5 А). В стандарте предусмотрена гальваническая развязка устройств, для чего используются трансформаторы (напряжение изоляции развязки до 500 В) или конденсаторы (в дешевых устройствах с напряжением развязки до 60 В относительно общего провода). Некоторые бытовые устройства имеют только один 4-контактный разъем меньшего размера (рис. 4.6, б), у которого реализованы только сигнальные цепи. Эти устройства подключаются к шине через специальный переходной кабель только как оконечные (хотя возможно применение специальных адапте-ров-разветвителей). В кабелях FireWire сигнальные пары соединяются перекрестно (табл. 4.2), поскольку все порты равноправны.
а б
Рис. 2 Разъемы FireWire: а -- 6-контактное гнездо, б -- 4-контактное гнездо
Таблица 1. Соединительные кабели FireWire
Разъем А |
Провод |
Разъем Б |
|||||
4-конт. |
6-конт. |
Цепь |
Цепь |
6-конт. |
4-конт. |
||
- |
1 |
Power |
Белый |
Power |
1 |
||
- |
2 |
GND |
Черный |
GND |
2 |
||
1 |
3 |
УРЕ- |
Красный |
ТРА- |
5 |
3 |
|
2 |
4 |
ТРЕ* |
Зеленый |
ТРА+ |
6 |
4 |
|
3 |
5 |
ТРА- |
Оранжевый |
ТРВ- |
3 |
1 |
|
4 |
6 |
УРА* |
Синий |
ТРВ+ |
4 |
2 |
|
Экран |
Экран |
Экран |
Экран |
Экран |
Экран |
Экран |
В грядущей версии, которая пока называется Р 1394Ь, предусматриваются и новые варианты среды передачи:
кабель UTP категории 5 со стандартными коннекторами RJ-45 (используются две пары проводов), длина сегмента до 100 м -- дешевый вариант для S100;
пластиковое оптоволокно (два волокна POF для небольших расстояний и HPCF для больших дистанций) -- дешевый вариант для S200;
многомодовое оптоволокно (два волокна 50 мкм) -- более дорогой вариант для будущих скоростей вплоть до S3200.
Каждое устройство, имеющее более одного разъема 1394, является повторителем. Сигнал, обнаруженный на входе приемника с любого разъема, ресинхронизиру-ется по внутреннему тактовому генератору и выводится на передатчики всех остальных разъемов. Таким образом осуществляется доставка сигналов от каждого устройства ко всем остальным и предотвращается накопление «дрожания» (jitter) сигнала, ведущее к потере синхронизации.
Стандарт 1394 определяет две категории шин: кабельные шины и кросс-шины (Backplane). Под кросс-шинами подразумеваются обычно параллельные интерфейсы, объединяющие внутренние подсистемы устройства, подключенного к кабелю 1394. Сеть может состоять из множества шин, соединенных мостами -- специальными устройствами, осуществляющими передачу пакетов между шинами, фильтрацию трафика, а для соединения разнородных шин еще и необходимые преобразования интерфейсов. Интерфейсная карта шины FireWire для PC представляет собой мост PCI -- 1394. Мостами являются также соединения кабельной шины 1394 с кросс-шинами периферийных устройств. Мосты могут соединять и кабельные шины, что расширяет топологические возможности соединения устройств.
Протокол IEEE 1394
Протокол 1394 реализуется на трех уровнях (рис. 4.7).
Уровень транзакций (Transaction Layer) преобразует пакеты в данные, предоставляемые приложениям, и наоборот. Он реализует протокол запросов-ответов, соответствующий стандарту ISO/IEC 13213:1994 (ANSI/IEEE 1212, редакции 1994 г.) архитектуры регистров управления и состояния CSR (Control and Status Register) для микрокомпьютерных шин (чтение, запись, блокировка). Это облегчает связь шины 1394 со стандартными параллельными шинами.
Уровень связи (Link Layer) из данных физического уровня формирует пакеты и выполняет обратные преобразования. Он обеспечивает обмен узлов датаграммами с подтверждениями. Уровень отвечает за передачу пакетов и управление изохронными передачами.
Рис. 3. Трехуровневая структура FireWire
¦ Физический уровень (Physical Layer) вырабатывает и принимает сигналы шины. Он обеспечивает инициализацию и арбитраж, предполагая, что в любой момент времени работает только один передатчик. Уровень передает потоки данных и уровни сигналов последовательной шины вышестоящему уровню. Между этими уровнями возможна гальваническая развязка, при которой микросхемы физического уровня питаются от шины. Гальваническая развязка необходима для предотвращения паразитных контуров общего провода, которые могут появиться через провода защитного заземления блоков питания.
Аппаратная часть FireWire обычно состоит из двух специализированных микросхем -- трансиверов физического уровня PHY Transceiver и моста связи с шиной LINK Chip. Связь между ними возможна, например, по интерфейсу IBM-Apple LINK-PHY. Микросхемы уровня связи выполняют все функции своего уровня и часть функций уровня транзакций; остальная часть уровня транзакций выполняется программно.
Для передачи асинхронных сообщений используется 64-битная адресация регистров устройств 1394. В адресе выделяется 16 бит для адресации узлов сети: 6-битное поле идентификатора узла допускает до 63 устройств в каждой шине; 10-битное поле идентификатора шины допускает использование в системе до 1023 шин разного типа (включая внутренние), соединенных мостами. Протокол шины позволяет обращаться к памяти (регистрам) устройств в режиме DMA. В адресном пространстве каждого устройства имеются конфигурационные регистры, в которых содержится вся информация, необходимая для взаимодействия с ним других устройств. Данные передаются пакетами, в начале каждого пакета передаются биты состояния арбитража. Устройство может передавать данные только после успешного прохождения арбитража. Имеются два основных типа передач данных -- изохронный, ради которого и строилась шина, и асинхронный. Изохронные передачи обеспечивают гарантированную полосу пропускания и время задержки, асинхронные передачи обеспечивают гарантированную доставку.
Асинхронные сообщения передаются между двумя устройствами. Инициатор посылает запрос требуемому устройству, на который оно сразу (через короткий интервал зазора, в котором шина находится в покое) отвечает подтверждением приема, положительным (АСК) или отрицательным (NACK), если обнаружена ошибка данных. Содержательный ответ на запрос (если требуется) будет передан обратно аналогичным способом (получатель должен послать подтверждение). Если подтверждение АСК не получено, передачи будут повторяться несколько раз до достижения успеха или фиксации ошибки.
Изохронные передачи ведутся широковещательно. В сети может быть организовано до 64 изохронных каналов, и каждый пакет изохронной передачи, кроме собственно данных, несет номер канала. Целостность данных контролируется CRC-кодом. Изохронные передачи всех каналов «слышат» все устройства шины, но из всех пакетов принимают только данные интересующих их каналов. Устройство-источник изохронных данных (камера, приемник, проигрщватель) на этапе конфигурирования получает номер и параметры выделенного ему канала.
Шина поддерживает динамическое реконфшурирование -- возможность «горячего» подключения и отключения устройств. Когда устройство включается в сеть, оно широковещательно передает короткий асинхронный пакет самоидентификации. Все уже подключенные устройства, приняв такой пакет, фиксируют появление новичка и выполняют процедуру сброса шины. По сбросу производится определение структуры шины, каждому узлу назначается физический адрес и производится арбитраж мастера циклов, диспетчера изохронных ресурсов и контроллера шины (см. ниже). Через секунду после сброса все ресурсы становятся доступными для последующего использования, и каждое устройство имеет полное представление обо всех подключенных устройствах и их возможностях. Отключение устройства от шины также обнаруживается всеми устройствами. Благодаря наличию линий питания интерфейсная часть устройства может оставаться подключенной к шине даже при отключении питания функциональной части устройства.
Мастер циклов -- устройство, посылающее каждые 125 мкс короткие широковещательные пакеты начала циклов. В каждом таком пакете мастер циклов передает значение 32-битного счетчика времени, инкрементируемого с частотой 24,576 МГц, для каждого узла, поддерживающего изохронный обмен. В каждом цикле сначала передается по одному пакету каждого активного изохронного канала, затем на некоторое время зазора шина находится в состоянии покоя. После этого зазора начинается часть цикла, отводящаяся для передачи асинхронных пакетов. Каждое устройство, нуждающееся в асинхронной передаче, в этой части цикла может передать по одному пакету. Устройство, не имеющее пакета для передачи, шину и не занимает. После того как все нуждающиеся устройства передадут по одному пакету, в оставшееся время до конца цикла устройства могут передать и дополнительные пакеты.
Диспетчер изохронных ресурсов -- устройство, ведающее распределением номеров каналов и полосы шины для изохронных передач. Диспетчер требуется, когда на шине появляется хоть одно устройство, способное к изохронной передаче. Диспетчер выбирается посредством арбитража из числа устройств, поддерживающих изохронный обмен. После сброса устройства, нуждающиеся в изохронной передаче, запрашивают требуемую полосу. Полоса измеряется в специальных единицах распределения, число которых в 125-микросекундном цикле составляет 6144. Единица занимает около 20 не, что соответствует времени передачи одного квад-лета (quadlet, 32-битное слово) на частоте 1600 Мбит/с. Такой способ измерения полосы учитывает возможность совместной работы устройств с разными скоростями -- в одном цикле соседние пакеты могут передаваться на разных скоростях. Как минимум 25 мкс цикла резервируется под асинхронный трафик, поэтому суммарная распределяемая полоса изохронного трафика составляет 4915 единиц. Для цифрового видео, например, требуется полоса 30 Мбит/с (25 Мбит/с на видеоданные и 3-4 Мбит/с на аудиоданные, синхронизацию и заголовки пакетов). В S100 устройства цифрового видео запрашивают около 1800 единиц, в S200 -- около 900. Если требуемая полоса недоступна, диспетчер откажет устройству и не выделит ему номер канала. Устройство, не получившее канал, будет периодически повторять запрос. Когда изохронный обмен становится ненужным узлу, он должен освободить свою полосу и номер канала, чтобы этими ресурсами смогли воспользоваться другие устройства. Обмен управляющей информацией устройств с диспетчером производится асинхронными сообщениями.
Контроллер шины (Bus Master) -- необязательный элемент сети 1394, который осуществляет управление устройствами. Им может являться компьютер, редактирующее устройство цифровой записи или специальный интеллектуальный пульт управления. Контроллер шины, реализующий карты топологии и скоростей (TopologyJMap и Speed_Map), допускает использование нескольких частот в одной шине, в соответствии с возможностями конкретной пары устройств, участвующих в обмене. Иначе при подключении устройств, рассчитанных на разные скорости, все передачи будут происходить на скорости, доступной для всех активных устройств.
высокоскоростной последовательный шина firewire дисковый
Спецификации FireWire
1) IEEE 1394
В конце 1995 года IEEE принял стандарт под порядковым номером 1394. В цифровых камерах Sony интерфейс IEEE 1394 появился раньше принятия стандарта и под названием iLink. Интерфейс первоначально позиционировался для передачи видеопотоков, но пришёлся по нраву и производителям внешних накопителей, обеспечивая высокую пропускную способность для современных высокоскоростных дисков. Сегодня многие системные платы, а также почти все современные модели ноутбуков поддерживают этот интерфейс.
Скорость передачи данных -- 100, 200 и 400 Мбит/с, длина кабеля до 4,5 м.
2) IEEE 1394a
В 2000 году был утверждён стандарт IEEE 1394а. Был проведён ряд усовершенствований, что повысило совместимость устройств. Было введено время ожидания 1/3 секунды на сброс шины, пока не закончится переходной процесс установки надёжного подсоединения или отсоединения устройства.
3) IEEE 1394b
В 2002 году появляется стандарт IEEE 1394b c новыми скоростями: S800 -- 800 Мбит/с и S1600 -- 1600 Мбит/с. Соответствующие устройства обозначаются FireWire 800 или FireWire 1600, в зависимости от максимальной скорости. Изменились используемые кабели и разъёмы. Для достижения максимальных скоростей на максимальных расстояниях предусмотрено использование оптики, пластмассовой -- для длины до 50 метров, и стеклянной -- для длин до 100 метров. Несмотря на изменение разъёмов, стандарты остались совместимы, чего можно добиться, используя переходники. 12 декабря 2007 года была представлена спецификация S3200 [1] c максимальной скоростью -- 3,2 Гбит/с. Для обозначения данного режима используется также название «beta mode» (схема кодирования 8B10B). Максимальная длина кабеля может достигать 100 метров.
4) IEEE 1394.1
В 2004 году увидел свет стандарт IEEE 1394.1. Этот стандарт был принят для возможности построения крупномасштабных сетей и резко увеличивает количество подключаемых устройств до гигантского числа -- 64 449.
5) IEEE 1394c
Появившийся в 2006 году стандарт 1394c позволяет использовать кабель Cat 5e от Ethernet. Возможно использовать параллельно с Gigabit Ethernet, то есть использовать две логические и друг от друга не зависящие сети на одном кабеле. Максимальная заявленная длина -- 100 м, Максимальная скорость соответствует S800 -- 800 Мбит/с.
Принцип работы Firewire
Процесс инициализации интерфейса начинается со сброса шины. При этом выясняется, какое число портов -- один или несколько -- имеется в системе и к каким из них подключены основные (родительские) и дочерние устройства. По этим данным строится дерево и определяется корневой узел сети (рис. 2).
Рис 4. Процесс инициализации интерфейса
Каждое из устройств Firewire получает идентификационный номер и данные о том, на каких скоростях могут работать его прямые соседи. Используется 64-разрядная прямая адресация (48 бит на узел и 16 бит для идентификации шины), позволяющая реализовать иерархическую адресацию для 63 узлов на 1023 шинах. По завершении инициализации начинает работать арбитраж, следящий за тем, чтобы работающие устройства друг другу не мешали. Поэтому устройство, готовое начать передачу, сначала посылает сигнал запроса своему родительскому устройству в дереве. Это устройство, получив запрос, формирует сигнал запрета своим дочерним устройствам и передает запрос дальше -- своему родительскому устройству -- и так далее, пока запрос не дойдет до корневого устройства. В свою очередь корневое устройство формирует сигнал, разрешающий передачу устройству, выигравшему арбитраж по времени, то есть тому, запрос от которого получен первым. При этом устройство, проигравшее арбитраж, ждет, пока шина не освободится. По сигналу разрешения начинается работа на уровне компоновки, где формируются пакеты данных по 512 байт с интервалами между ними и определяется их адресация. 160 бит в каждом пакете занимает заголовок, куда входит информация об отправителе и получателе пакетов, а также о циклическом коде CRC исправления ошибок. Передача данных начинается по получении ответа о готовности запрашиваемого устройства к приему информации. В течение времени до 0,75 мс после отправки каждого пакета данных ожидается подтверждение об их получении в виде байтовой посылки. Далее следует интервал не менее 1 мс, разделяющий пакеты, и т. д. Каждому устройству сети Firewire предоставляется возможность передавать данные один раз в течение каждого промежутка времени, распределяемого по всем узлам. Если этого времени оказывается недостаточно, передача завершается на следующих циклах. Так сделано для того, чтобы передача длинной информации одного из источников не могла блокировать работу остальных. Изохронная передача данных применяется, например, в мультимедийных приложениях, когда приоритетом является минимум задержки на получение информации по сравнению с возможной потерей или ошибками в какой-то ее части. В изохронном режиме данные передаются пакетами длительностью по 125 мс, то есть чем выше скорость, тем больше данных может быть передано за это время. Пакеты следуют друг за другом, не ожидая байтов подтверждения получения. Для идентификации пакетов при изохронной и асинхронной передаче промежуток между ними в первом случае короче, чем во втором. Это позволяет комбинировать и различать изохронные и асинхронные данные в каждом сеансе. На изохронные данные выделено до 85% канала передачи, из которых устройство может занимать не более 65 %. Интерфейсом Firewire допускается одновременная передача информации на разных скоростях от разных устройств, причем возможность их «общения» на какой-либо из скоростей определяется автоматически. Это делает интерфейс весьма дружественным, так как пользователю не нужно заботиться о правильности подключения устройств.
Кабель Firewire
Для работы интерфейса на высоких скоростях потребовались кабели с временем распространения сигнала, не превышающим допустимых пределов. Для Firewire это 144 нс, после чего принимается решение о недоступности адресуемого устройства. Устройство кабеля для Firewire поясняет рисунок 3.
Рис 5 Устройство кабеля
Этот кабель диаметром 6 мм содержит три витые пары проводников диаметром 0,87 мм. Одна из пар (типа 22 AWG) предназначена для питания внешней нагрузки (напряжение 8…30 В, потребляемый ток до 1,5 А), а две другие представляют собой раздельно экранированные пары сигнальных проводов типа 28 AWG. Все проводники с изолирующим заполнением заключены в экранирующую фольгу и оболочку из поливинилхлорида. Таким образом, кабель имеет сложную конструкцию и изготовить его самостоятельно вряд ли возможно.
Существуют три вида разъёмов (рис 4) для FireWire:
1. 4pin (IEEE 1394a без питания) стоит на ноутбуках и видеокамерах. Два провода для передачи сигнала (информации) и два для приема.
2. 6pin (IEEE 1394a). Дополнительно два провода для питания.
3. 9pin (IEEE 1394b). Дополнительные провода для приёма и передачи информации.
Рис 6 виды разъёмов
Пара проводов, предназначенная для питания внешних устройств, например сканера, не требуется при работе с цифровыми видеокамерами, обеспеченными собственным питанием. Для таких случаев применения Firewire разработаны однорядные 4-контактные разъемы и кабели, вид одного из которых -- Sony iLink -- показан на рис.4. Длина этого кабеля составляет 96 см
Топология Firewire
Стандарт 1394 определяет общую структуру шины, а также протокол передачи данных и разделения носителя. Древообразная структура шины всегда имеет "корневое" устройство, от которого происходит ветвление к логическим "узлам", находящимся в других физических устройствах. Корневое устройство отвечает за определенные функции управления. Так, если это ПК, он может содержать мост между шинами 1394 и PCI и выполнять некоторые дополнительные функции по управлению шиной. Корневое устройство определяется во время инициализации и, будучи однажды выбранным, остается таковым на все время подключения к шине. Сеть 1394 может включать до 63 узлов, каждый из которых имеет свой 6-разрядный физический идентификационный номер. Несколько сетей могут быть соединены между собой мостами. Максимальное количество соединенных шин в системе - 1023. При этом каждая шина идентифицируется отдельным 10-разрядным номером. Таким образом, 16-разрядный адрес позволяет иметь до 64449 узлов в системе. Поскольку разрядность адресов устройств 64 бита, а 16 из них используются для спецификации узлов и сетей, остается 48 бит для адресного пространства, максимальный размер которого 256 Терабайт (256х10244 байт) для каждого узла. Конструкция шины проста. Устройства могут подключаться к любому доступному порту (на каждом устройстве обычно 1 - 3 порта). Шина допускает "горячее" подключение. Нет также необходимости в каких-либо адресных переключателях, поскольку отсутствуют электронные адреса. Каждый раз, когда узел добавляется или изымается из сети, топология шины автоматически переконфигурируется в соответствии с шинным протоколом. Но есть ограничения. Между любыми двумя узлами может существовать не больше 16 сетевых сегментов, а в результате соединения устройств не должны образовываться петли. Для поддержки качества сигналов длина стандартного кабеля, соединяющего два узла, не должна превышать 4,5 м.
Использование 1394 (FireWire)
Принципиальным преимуществом шины 1394 является отсутствие необходимости в контроллере. Любое передающее устройство может получить полосу изохронного трафика и начинать передачу по сигналу автономного или дистанционного управления -- приемник «услышит» эту информацию. При наличии контроллера соответствующее ПО может управлять работой устройств, реализуя, например, цифровую студию нелинейного видеомонтажа или снабжая требуемыми мультимедийными данными всех заинтересованных потребителей информации. Для шины 1394 наиболее привлекательна возможность соединения устройств бытовой электроники (имеется в виду пока что не «наш», а «их» быт) в «домашнюю сеть», причем как с использованием PC, так и без. При этом стандартные однотипные кабели и разъемы 1394 заменяют множество разнородных соединений устройств бытовой электроники с PC. Разнотипные цифровые сигналы (сжатые видеосигналы, цифровые аудиосигналы, команды MIDI и управления устройствами, данные) мультиплексируются в одну шину, проходящую по всем помещениям. Используя одни и те же источники данных (приемники вещания, устройства хранения, видеокамеры и т. п.), можно одновременно в разных местах просматривать (прослушивать) разные программы с высоким качеством, обеспечиваемым цифровыми технологиями. Применение компьютера с адаптером 1394 и соответствующим ПО значительно расширяет возможности этой сети. Компьютер становится виртуальным коммутатором домашней аудио-видеостудии. Приложения для аудио- и видеоустройств используют логические «вилки» (plugs) и «розетки» (sockets), которые являются аналогами разъемов, применяемых в обычной аппаратуре. Вилки соответствуют выходам, розетки -- входам соответствующих устройств. «Вставляя» эти «вилки» в «розетки» можно собрать требуемую систему. Конечно, для того чтобы она заработала, в устройствах должна быть реализована спецификация Digital Interface for Consumer Electronic Audio/Video Equipment -- расширение стандарта IEEE-1394, предложенная DVC (Digital Video Consortium). Co временем она должна стать стандартом ISO/IEC.
Адаптер FireWire, например АНА-8940 фирмы Adaptec, может устанавливаться в любой PC (или Мае), имеющий свободный слот PCI. Для редактирования видео хватает мощности рядового современного ПК (минимальные требования -- Pentium 133,32 Мбайт ОЗУ» 256 кбайт кэш, желательно быстрый SCSI-диск).
Поддержка 1394 имеется в ряде ОС, среди которых Windows 98, Windows 95 OSR 2.1 и более новые. Для редактирования аудио-видеофайлов (AVI) применимы, например, пакеты Adobe Premiere, Asymetrix Digital Video Producer, Ulead MediaStudio, MGI Video Wave. Кодек-конвертор цифровых видеоданных (DV), передаваемых по шине 1394, в AVI-файл поставляется фирмой Adaptec.
Одной из проблем цифровой передачи мультимедийной информации является защита авторских прав. Пользователь должен иметь возможность высококачественного воспроизведения принимаемых программ или приобретенных дисков, но их авторы (производители) должны иметь возможность защитить свои права, по своему усмотрению вводя ограничения на цифровое копирование. Для этих целей объединение «5С» (5 компаний: Sony, Matsushita, Intel, Hitachi и Toshiba) разрабатывает спецификацию шифрования данных.
Внешние дисковые устройства
Существует стандарт SBP-2 -- SCSI поверх 1394. Широко используется для подключения внешних корпусов с жесткими дисками к компьютерам -- корпус содержит чип моста 1394-ATA. Скорость до примерно 27 МБ/с, что превышает скорость USB 2 как интерфейса к устройствам хранения данных, равную примерно 22 МБ/с. Поддерживается в ОС семейства Windows c Windows 98 и по сей день (декабрь 2008). Также поддерживается в популярных ОС семейства UNIX. Интересно, что около 1998 г. содружество компаний, в том числе Microsoft, развивали идею обязательности 1394 для любого компьютера и использования 1394 внутри корпуса, а не только вне него. Существовали даже карты контроллеров с одним из разъемов, направленным внутрь корпуса. Также существовала идея Device Bay, то есть отсека для устройства со встроенным в отсек разъемом 1394 и поддержкой горячей замены. Все это прослеживается в материалах Microsoft той поры, предназначенных для разработчиков компьютеров. Можно сделать вывод, что 1394 предлагали как замену ATA, то есть на роль, ныне выполняемую SATA. Все эти идеи быстро кончились провалом, одна из главных причин -- лицензионная политика Apple, требующего выплат за каждый чип контроллера.
MiniDV видеокамеры
Исторически первое использование шины. Используется и по сей день как средство копирования фильмов с MiniDV в файлы. Возможно и копирование с камеры на камеру. Видеосигнал, идущий по 1394, идет практически в том же формате, что и хранится на видеоленте. Это упрощает камеру, снижая требования к ней по наличию памяти.
В ОС Windows подключенная по 1394 камера является устройством DirectShow. Захват видео с такого устройства возможен в самых разнообразных приложениях -- Adobe Premiere, Ulead Media Studio Pro, Windows Movie Maker. Существует также огромное количество простейших утилит, способных выполнять только этот захват. Возможно также и использование тестового инструмента Filter Graph Editor из свободно распространяемого DirectShow SDK. Использование 1394 c miniDV положило конец проприетарным платам видеозахвата. Нужно обратить внимание на то, что, несмотря на цифровую природу 1394 и miniDV, изохронный трафик не защищен от искажений никак, и в некоторых случаях качество захваченного видео зависит от геометрии расположения кабеля на рабочем столе.
Отладчик WinDbg
Интересным свойством контроллеров 1394 является способность читать и писать произвольные адреса памяти со стороны шины без использования процессора и ПО. Это проистекает из богатого набора асинхронных транзакций 1394, а также из ее структуры адресации. Эта возможность чтения и редактирования памяти через 1394 без помощи процессора послужила причиной использования 1394 в двухмашинном отладчике ядра Windows -- WinDbg. Такое использование существенно быстрее последовательного порта, но требует ОС не ниже Windows XP с обеих сторон.
Построение сети на основе FireWire
На самом деле связь между компьютерами можно создать и, не используя сетевые карты и витую пару. Порт FireWire изначально основывался на архитектуре локальных сетей, и возможность соединения компьютеров заложена в него изначально. Все что вам потребуется это приобрести FireWire шнур:
1. Кабель FireWire IEEE1394 4pins-4pins
2. Кабель FireWire IEEE1394 6pins-4pins
3. Кабель FireWire IEEE1394 6pins-6pins
Вид шнура выбирается в зависимости от того, какие разъемы FireWire стоят у вас - 4 или 6 контактные.
И настроить систему. В Windows XP после установки Fire Wire контроллера в разделе Сетевые подключения появится новое подключение: Соединение 1394.
После этого надо назначить фиксированный IP адрес на это подключение, например 192.254.0.5 и 192.254.0.6 и сконфигурировать принадлежность подключённых компьютеров к одной рабочей группе. Подробнее об этом смотрите в разделе: Настройка Windows. Главное достоинство такого подключения является его очень высокая скорость 400 мегабит в секунду. Главный недостаток совсем небольшая длинна, на которую можно протянуть FireWire сеть. Официальное максимальное расстояние связи 4.5 метров. Неофициальное макс. расстояние устойчивой связи до 10-15 метров. Однако если приобрести FireWire репитер (рисунок 7), который усиливает сигнал сеть можно проложить на расстояние до 72-100 метров. Такая сеть уже легко может конкурировать с обычной ЛВС на витой паре. Среди компьютеров Macintosh сеть FireWire является основным типом соединения компьютеров.
Рис 7 Шести портовый FireWire репитер.
Столь длинные IEEE 1394 кабели не продаются, поэтому придется их наращивать самому, при этом лучше всего использовать витую пару и пайку. Скорость связи по наращенному кабелю падает на 50-80 мегабит. IEEE 1394 сеть идеально подходит для объединения нескольких компьютеров в пределах одной квартиры (рисунок 8), а с использование репитера позволяет строить сеть используя только интерфейс FireWire, так же если один из компьютеров подключён к ЛВС, то используя его в качестве роутера сеть FireWire можно объединить с обычной локальной сетью.
Рис 8 Сеть на основе FireWire
Список литературы
1. Ахметов А.Н., Борзенко А.В. Современный персональный компьютер. - М.: Компьютер Пресс, 2003.-317 с.
2. М. Гук "Шины PCI, USB и FireWire. Энциклопедия"
3. М. Гук «Аппаратные интерфейсы ПК. Энциклопедия, стр. 87».
4. http://ru.wikipedia.org/wiki/SCSI
5. http://www.cyberguru.ru/hardware/bus/firewire-ieee1394-bus.html
6. http://bercov.h1.ru/firewire.htm
7. http://cs.usu.edu.ru/home/vitalik/computers/hardware/data/ieee.htm
Размещено на Allbest.ru
Подобные документы
Описание высокоскоростной последовательной шины FireWire: ее составляющие, спецификации, принцип работы, кабели и разъемы, топология. Уровни реализации протокола IEEE 1394: транзакции, связи и физический. Использование внешних дисковых устройств.
реферат [1,5 M], добавлен 15.07.2012Высокоскоростные последовательные шины USB (Universal Serial Bus) и IEEE-1394. Использование последовательной архитектуры в высокоскоростных периферийных шинах. Подключение устройств, назначение контактов в разъеме шины, максимальная длина кабеля.
презентация [148,1 K], добавлен 27.08.2013Wi-Fi и его возможности. Спецификации стандарта IEEE 802.11. Перспективы его развития. Работающие стандарты. Перспективные спецификации. Методы DSSS и FHSS в IEEE 802.11. Помехоустойчивость. Пропускная способность. Wi-Fi с поддержкой голоса.
курсовая работа [25,6 K], добавлен 20.05.2006Беспроводные сети стандарта IEEE 802.11: подключение, поддержка потоковых данных, управление питанием, безопасность для здоровья. Шифры RC4, AES. Протоколы безопасности в сетях стандарта IEEE 802.11. Атаки на протокол WEP. Качество генераторов ПСП.
дипломная работа [2,4 M], добавлен 09.06.2013Основные понятия, применяемые при описании интерфейсов, их классификация. Обзор применяемых в компьютерной технике интерфейсов по их характеристикам и области применения. Описание и основные характеристики интерфейсов IDE, IEEE-1394, HDMI 1.4 и SATA.
курсовая работа [183,3 K], добавлен 25.04.2012Применение компьютерных сетей для обеспечения связи между персоналом, компьютерами и серверами. Архитектура сети, ее стандарты и организация. Физический и канальный уровни IEEE 802.11, типы и разновидности соединений. Защита и безопасность WiFi сетей.
курсовая работа [1,1 M], добавлен 15.10.2009Способы организации беспроводных сетей по стандартам IEEE 802.16. WiMAX как телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях. Этапы построения полносвязной городской Wi-Fi сети.
курсовая работа [1,6 M], добавлен 31.08.2013Теоретические подходы к сети на FireWire, основные проблемы и пути их решения. Обмен цифровой информацией между компьютером и другими электронными устройствами. Описание высокоскоростной последовательной шины, спецификации FireWire и принцип работы.
курсовая работа [365,9 K], добавлен 18.11.2009Беспроводные стандарты IEEE 802.х; модель взаимодействия открытых систем. Методы локализации абонентских устройств в стандарте IEEE 802.11 (Wlan): технология "снятия радиоотпечатков"; локализация на базе радиочастотной идентификации RFID в сетях Wi-Fi.
курсовая работа [794,5 K], добавлен 04.06.2014Характеристика стандарта IEEE 802.11. Основные направления применения беспроводных компьютерных сетей. Методы построения современных беспроводных сетей. Базовые зоны обслуживания BSS. Типы и разновидности соединений. Обзор механизмов доступа к среде.
реферат [725,9 K], добавлен 01.12.2011