Система автоматизированного проектирования (САПР)

Общие сведения о проектировании. Сущность, структура, разновидности, функции САПР. Комплексные автоматизированные системы. Структура технического обеспечения и аппаратура рабочих мест САПР. Системные среды и программно-методические комплексы САПР.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 23.02.2011
Размер файла 208,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство Образования и Науки Республики Казахстан

Казахстанский Университет Инновационных и Телекоммуникационных Систем

КУРСОВАЯ РАБОТА

Тема: Система автоматизированного проектирования (САПР)

Выполнил: студент 641 группы

Жумагалиев Т.К.

Проверила: преподаватель

Отарбаева Д.О.

Уральск - 2008 г.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ГЛАВА I. Общие вопросы создания САПР

1. Общие сведения о проектировании

2. ПОНЯТИЕ САПР

3. Достоинства САПР

ГЛАВА II. КЛАССИФИКАЦИЯ И ОБОЗНАЧЕНИЕ

1. Структура САПР

2. РАЗНОВИДНОСТИ САПР

3. ФУНКЦИИ, ХАРАКТЕРИСТИКИ И ПРИМЕРЫ CAE/CAD/CAM-СИСТЕМ

4. ПОНЯТИЕ О CALS-технологии

5. КОМПЛЕКСНЫЕ АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ

ГЛАВА III. ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САПР

1. СТРУКТУРА ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ САПР

2. АППАРАТУРА РАБОЧИХ МЕСТ В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ ПРОЕКТИРОВАНИЯ И УПРАВЛЕНИЯ

ГЛАВА IV. СИСТЕМНЫЕ СРЕДЫ И ПРОГРАММНО-МЕТОДИЧЕСКИЕ КОМПЛЕКСЫ САПР

1. ОБЩИЕ СВЕДЕНИЯ О ПРОГРАММНОМ ОБЕСПЕЧЕНИИ АВТОМАТИЗИРОВАННЫХ СИСТЕМ

2. НАЧНАЧЕНИЕ И СОСТАВ СИСТЕМНЫХ СРЕД САПР

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

ВВЕДЕНИЕ

Автоматизация проектирования занимает особое место среди информационных технологий.

Во-первых, автоматизация проектирования -- синтетическая дисциплина, ее составными частями являются многие другие современные информационные технологии. Так, техническое обеспечение систем автоматизированного проектирования (САПР) основано на использовании вычислительных сетей и телекоммуникационных технологий, в САПР используются персональные компьютеры и рабочие станции, есть примеры применения мейнфреймов. Математическое обеспечение САПР отличается богатством и разнообразием используемых методов вычислительной математики, статистики, математического программирования, дискретной математики, искусственного интеллекта. Программные комплексы САПР относятся к числу наиболее сложных современных программных систем, основанных на операционных системах Unix, Windows 2000/XP, языках программирования С, С++, Java и других, современных CASE технологиях, реляционных и объектно-ориентированных системах управления базами данных (СУБД), стандартах открытых систем и обмена данными в компьютерных средах.

Во-вторых, знание основ автоматизации проектирования и умение работать со средствами САПР требуется практически любому инженеру-разработчику. Компьютерами насыщены проектные подразделения, конструкторские бюро и офисы. Работа конструктора за обычным кульманом, расчеты с помощью логарифмической линейки или оформление отчета на пишущей машинке стали анахронизмом. Предприятия, ведущие разработки без САПР или лишь с малой степенью их использования, оказываются неконкурентоспособными как из-за больших материальных и временных затрат на проектирование, так и из-за невысокого качества проектов.

Появление первых программ для автоматизации проектирования за рубежом и в СССР относится к началу 60-х гг. Тогда были созданы программы для решения задач строительной механики, анализа электронных схем, проектирования печатных плат. Дальнейшее развитие САПР шло по пути создания аппаратных и программных средств машинной графики, повышения вычислительной эффективности программ моделирования и анализа, расширения областей применения САПР, упрощения пользовательского интерфейса, внедрения в САПР элементов искусственного интеллекта.

К настоящему времени создано большое число программно-методических комплексов, для САПР с различными степенью специализации и прикладной ориентацией. В результате автоматизация проектирования стала необходимой составной частью подготовки инженеров разных специальностей; инженер, не владеющий знаниями и не умеющий работать в САПР, не может считаться полноценным специалистом.

Подготовка инженеров разных специальностей в области САПР включает базовую и специальную компоненты. Наиболее общие положения, модели и методики автоматизированного проектирования входят в программу курса, посвященного основам САПР, более детальное изучение тех методов и программ, которые специфичны для конкретных специальностей, предусматривается в профильных дисциплинах.

Увеличение производительности труда разработчиков новых изделий, сокращение сроков проектирования, повышение качества разработки проектов - важнейшие проблемы, решение которых определяет уровень ускорения научно-технического прогресса общества. Развитие систем автоматизированного проектирования (САПР) опирается на прочную научно-техническую базу. Это - современные средства вычислительной техники, новые способы представления и обработки информации, создание новых численных методов решения инженерных задач и оптимизации. Системы автоматизированного проектирования дают возможность на основе новейших достижений фундаментальных наук отрабатывать и совершенствовать методологию проектирования, стимулировать развитие математической теории проектирования сложных систем и объектов. В настоящее время созданы и применяются в основном средства и методы, обеспечивающие автоматизацию рутинных процедур и операций, таких, как подготовка текстовой документации, преобразование технических чертежей, построение графических изображений и т.д.

ГЛАВА I. Общие вопросы создания САПР

1. Общие сведения о проектировании

автоматизированное проектирование программный

Введем некоторые определения и понятия, которыми будем пользоваться в дальнейшем.

Прежде всего, определимся, что такое проектирование.

Под проектированием понимается процесс составления описания, необходимого для построения в заданных условиях еще не существующего объекта на основе первичного описания этого объекта.

Хотя это определение несколько расплывчато, оно , тем не менее, отражает главную особенность проектирования как процесса создания описания именно нового объекта.

Если этот процесс осуществляется человеком при взаимодействии с компьютером, то проектирование называется автоматизированным, если нет, то, соответственно, - неавтоматизированным.

Проектирование, при котором все преобразования описания объекта и алгоритма его функционирования осуществляются компьютером без участия человека, называется автоматическим.

Нас будет интересовать, в первую очередь, автоматизированное проектирование, которое и является предметом САПР.

Дадим теперь определение САПР.

САПР (система автоматизированного проектирования) - это комплекс средств автоматизации проектирования, взаимосвязанных с коллективом специалистов (пользователей системы), выполняющих автоматизированное проектирование.

В ГОСТах по автоматизации проектирования дается более развернутая, но, на наш взгляд, менее точная формулировка этого определения. Там, в частности, говорится, что “САПР- это организационно-техническая система, взаимосвязанная с подразделениями проектной организации...”. В действительности же САПР, как нам представляется, больше программно-технический комплекс, нежели организационный, и взаимосвязан он, чаще всего, не с подразделениями проектных организаций, которых в чистом виде осталось уже совсем немного, а с группой пользователей. Тем более, что в последнее время все чаще пропагандируется новых подход к проектированию, который заключается в замене последовательного процесса сквозной разработки изделия с передачей результатов проектирования от одного подразделения к другому на интегрированный, параллельный процесс создания изделия на основе концепции “рабочих групп”. Эта концепция предполагает создание на предприятии многопрофильных рабочих групп в составе различных специалистов по конструированию, технологической подготовке производства, вопросам качества, покупки, продажи, маркетинга и т.д. Появился даже специальный термин “Среда параллельной технологии выпуска изделий”, который, как и почти все, что касается компьютерных технологий, пришел к нам с Запада. По-английски этот термин пишется как САРЕ (Concurrent Art-to-Product Enviroment). Применяют еще один термин - Concurrent Engineering, который обозначает средства реализации параллельного проектирования, под которыми, в первую очередь, понимаются программные средства.

2. ПОНЯТИЕ САПР

CAD - computer Aided Design (САПР)

Общий термин для обозначения всех аспектов проектирования с использованием средств вычислительной техники. Обычно охватывает создание геометрических моделей изделия. (Твердотельные,3D). А также генерацию чертежных изделий и их сопровождений. Следует отличать что этот термин САПР по отношению промышленным системам имеет более широкое толкование чем CAD. Он включает в себя как CAD так и CAM и CAE.

CAM - Computer Aided Manufacturing. Общий термин для обозначения системы автоматизированной подготовки производства, общий термин для обозначения ПС подготовки информации для станков с ЧПУ. Традиционно исходными данными для таких систем были геометрические модели деталей, полученных из систем CAD.

CAE - Computer Aided Engineering. Система автоматического анализа проекта. Общий термин для обозначения информационного обеспечения условий автоматизированного анализа проекта, имеет целью обнаружение ошибок(прочностные расчеты) или оптимизация производственных возможностей.

PDM - Product Data Management. Система управления производственной информацией. Инструментальное средство, которое помогает администраторам, инженерам, конструкторам и так далее управлять как данными так и процессами разработки изделия на современных производственных предприятиях или группе смежных предприятий.

CAD/CAM/CAE/PDM = САПР

Прогресс науки и техники, потребности развивающегося общества в новых промышленных изделиях обусловлено необходимость выполнения проектных работ. Требование к качеству проектов, к срокам их выполнения становятся все более жесткими по мере увеличения сложности проектируемых объектов. Кроме того, темпы морального устаревания изделий сегодня таковы, что поставленные на конвейер новые образцы часто уже не соответствуют современным требованиям.

Осуществление этих требований стало возможным на основе широкого применения средств ЭВМ на всех этапах производства:

- Контроль проектирования, где зарождается исходная модель изделия, технологического проектирования.

- Проектирование организации управления производством с формированием данных о материальных и информационных потоках производства.

- Изготовление изделий путем выполнения операций над материальным объектом на основе созданной на предварительных этапах информации.

- Оценки качества изделия на основе сравнения требуемых и реальных характеристик. К числу наиболее эффективных технологий САПР и АСТПП.

3. Достоинства САПР

Сейчас термином САПР обозначают процесс проектирования с использованием сложных средств машинной графики, поддерживаемых пакетами прикладных программ для решения на компьютерах аналитических, квалификационных, экономических и эргономических проблем, связанных с проектной деятельностью.

Достоинства САПР:

1. Более быстрое выполнение чертежей (до 3 раз). Дисциплина работы с использованием САПР ускоряет процесс проектирования в целом, позволяет в сжатые сроки выпускать продукцию и быстрее реагировать на изменение рыночных конъектур.

2. Повышение точности выполнения. На чертежах, построенных с помощью системы САПР, место любой точки определено точно, а для увеличения достаточного просмотра элементов есть средство, называемое наезд, или zooming, позволяющее увеличивать или уменьшать любую часть данного чертежа в любое число раз. На изображение, над которым выполняется наезд, не накладывается практически никаких ограничений.

3. Повышение качества;

4. Возможность многократного использования чертежа. Запомненный чертеж может быть использован повторно для проектирования, когда в состав чертежа входит ряд компонентов, имеющих одинаковую форму. Память компьютера является также идеальным средством хранения библиотек, символов, стандартных компонентов и геометрических форм.

5. САПР обладает чертежными средствами (сплайны, сопряжения, слои).

6. Ускорение расчетов и анализа при проектировании. В настоящее время существует большое разнообразие ПО, которое позволяет выполнять на компьютерах часть проектных расчетов заранее. Мощные средства компьютерного моделирования, например, метод конечных элементов, освобождают конструктора от использования традиционных форм и позволяют проектировать нестандартные геометрические формы.

7. Понижение затрат на обновление. Средства анализа и имитации в САПР, позволяют резко сократить затраты времени и денег на тестирование и усовершенствование прототипов, которые являются дорогостоящими этапами процесса проектирования;

8. Большой уровень проектирования. Мощные средства, комплексного моделирования. Возможность проектирования нестандартных геометрических форм, которые быстро оптимизируются;

9. Интеграция проектирования с другими видами деятельности. Интегрируемые вычислительные средства обеспечивают САПР более тесное взаимодействия с инженерными подразделениями.

ГЛАВА II. КЛАССИФИКАЦИЯ И ОБОЗНАЧЕНИЕ

1. Структура САПР

Как и любая сложная система, САПР состоит из подсистем (рис. 1.1). Различают подсистемы проектирующие и обслуживающие.

Рис 1.1. Структура программного обеспечения САПР

Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах.

Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными (PDM -- Product Data Management), управления процессом проектирования (DesPM -- Design Process Management), пользовательского интерфейса для связи разработчиков с ЭВМ, CASE (Computer Aided Software Engineering) для разработки и сопровождения программного обеспечения САПР, обучающие подсистемы для освоения пользователями технологий, реализованных в САПР.

Структурирование САПР по различным аспектам обусловливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения:

-- техническое (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);

-- математическое (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;

-- программное (ПО), представляемое компьютерными программами САПР;

-- информационное (ИО), состоящее из баз данных (БД), систем управления базами данных (СУБД), а также других данных, используемых при проектировании; отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР, а БД вместе с СУБД носит название банка данных (БнД);

-- лингвистическое (ЛО), выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;

-- методическое (МетО), включающее различные методики проектирования, иногда к МетО относят также математическое обеспечение;

-- организационное (ОО), представляемое штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.

Теперь кратко разберёмся с назначением каждого компонента средств САПР.

Математическое обеспечение САПР. Основа - это алгоритмы, по которым разрабатывается программное обеспечение САПР. Среди разнообразных элементов математического обеспечения имеются инвариантные элементы-принципы построения функциональных моделей, методы численного решения алгебраических и дифференциальных уравнений, постановки экстремальных задач, поиски экстремума. Разработка математического обеспечения является самым сложным этапом создания САПР, от которого в наибольшей степени зависят производительность и эффективность функционирования САПР в целом.

Программное обеспечение САПР. Программное обеспечение САПР представляет собой совокупность всех программ и эксплуатационной документации к ним, необходимых для выполнения автоматизированного проектирования. Программное обеспечение делиться на общесистемное и специальное (прикладное) ПО. Общесистемное ПО предназначено для организации функционирования технических средств, т. е. для планирования и управления вычислительным процессом, распределения имеющихся ресурсов, о представлено различными операционными системами. В специальном ПО реализуется математическое обеспечение для непосредственного выполнения проектных процедур.

Информационное обеспечение САПР. Основу составляют данные, которыми пользуются проектировщики в процессе проектирования непосредственно для выработки проектных решений. Эти данные могут быть представлены в виде тех или иных документов на различных носителях, содержащих сведения справочного характера о материалах, параметрах элементов, сведения о состоянии текущих разработок в виде промежуточных и окончательных проектных решений.

Техническое обеспечение САПР. Это создание и использование ЭВМ, графопостроителей, оргтехники и всевозможных технических устройств, облегчающих процесс автоматизированного проектирования.

Лингвистическое обеспечение САПР. Основу составляют специальные языковые средства (языки проектирования), предназначенные для описания процедур автоматизированного проектирования и проектных решений. Основная часть лингвистического обеспечения - языки общения человека с ЭВМ.

Методическое обеспечение САПР. Под методическим обеспечением САПР понимают входящие в её состав документы, регламентирующие порядок ее эксплуатации. Причем документы, относящиеся к процессу создания САПР, не входят в состав методического обеспечения. Так в основном документы методического обеспечения носят инструктивный характер, и их разработка является процессом творческим.

Организационное обеспечение САПР. Этот пункт предписывает комплектование подразделений САПР проффесионально грамотными специалистами, имеющими навыки и знания для работы с перечисленными выше компонентами САПР. От их работы будет зависеть эффективность и качество работы всего комплекса САПР (может даже всего производства).

2. РАЗНОВИДНОСТИ САПР

Классификацию САПР осуществляют по ряду признаков, например, по приложению, целевому назначению, масштабам (комплексности решаемых задач), характеру базовой подсистемы -- ядра САПР.

По приложениям наиболее представительными и широко используемыми являются следующие группы САПР.

1. САПР для применения в отраслях общего машиностроения. Их часто называют машиностроительными САПР или MCAD (Mechanical CAD) системами.

2. САПР для радиоэлектроники. Их названия -- ECAD (Electronic CAD) или EDA (Electronic Design Automation) системы.

3. САПР в области архитектуры и строительства.

Кроме того, известно большое число более специализированных САПР, или выделяемых в указанных группах, или представляющих самостоятельную ветвь в классификации. Примерами таких систем являются САПР больших интегральных схем (БИС); САПР летательных аппаратов; САПР электрических машин и т.п.

По целевому назначению различают САПР или подсистемы САПР, обеспечивающие разные аспекты (страты) проектирования. Так, в составе MCAD появляются CAE/CAD/CAM системы:

1. САПР функционального проектирования, иначе САПР-Ф или CAE (Computer Aided Engineering)системы.

2. Конструкторские САПР общего машиностроения -- САПР-К, часто называемые просто CAD

системами;

3. Технологические САПР общего машиностроения -- САПР-Т, иначе называемые автоматизированными системами технологической подготовки производства АСТПП или системами CAМ (Computer Aided Manufacturing).

По масштабам различают отдельные программно-методические комплексы (ПМК) САПР, например, комплекс анализа прочности механических изделий в соответствии с методом конечных элементов (МКЭ) или комплекс анализа электронных схем; системы ПМК; системы с уникальными архитектурами не только программного (software), но и технического (hardware) обеспечений.

По характеру базовой подсистемы различают следующие разновидности САПР.

1. САПР на базе подсистемы машинной графики и геометрического моделирования. Эти САПР ориентированы на приложения, где основной процедурой проектирования является конструирование, т.е. определение пространственных форм и взаимного расположения объектов. Поэтому к этой группе систем относится большинство графических ядер САПР в области машиностроения.

В настоящее время появились унифицированные графические ядра, применяемые более чем в одной САПР, это ядра Parasolid фирмы EDS Unigraphics и ACIS фирмы Intergraph.

2. САПР на базе СУБД. Они ориентированы на приложения, в которых при сравнительно несложных математических расчетах перерабатывается большой объем данных. Такие САПР преимущественно встречаются в технико-экономических приложениях, например, при проектировании бизнес-планов, но имеют место также при проектировании объектов, подобных щитам управления в системах автоматики.

3. САПР на базе конкретного прикладного пакета. Фактически это автономно используемые программно-методические комплексы, например, имитационного моделирования производственных процессов, расчета прочности по методу конечных элементов, синтеза и анализа систем автоматического управления и т.п. Часто такие САПР относятся к системам CAE. Примерами могут служить программы логического проектирования на базе языка VHDL, математические пакеты типа MathCAD.

4. Комплексные (интегрированные) САПР, состоящие из совокупности подсистем предыдущих видов. Характерными примерами комплексных САПР являются CAE/CAD/CAM-системы в машиностроении или САПР БИС. Так, САПР БИС включает в себя СУБД и подсистемы проектирования компонентов, принципиальных, логических и функциональных схем, топологии кристаллов, тестов для проверки годности изделий. Для управления столь сложными системами применяют специализированные системные среды.

3. ФУНКЦИИ, ХАРАКТЕРИСТИКИ И ПРИМЕРЫ

CAE/CAD/CAM-СИСТЕМ

Функции CAD-систем в машиностроении подразделяют на функции двухмерного (2D) и трехмерного (3D) проектирования. К функциям 2D относятся черчение, оформление конструкторской документации; к функциям 3D -- получение трехмерных моделей, метрические расчеты, реалистичная визуализация, взаимное преобразование 2D и 3D моделей.

Среди CAD-систем различают “легкие” и “тяжелые” системы. Первые из них ориентированы преимущественно на 2D графику, сравнительно дешевы и менее требовательны в отношении вычислительных ресурсов. Вторые ориентированы на геометрическое моделирование (3D), более универсальны, дороги, оформление чертежной документации в них обычно осуществляется с помощью предварительной разработки трехмерных геометрических моделей.

Основные функции CAM-систем: разработка технологических процессов, синтез управляющих программ для технологического оборудования с числовым программным управлением (ЧПУ), моделирование процессов обработки, в том числе построение траекторий относительного движения инструмента и заготовки в процессе обработки, генерация постпроцессоров для конкретных типов оборудования с ЧПУ (NC -- Numerical Control), расчет норм времени обработки.

Наиболее известны (к 1999 г.) следующие CAE/CAD/CAM-системы, предназначенные для машиностроения. “Тяжелые” системы (в скобках указана фирма, разработавшая или распространяющая продукт): Unigraphics (EDS Unigraphics); Solid Edge (Intergraph); Pro/Engineer (PTC -- Parametric Technology Corp.), CATIA (Dassault Systemes), EUCLID (Matra Datavision), CADDS.5 (Computervision, ныне входит в PTC) и др.

“Легкие” системы: AutoCAD (Autodesk); АДЕМ; bCAD (ПроПро Группа, Новосибирск); Caddy (Ziegler Informatics);

Компас (Аскон, С.Петербург); Спрут (Sprut Technology, Набережные Челны); Кредо (НИВЦ АСК, Москва).

Системы, занимающие промежуточное положение (среднемасштабные): Cimatron, Microstation (Bentley), Euclid Prelude (Matra Datavision), T-FlexCAD (Топ Системы, Москва) и др. C ростом возможностей персональных ЭВМ грани между “тяжелыми” и “легкими” CAD/CAM-системами постепенно стираются.

Функции CAЕ-систем довольно разнообразны, так как связаны с проектными процедурами анализа, моделирования, оптимизации проектных решений. В состав машиностроительных CAE-систем прежде всего включают программы для следующих процедур:

-- моделирование полей физических величин, в том числе анализ прочности, который чаще всего выполняется в соответствии с МКЭ;

-- расчет состояний и переходных процессов на макроуровне;

-- имитационное моделирование сложных производственных систем на основе моделей массового обслуживания и сетей Петри.

Примеры систем моделирования полей физических величин в соответствии с МКЭ: Nastrаn, Ansys, Cosmos, Nisa, Moldflow.

Примеры систем моделирования динамических процессов на макроуровне: Adams и Dyna -- в механических системах, Spice -- в электронных схемах, ПА9 -- для многоаспектного моделирования, т.е. для моделирования систем, принципы действия которых основаны на взаимовлиянии физических процессов различной природы.

Для удобства адаптации САПР к нуждам конкретных приложений, для ее развития целесообразно иметь в составе САПР инструментальные средства адаптации и развития. Эти средства представлены той или иной CASE-технологией, включая языки расширения. В некоторых САПР применяют оригинальные инструментальные среды.

Примерами могут служить объектно-ориентированная интерактивная среда CAS.CADE в системе EUCLID, содержащая библиотеку компонентов, в САПР T-Flex CAD 3D предусмотрена разработка дополнений в средах Visual C++ и

Visual Basic.

Важное значение для обеспечения открытости САПР, ее интегрируемости с другими автоматизированными системами (АС) имеют интерфейсы, представляемые реализованными в системе форматами межпрограммных обменов. Очевидно, что, в первую очередь, необходимо обеспечить связи между CAE, CAD и CAM-подсистемами.

В качестве языков -- форматов межпрограммных обменов -- используются IGES, DXF, Express (стандарт ISO 10303-11, входит в совокупность стандартов STEP), SAT (формат ядра ACIS) и др.

Наиболее перспективными считаются диалекты языка Express, что объясняется общим характером стандартов STEP, их направленностью на различные приложения, а также на использование в современных распределенных проектных и производственных системах. Действительно, такие форматы, как IGES или DXF, описывают только геометрию объектов, в то время как в обменах между различными САПР и их подсистемами фигурируют данные о различных свойствах и атрибутах изделий.

Язык Express используется во многих системах интерфейса между CAD/CAM-системами. В частности, в систему CAD++ STEP включена среда SDAI (Standard Data Access Interface), в которой возможно представление данных об объектах из разных систем CAD и приложений (но описанных по правилам языка Express). CAD++ STEP обеспечивает доступ к базам данных большинства известных САПР с представлением извлекаемых данных в виде STEP-файлов. Интерфейс программиста позволяет открывать и закрывать файлы проектов в базах данных, производить чтение и запись сущностей.

В качестве объектов могут использоваться точки, кривые, поверхности, текст, примеры проектных решений, размеры, связи, типовые изображения, комплексы данных и т.п.

4. ПОНЯТИЕ О CALS-технологии

CALS-технология -- это технология комплексной компьютеризации сфер промышленного производства, цель которой -- унификация и стандартизация спецификаций промышленной продукции на всех этапах ее жизненного цикла. Основные спецификации представлены проектной, технологической, производственной, маркетинговой, эксплуатационной документацией. В CALS-системах предусмотрены хранение, обработка и передача информации в компьютерных средах, оперативный доступ к данным в нужное время и в нужном месте. Соответствующие системы автоматизации назвали автоматизированными логистическими системами или CALS (Computer Aided Logistic Systems). Поскольку под логистикой обычно понимают дисциплину, посвященную вопросам снабжения и управления запасами, а функции CALS намного шире и связаны со всеми этапами жизненного цикла промышленных изделий, применяют и более соответствующую предмету расшифровку аббревиатуры CALS -- Continuous Acquisition and LifeCycle Support.

Применение CALS позволяет существенно сократить объемы проектных работ, так как описания многих составных частей оборудования, машин и систем, проектировавшихся ранее, хранятся в базах данных сетевых серверов, доступных любому пользователю технологии CALS. Существенно облегчается решение проблем ремонтопригодности, интеграции продукции различного рода системы и среды, адаптации к меняющимся условиям эксплуатации, специализации проектных организаций и т.п. Ожидается, что успех на рынке сложной технической продукции будет немыслим вне технологии CALS.

Развитие CALS-технологии должно привести к появлению так называемых виртуальных производств, при которых процесс создания спецификаций с информацией для программно управляемого технологического оборудования, достаточной для изготовления изделия, может быть распределен во времени и пространстве между многими организационно автономными проектными студиями. Среди несомненных достижений CALS-технологии следует отметить легкость распространения передовых проектных решений, возможность многократного воспроизведения частей проекта в новых разработках 2 0 TD-0и др

5. КОМПЛЕКСНЫЕ АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ

Известно, что частичная автоматизация зачастую не дает ожидаемого повышения эффективности функционирования предприятий. Поэтому предпочтительным является внедрение интегрированных САПР, автоматизирующих все основные этапы проектирования изделий. Дальнейшее повышение эффективности производства и повышение конкурентоспособности выпускаемой продукции возможно за счет интеграции систем проектирования, управления и документооборота.

Такая интеграция лежит в основе создания комплексных систем автоматизирования, в которых помимо функций собственно САПР реализуются средства для автоматизации функций управления проектированием, документооборота, планирования производства, учета и т.п.

Проблемы интеграции лежат в основе технологии Юпитер, пропагандируемой фирмой Intergraph. Пример сращивания некоторых подсистем из САПР и АСУ -- программный продукт TechnoDOCS (российская фирма Весть). Его функции:

-- интеграция программ документооборота с проектирующими пакетами (конкретно с AutoCAD, Microstation и другими программами, исполняемыми в Windows-средах и поддерживающими взаимодействие по технологиям DDE или OLE, разработанным фирмой Microsoft);

-- ведение архива технической документации;

-- маршрутизация работ и прохождение документации, контроль исполнения;

-- управление параллельным проектированием, т.е. координацией проектных работ, выполняемых коллективно.

Очевидно, что подобная интеграция является неотъемлемой чертой CALS-систем. В основу CALS-технологии положен ряд стандартов и прежде всего это стандарты STEP, а также Parts Library, Mandate, SGML (Standard Generalized Markup Language), EDIFACT (Electronic Data Interchange For Administration, Commerse, Transport) и др. Стандарт SGML устанавливает способы унифицированного оформления документов определенного назначения -- отчетов, каталогов, бюллетеней и т.п., а стандарт EDIFACT -- способы обмена подобными документами.

Одна из наиболее известных реализаций CALS-технологии разработана фирмой Computervision. Это технология названа EPD (Electronic Product Definition) и ориентирована на поддержку процессов проектирования и эксплуатации изделий машиностроения.

В CALS-системах на всех этапах жизненного цикла изделий используется документация, полученная на этапе проектирования. Поэтому естественно, что составы подсистем в CALS и комплексных САПР в значительной мере совпадают.

Технологию EPD реализуют:

-- CAD -- система автоматизированного проектирования;

-- CAM -- автоматизированная система технологической подготовки производства (АСТПП);

-- CAE -- система моделирования и расчетов;

-- CAPE (Concurrent Art-to-Product Environoment) -- система поддержки параллельного проектирования (сoncurrent еngineering);

-- PDM -- система управления проектными данными, представляющая собой специализированную СУБД ( DBMS

-- Data Base Management System);

-- 3D Viewer -система трехмерной визуализации;

-- CADD -- система документирования;

-- CASE -- система разработки и сопровождения программного обеспечения;

-- методики обследования и анализа функционирования предприятий.

Основу EPD составляют системы CAD и PDM, в качестве которых используются CADDS5 и Optegra соответственно.

В значительной мере специфику EPD определяет система Optegra. В ней отображается иерархическая структура изделий, включающая все сборочные узлы и детали. В Optegra можно получить информацию об атрибутах любого элемента структуры, а также ответы на типичные для баз данных вопросы типа “Укажите детали из материала P” или “В каких блоках используются детали изготовителя Y?” и т.п.

Важной для пользователей особенностью Optegra является работа вместе с многооконной системой визуализации 3D Viewer. Пользователь может одновременно следить за информацией в нескольких типовых окнах:

-- информационный браузер, в котором высвечиваются данные, запрашиваемые пользователем, например, из почтового ящика, Internet, корпоративных ресурсов, его персональной БД;

-- окно структуры изделия, представляемой в виде дерева. Можно получать ответы на запросы подсветкой деталей Dj (листьев дерева), удовлетворяющих условиям запроса;

-- 3D визуализатор, в этом окне высвечивается трехмерное изображение изделия, ответы на запросы даются и в этом окне цветовым выделением деталей Dj;

-- окно пользовательского процесса, в котором в нужной последовательности в виде иконок отображается перечень задач, заданный пользователю для решения.

В системе Optegra связи между объектами задаются по протоколам стандартов STEP, внешний интерфейс осуществляется через базу данных SDAI.

ГЛАВА III. ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САПР

1. СТРУКТУРА ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ САПР

Техническое обеспечение САПР включает в себя различные технические средства (hardware), используемые для выполнения автоматизированного проектирования, а именно ЭВМ, периферийные устройства, сетевое оборудование, а также оборудование некоторых вспомогательных систем (например, измерительных), поддерживающих проектирование.

Используемые в САПР технические средства должны обеспечивать:

1. выполнение всех необходимых проектных процедур, для которых имеется соответствующее ПО;

2. взаимодействие между проектировщиками и ЭВМ, поддержку интерактивного режима работы;

3. взаимодействие между членами коллектива, выполняющими работу над общим проектом.

Первое из этих требований выполняется при наличии в САПР вычислительных машин и систем, с достаточными производительностью и емкостью памяти.

Второе требование относится к пользовательскому интерфейсу и выполняется за счет включения в САПР удобных средств ввода-вывода данных и прежде всего устройств обмена графической информацией.

Третье требование обусловливает объединение аппаратных средств САПР в вычислительную сеть.

В результате общая структура ТО САПР представляет собой сеть узлов, связанных между собой средой передачи данных (рис. 2.1). Узлами (станциями данных) являются рабочие места проектировщиков, часто называемые автоматизированными рабочими станциями (АРМ) или рабочими станциями (WS -- Workstation), ими могут быть также большие ЭВМ (мейнфреймы), отдельные периферийные и измерительные устройства. Именно в АРМ должны быть средства для интерфейса проектировщика с ЭВМ. Что касается вычислительной мощности, то она может быть распределена между различными узлами вычислительной сети.

Рис 2.1. Структура технического обеспечения САПР

Среда передачи данных представлена каналами передачи данных, состоящими из линий связи и коммутационного оборудования.

В каждом узле можно выделить оконечное оборудование данных (ООД), выполняющее определенную работу по проектированию, и аппаратуру окончания канала данных (АКД), предназначенную для связи ООД со средой передачи данных. Например, в качестве ООД можно рассматривать персональный компьютер, а в качестве АКД -- вставляемую в компьютер сетевую плату.

Канал передачи данных - средство двустороннего обмена данными, включающее в себя АКД и линию связи. Линией связи называют часть физической среды, используемую для распространения сигналов в определенном направлении, примерами линий связи могут служить коаксиальный кабель, витая пара проводов, волоконно-оптическая линия связи (ВОЛС). Близким является понятие канала (канала связи), под которым понимают средство односторонней передачи данных. Примером канала связи может быть полоса частот, выделенная одному передатчику при радиосвязи. В некоторой линии можно образовать несколько каналов связи, по каждому из которых передается своя информация. При этом говорят, что линия разделяется между несколькими каналами.

Типы сетей. Существуют два метода разделения линии передачи данных: временное мультиплексирование (иначе разделение по времени или TDM -- Time Division Method), при котором каждому каналу выделяется некоторый квант времени, и частотное разделение (FDM -- Frequency Division Method), при котором каналу выделяется некоторая полоса частот.

В САПР небольших проектных организаций, насчитывающих не более единиц-десятков компьютеров, которые размещены на малых расстояниях один от другого (например, в одной или нескольких соседних комнатах) объединяющая компьютеры сеть является локальной. Локальная вычислительная сеть (ЛВС или LAN -- Local Area Network) имеет линию связи, к которой подключаются все узлы сети. При этом топология соединений узлов (рис. 2.2) может быть шинная (bus), кольцевая (ring), звездная (star). Протяженность линии и число подключаемых узлов в ЛВС ограничены.

Рис. 2.2. Варианты топологии локальных вычислительных сетей:

а) шинная; б) кольцевая; в) звездная

В более крупных по масштабам проектных организациях в сеть включены десятки-сотни и более компьютеров, относящихся к разным проектным и управленческим подразделениям и размещенных в помещениях одного или нескольких зданий. Такую сеть называют корпоративной. В ее структуре можно выделить ряд ЛВС, называемых подсетями, и средства связи ЛВС между собой. В эти средства входят коммутационные серверы (блоки взаимодействия подсетей). Если коммутационные серверы объединены отделенными от ЛВС подразделений каналами передачи данных, то они образуют новую подсеть, называемую опорной (или транспортной), а вся сеть оказывается иерархической структуры.

Если здания проектной организации удалены друг от друга на значительные расстояния (вплоть до их расположения в разных городах), то корпоративная сеть по своим масштабам становится территориальной сетью (WAN -- Wide Area Network). В территориальной сети различают магистральные каналы передачи данных (магистральную сеть), имеющие значительную протяженность, и каналы передачи данных, связывающие ЛВС (или совокупность ЛВС отдельного здания или кампуса) с магистральной сетью и называемые абонентской линией или соединением «последней мили».

Обычно создание выделенной магистральной сети, т.е. сети, обслуживающей единственную организацию, обходится для нее слишком дорого. Поэтому чаще прибегают к услугам провайдера, т.е. организации, предоставляющей телекоммуникационные услуги многим пользователям. В этом случае внутри корпоративной сети связь на значительных расстояниях осуществляется через магистральную сеть общего пользования. В качестве такой сети можно использовать, например, городскую или междугородную телефонную сеть или территориальные сети передачи данных. Наиболее распространенной формой доступа к этим сетям в настоящее время является обращение к глобальной вычислительной сети Internet.

Для многих корпоративных сетей возможность выхода в Internet является желательной не только для обеспечения взаимосвязи удаленных сотрудников собственной организации, но и для получения других информационных услуг. Развитие виртуальных предприятий, работающих на основе CALS-технологий, с необходимостью подразумевает информационные обмены через территориальные сети, как правило, через Internet.

Структура ТО САПР для крупной организации представлена на рис. 2.3. Здесь показана типичная структура крупных корпоративных сетей САПР, называемая архитектурой клиент-сервер. В сетях клиент-сервер выделяется один или несколько узлов, называемых серверами, которые выполняют в сети управляющие или общие для многих пользователей проектные функции, а остальные узлы (рабочие места) являются терминальными, их называют клиентами, в них работают пользователи. В общем случае сервером называют совокупность программных средств, ориентированных на выполнение определенных функций, но если эти средства сосредоточены на конкретном узле вычислительной сети, то тогда понятие сервер относится именно к узлу сети.

Рис. 2.3. Структура корпоративной сети САПР

Сети клиент-сервер различают по характеру распределения функций между серверами, другими словами, их классифицируют по типам серверов. Различают файл-серверы для хранения файлов, разделяемых многими пользователями, серверы базы данных автоматизированной системы, серверы приложении для решения конкретных прикладных задач, коммутационные серверы (называемые также блоками взаимодействия сетей или серверами доступа) для взаимосвязи сетей и подсетей, специализированные серверы. для выполнения определенных телекоммуникационных услуг, например, серверы электронной почты.

В случае специализации серверов по определенным приложениям сеть называют сетью распределенных вычислений. Если сервер приложений обслуживает пользователей одной ЛВС, то естественно назвать такой сервер локальным. Но поскольку в САПР имеются приложения и базы данных, разделяемые пользователями разных подразделений и, следовательно, клиентами разных ЛВС, то соответствующие серверы относят к группе корпоративных, подключаемых обычно к опорной сети (см. рис. 2.3.).

Наряду с архитектурой клиент-сервер применяют одноранговые сети, в которых любой узел в зависимости от решаемой задачи может выполнять как функции сервера, так и функции клиента. Организация взаимодействия в таких сетях при числе узлов более нескольких десятков становятся чрезмерно сложной, поэтому одноранговые сети применяют только в небольших по масштабам САПР.

В соответствии со способами коммутации различают сети с коммутацией каналов и коммутацией пакетов. В первом случае при обмене данными между узлами A и B в сети создается физическое соединение между A и B, которое во время сеанса связи используется только этими абонентами. Примером сети с коммутацией каналов может служить телефонная сеть. Здесь передача информации происходит быстро, но каналы связи используются неэффективно, так как при обмене данными возможны длительные паузы и канал “простаивает”. При коммутации пакетов физического соединения, которое в каждый момент сеанса связи соединяло бы абонентов K и I, не создается. Сообщения разделяются на порции, называемые пакетами, которые передаются в разветвленной сети от K к I или обратно через промежуточные узлы с возможной буферизацией (временным запоминанием) в них. Таким образом, любая линия может разделяться многими сообщениями, попеременно пропуская при этом пакеты разных сообщений с максимальным заполнением упомянутых пауз.

2. АППАРАТУРА РАБОЧИХ МЕСТ В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ ПРОЕКТИРОВАНИЯ И УПРАВЛЕНИЯ

В качестве средств обработки данных в современных АПР широко используют рабочие станции, серверы, персональные компьютеры. Большие ЭВМ и в ом числе суперЭВМ обычно не применяют, так как они дороги и их отношение производительность/цена существенно ниже подобного показателя серверов и многих рабочих станций. На базе рабочих станций или персональных компьютеров создают АРМ.

Типичный состав устройств АРМ: ЭВМ с одним или несколькими микропроцессорами, оперативной и кэш-памятью и шинами, служащими для взаимной связи устройств; устройства ввода-вывода, включающие в себя, как минимум, клавиатуру, мышь, дисплей; дополнительно в состав АРМ могут входить принтер, сканер, плоттер (графопостроитель), дигитайзер и некоторые другие периферийные устройства.

Память ЭВМ обычно имеет иерархическую структуру. Поскольку в памяти большого объема трудно добиться одновременно высокой скорости записи и считывания данных, память делят на сверхбыстродействующую кэш-память малой емкости, основную оперативную память умеренного объема и сравнительно медленную внешнюю память большой емкости, причем, в свою очередь, кэш-память часто разделяют на кэш первого и второго уровней.

Например, в персональных компьютерах на процессорах Pentium III кэш первого уровня имеет по 16 Кбайт для данных и для адресов, он и кэш второго уровня емкостью 256 Кбайт встроены в процессорный кристалл, емкость оперативной памяти составляет десятки-сотни Мбайт.

Для связи наиболее быстродействующих устройств (процессора, оперативной и кэш-памяти, видеокарты) используется системная шина с пропускной способностью до одного-двух Гбайт/с. Кроме системной шины на материнской плате компьютера имеются шина расширения для подключения се-

тевого контроллера и быстрых внешних устройств (например, шина PCI с пропускной способностью 133 Мбайт/с) и шина медленных внешних устройств, таких как клавиатура, мышь, принтер и т.п.

Рабочие станций (workstation) по сравнению с персональными компьютерами представляют собой вычислительную систему, специализированную на выполнение определенных функций. Специализация обеспечивается как набором программ, так и аппаратно за счет использования дополнительных специализированных процессоров. Так, в САПР для машиностроения преимущественно применяют графические рабочие станции для выполнения процедур геометрического моделирования и машинной графики. Эта направленность требует мощного процессора, высокоскоростной шины, памяти достаточно большой емкости.

Высокая производительность процессора необходима по той причине, что графические операции (например, перемещения изображений, их повороты, удаление скрытых линий и др.) часто выполняются по отношению ко всем элементам изображения. Такими элементами в трехмерной (3D) графике при аппроксимации поверхностей полигональными сетками являются многоугольники, их число может превышать 104. С другой стороны, для удобства работы проектировщика в интерактивном режиме задержка при выполнении команд указанных выше операций не должна превышать нескольких секунд. Но поскольку каждая такая операция по отношению к каждому многоугольнику реализуется большим числом машинных команд требуемое быстродействие составляет десятки миллионов машинных операций в секунду. Такое быстродействие при приемлемой цене достигается применением наряду с основным универсальным процессором также дополнительных специализирован-

ных (графических) процессоров, в которых определенные графические операции реализуются аппаратно.

В наиболее мощных рабочих станциях в качестве основных обычно используют высокопроизводительные микропроцессоры с сокращенной системой команд (с RISC-архитектурой), работающие под управлением одной из разновидностей операционной системы Unix. В менее мощных все чаще используют технологию Wintel (т.е. микропроцессоры Intel и операционные системы Windows). Графические процессоры выполняют такие операции, как, например, растеризация -- представление изображения в растровой форме для ее визуализации, перемещение, вращение, масштабирование, удаление скрытых линий и т.п.

Типичные характеристики рабочих станций: несколько процессоров, десятки-сотни мегабайт оперативной и тысячи мегабайт внешней памяти, наличие кэш-памяти, системная шина со скоростями от сотен Мбайт/с до 1-2 Гбайт/с.

В зависимости от назначения существуют АРМ конструктора, АРМ технолога, АРМ руководителя проекта и т.п. Они могут различаться составом периферийных устройств, характеристиками ЭВМ.

В АРМ конструктора (графических рабочих станциях) используются растровые мониторы с цветными трубками. Типичные значения характеристик мониторов находятся в следующих пределах: размер экрана по диагонали 17…24 дюйма (фактически изображение занимает площадь на 5…8 % меньше, чем указывается в паспортных данных). Разрешающая способность монитора, т.е. число различимых пикселей (отдельных точек, из которых состоит изображение), определяется шагом между отверстиями в маске, через которые проходит к экрану электронный луч в электронно-лучевой трубке. Этот шаг находится в пределах 0,21…0,28 мм, что соответствует количеству пикселей изображения от 800Ч600 до 1920Ч1200 и более. Чем выше разрешающая способность, тем шире должна быть полоса пропускания электронных блоков видеосистемы при одинаковой частоте кадровой развертки. Полоса пропускания видеоусилителя находится в пределах 110…150 МГц и потому частота кадровой развертки обычно снижается с 135 Гц для разрешения 640Ч480 до 60 Гц для разрешения 1600Ч1200. Отметим, что чем ниже частота кадровой развертки, а это есть частота регенерации изображения, тем заметнее мерцание экрана. Желательно, чтобы эта частота была не ниже 75 Гц.


Подобные документы

  • Структура и классификация систем автоматизированного проектирования. Виды обеспечения САПР. Описание систем тяжелого, среднего и легкого классов. Состав и функциональное назначение программного обеспечения, основные принципы его проектирования в САПР.

    курсовая работа [37,7 K], добавлен 18.07.2012

  • Понятие и функции систем автоматизированного проектирования (САПР), принципы их создания и классификация. Проектирующие и обслуживающие подсистемы САПР. Требования к компонентам программного обеспечения. Этапы автоматизации процессов на предприятии.

    реферат [19,8 K], добавлен 09.09.2015

  • Требования, предъявляемые к техническому обеспечению систем автоматизированного проектирования. Вычислительные сети; эталонная модель взаимосвязи открытых систем. Сетевое оборудование рабочих мест в САПР. Методы доступа в локальных вычислительных сетях.

    презентация [1,1 M], добавлен 26.12.2013

  • САПР как организационно-техническая система, реализующая информационную технологию выполнения функций проектирования. Цель создания и назначение САПР, классификации программных приложений и средств автоматизации по отраслевому и целевому назначению.

    презентация [124,1 K], добавлен 16.11.2014

  • Основные цели и принципы построения автоматизированного проектирования. Повышение эффективности труда инженеров. Структура специального программного обеспечения САПР в виде иерархии подсистем. Применение методов вариантного проектирования и оптимизации.

    презентация [259,7 K], добавлен 26.11.2014

  • Эволюция систем автоматизированного проектирования от простых средств двухмерного рисования и разработки чертежей до программных продуктов, включающих поддержку цикла разработки и производства изделия. Требования к пользовательскому интерфейсу САПР.

    курсовая работа [274,5 K], добавлен 19.12.2014

  • Системы автоматизированного проектирования в строительстве. Техническое обеспечение САПР. Проектирующая и обслуживающая система программы. Структура корпоративной сети. Особенности применения геоинформационных систем в проектировании и строительстве.

    контрольная работа [804,6 K], добавлен 08.07.2013

  • Определение и характеристика цели автоматизации проектирования. Ознакомление с достоинствами процесса внутреннего шлифования. Исследование и анализ сущности САПР – системы, объединяющей технические средства, математическое и программное обеспечение.

    курсовая работа [949,8 K], добавлен 02.06.2017

  • Общие сведения о САПР MAX+PLUS II. Ввод проекта, компиляция и моделирование. Средство для отображения иерархической структуры проекта, для просмотра и редактирования результатов размещения и трассировки. Программа моделирования Simulator и другие модули.

    курсовая работа [1,1 M], добавлен 28.06.2009

  • Применение средств САПР для создания связи баз данных с чертежом. Создание связи между таблицами базы данных. Разработка команды САПР AutoСAD для гидромотора. Ввод промежуточных параметров. Определение полярных координат точек, секция отрисовки.

    курсовая работа [1,8 M], добавлен 28.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.