Технологии защиты информационного пространства управления

Значение и виды информационных ресурсов. Методы, технологии и экономическая целесообразность их защиты. Современная система удостоверяющих документов и её недостатки. Типы шифров, шифрование в Word и Excel. Основы и принципы использования криптографии.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 10.02.2011
Размер файла 93,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Технологии защиты информационного пространства управления

Значение информационных ресурсов

В современном мире происходит постоянное повышение роли информационных ресурсов. Как известно, все производственные процессы имеют в своём составе материальную и нематериальную составляющие. Первая - это необходимое для производства оборудование, материалы и энергия в нужной форме (то есть, чем и из чего изготавливается предмет). Вторая составляющая - технология производства (то есть, как он изготавливается). Если проанализировать в общих чертах историю развития производительных сил на Земле, то можно констатировать, что роль (и, соответственно, стоимость) информационной компоненты в любом производстве с течением времени возрастает.

В последнее столетие появилось много отраслей производства, которые почти на 100% состоят из информационных ресурсов, например, дизайн, создание программного обеспечения, реклама и этот перечень можно продолжать и продолжать.

Соответственно, и себестоимость товара складывается из стоимости материала, энергии и рабочей силы с одной стороны и стоимости технологии, с другой. Доля научно-исследовательских и опытно-конструкторских работ (НИОКР) в цене товара в наше время может достигать 50% и более, несмотря на то, что материальные затраты индивидуальны для каждой единицы продукции, а затраты на технологию - общие, то есть, раскладываются поровну на всю серию товара. Появился даже принципиально новый вид товара, в котором доля индивидуальных затрат сведена почти до нуля. Это программное обеспечение (ПО), при производстве которого все затраты делаются на создание первого образца, а дальнейшее его тиражирование составляют в основном затраты на копирование.

Столь же ярко демонстрирует повышение роли информации в процессах управления появление в XX веке промышленного шпионажа. Не материальные ценности, а чистые информационные ресурсы становится объектом похищения.

В прошлые века человек использовал орудия труда и машины для обработки материальных объектов, а информацию об управлении процессом производства держал в голове. В XX столетии, в связи с появлением компьютерных систем обработки информации, роль последних в процессах управления постоянно повышается.

Указанные тенденции однозначно свидетельствуют, что начинающийся XXI век станет веком информационных технологий управления, в котором материальная составляющая отойдёт на второй план.

Значение защиты

С повышением значимости и ценности информации соответственно растёт и важность её защиты.

С одной стороны, информационные ресурсы стоят денег. Следовательно, утечка или утрата информации влечёт материальный ущерб. С другой стороны, информационные ресурсы - это базис управления. Несанкционированное вмешательство в управление может привести к катастрофическим последствиям в объекте управления - производстве, транспорте, военном деле. Например, современная военная наука утверждает, что полное лишение средств связи сводит боеспособность армии до нуля.

Защиту информации (ЗИ) можно определить как меры для ограничения доступа к информации для каких-либо лиц (категорий лиц), а также для удостоверения подлинности и неизменности информации.

Вторая задача может показаться слабо связанной с первой, но на самом деле это не так. В первом случае владелец информации стремится воспрепятствовать несанкционированному доступу к ней, а во втором случае - несанкционированному изменению, в то время как доступ для чтения разрешён. Указанные задачи на практике решаются одними и теми же средствами.

Аспекты защиты информационных ресурсов

Во-первых, хорошая защита информации обходится дорого. Плохая же защита никому не нужна, ибо наличие в ней лишь одной "дырки" означает полную бесполезность всей защиты в целом (принцип сплошной защиты). Поэтому прежде чем решать вопрос о защите информации, следует определить, стоит ли она того. Способен ли возможный ущерб от разглашения или потери информации превысить затраты на её защиту? С этой же целью надо максимально сузить круг защищаемой информации, чтобы не тратить лишних денег и времени.

Во-вторых, прежде чем защищать информацию, нелишне определить перечень вероятных угроз, поскольку от всего на свете всё равно защититься невозможно. Возможен вариант, когда надо обезопасить данные от несанкционированного доступа извне, например, из Internet. Возможно, однако, что чужих хакеров ваши данные вовсе не интересуют, и вам следует защищать информацию только от собственных сотрудников. Возможно также, что похищение или разглашение вашей информации никому не навредит, но вот её подмена может нанести вам урон. Во всех трёх случаях методы защиты будут сильно различаться.

В-третьих, при планировании схемы ЗИ большое значение имеет не только её объективная надёжность, но и отношение к защите других людей. В некоторых случаях достаточно, чтобы вы сами были уверены в достаточной надёжности защиты. А в других - это нужно доказать иным людям (например, заказчикам), часто не разбирающимся в соответствующих вопросах. Здесь встаёт вопрос сертификации средств защиты.

Анализ схем защиты

Все вышеуказанные аспекты анализируются до начала мероприятий по защите информационных ресурсов. В противном случае вы рискуете впустую затратить силы и средства.

В большинстве практических случаев, как показывает такой анализ, защита или не требуется вовсе, или нужны лишь чисто номинальные, "показушные" мероприятия.

Носители информации

Очень часто путают саму информацию и её носители. Такая путаница приводит к непониманию сути проблемы и, следовательно, к невозможности её решить. Поэтому следует чётко представлять себе, где информация, а где её материальные носители.

Виды носителей информации

Информация - вещь нематериальная. Это сведения, которые зафиксированы (записаны) тем или иным расположением (состоянием) материального носителя, например, порядком расположения букв на странице или величиной намагниченности ленты.

Носителем информации может быть любой материальный объект. И наоборот - любой материальный объект всегда несёт на себе некую информацию (которая, однако, далеко не всегда имеет для нас значение). Например, книга как совокупность переплёта, бумажных листов, и типографской краски на них является типичным носителем информации.

Чтобы отличать информацию от её носителя, надо твёрдо помнить, что информация - это сугубо нематериальная субстанция. Всё, что является материальным объектом, информацией быть не может, но только лишь её носителем. В том же примере с книгой и листы, и знаки на них - только носитель; информация же заключена в порядке расположения печатных символов на листах. Радиосигнал - тоже материальный объект, поскольку является комбинацией электрических и магнитных полей (с другой точки зрения - фотонов), поэтому он не является информацией. Информация в данном случае - порядок чередования импульсов или иных модуляций указанного радиосигнала.

Материя и информация неотделимы друг от друга. Информация не может существовать сама по себе, в отрыве от материального носителя. Материя же не может не нести информации, поскольку всегда находится в том или ином определённом состоянии.

Теперь перейдём к более конкретному рассмотрению. Хотя любой материальный объект - носитель информации, но люди используют в качестве таковых специальные объекты, с которых информацию удобнее считывать.

Традиционно используемым носителем информации является бумага с нанесёнными на ней тем или иным способом изображениями.

Поскольку в наше время основным средством обработки информации являются компьютерные системы, то и для хранения информации используются в основном машинно-читаемые носители. Ниже приводится список известных типов машинных носителей с их качественными характеристиками.

· Жёсткий магнитный диск, ЖМД, НЖМД (hard disk, HD). Применяется как основной стационарный носитель информации в компьютерах. Большая ёмкость, высокая скорость доступа. Иногда встречаются модели со съёмным диском, который можно вынуть из компьютера и спрятать с сейф.

· Гибкий магнитный диск, ГМД (floppy disk, FD) или дискета (diskette). Основной сменный носитель для персональных компьютеров. Небольшая ёмкость, низкая скорость доступа, но и стоимость тоже низкая. Основное преимущество - транспортабельность.

· Лазерный компакт-диск (CD, CD-ROM). Большая ёмкость, средняя скорость доступа, но отсутствует возможность записи информации. Запись производится на специальном оборудовании.

· Перезаписываемый лазерный компакт-диск (CD-R, CD-RW). В одних случаях возможна только запись (без перезаписи), в других - также ограниченное число циклов перезаписи данных. Те же характеристики, что и для обычного компакт-диска.

· DVD-диск. Аналогичен CD-ROM, но имеет более высокую плотность записи (в 5-20 раз). Имеются устройства как только для считывания, так и для записи (перезаписи) DVD.

· Сменный магнитный диск типа ZIP или JAZZ. Похож на дискету, но обладает значительно большей ёмкостью.

· Магнитооптический диск. Сменный носитель большой ёмкости.

· Кассета с магнитной лентой - сменный носитель для стримера (streamer) - накопителя, специально предназначенного для хранения больших объёмов данных. Кассета имеет большую ёмкость и высокую скорость записи-считывания, но медленный доступ к произвольной точке ленты.

· Перфокарты - в настоящее время практически не используются.

· Перфоленты - в настоящее время практически не используется.

· Кассеты и микросхемы ПЗУ (read-only memory, ROM). Характеризуются невозможностью или сложностью перезаписи, небольшой ёмкостью, относительно высокой скоростью доступа, а также большой устойчивостью к внешним воздействиям. Обычно применяются в компьютерах и других электронных устройствах специализированного назначения, таких как игровые приставки, управляющие модули различных приборов, принтеры и т.д.

· Магнитные карты (полоски). Маленькая ёмкость, транспортабельность, возможность сочетания машинно-читаемой и обычной текстовой информации. Кредитные карточки, пропуска, удостоверения и т.п.

· Существует большое количество специализированных носителей, применяемых в различных малораспространённых приборах. Например, магнитная проволока, голограмма.

Кроме того, носителем информации является оперативная память компьютера, ОЗУ (RAM), но она не пригодна для долговременного хранения информации, поскольку данные в ней не сохраняются при отключении питания.

Защита носителей и её отличие от защиты информации

Важно различать два вида защиты информационных ресурсов - защиту носителей информации и защиту непосредственно информационных ресурсов, безотносительно к тому, где они находится.

Первый вид включает несколько методов защиты носителей информации (здесь мы будем рассматривать только компьютерные носители), их можно подразделить на программные, аппаратные и комбинированные. Метод же защиты самой информации только один - использование криптографии, то есть, шифровка данных.

Для современных персональных компьютеров, наиболее распространёнными методами защиты носителей являются:

· Для всех сменных носителей - физическая их защита, (например, запереть в сейф).

· Для всех встроенных в ПК носителей - блокирование несанкционированного включения питания компьютера.

· Программная блокирование доступа к конкретному носителю или к компьютеру целиком. Например, пароль на CMOS.

· Программно-аппаратный метод с использованием электронных ключей, которые чаще всего вставляются в COM-порт ПК. Не получая нужнного ответа от ключа, программа, для которой он предназначен, не будет работать или блокирует пользователю доступ к информации.

Подделка документов

Защита документов от подделки (имеются в виду традиционные документы - на бумажном носителе) - типичная задача ЗИ, решаемая методами защиты носителя информационных ресурсов.

Современная система удостоверяющих документов и её недостатки

Стремительные темпы развития и распространения оргтехники, в частности, печатающих устройств недавно подняли новую проблему, которая состоит в том, что традиционно используемые виды удостоверяющих документов совершенно беззащитны перед современной печатной, копировальной и иной техникой высокого разрешения.

Так, на современном цветном струйном принтере с разрешением 600 точек на дюйм, нельзя, напечатать денежные купюры, но, например, оттиск любой печати или защитную сетку различных сертификатов и свидетельств он воспроизводит достаточно хорошо. На цветном лазерном принтере можно изготавливать денежные купюры практически в любой валюте. При этом полученные "рубли" или "доллары" визуально не отличаются от оригинала.

Технологии защиты документов совершенствуются, пытаясь опередить технологии подделки.

Когда-то для уверенности в официальном происхождении документа вполне достаточно было наличия оттиска печати или типографским способом исполненного бланка. В наше время это вызывает лишь улыбку. Позже вводились водяные знаки. Они продержались лет двадцать. Потом пошли уже в ускоренном темпе: защитная сетка, рельефная печать, люминесцентные метки, микропечать, но все эти защиты преодолевались фальшивомонетчиками в сжатые сроки. В этой гонке защита-подделка есть определённый предел, и он, похоже, уже достигнут. Предел этот - способности человеческого зрения. Можно, конечно, использовать ещё более мелкую микропечать, но большинство проверок документов всё равно производится визуально.

Постоянно внедряются всё новые и новые "степени защиты", но и они по истечении краткого времени преодолеваются местными "умельцами". Уже практически отправлены "на свалку истории" такие вещи, как рельефная печать, люминесцентные метки, металлические нити, голограммы, магнитные полоски. Скоро будут там же вмонтированные микрочипы.

По этому поводу у сотрудников правоохранительных органов возникает мысль: а не следует ли пересмотреть в корне всю систему защиты документов от подделки, если существующая дальше работать не может?

Бесперспективность защиты носителей

Используемый в настоящее время принцип удостоверяющих документов состоит в том, что предъявляемый документ по своим визуальным характеристикам доступен для изготовления только официальным государственным (уполномоченным) органам и недоступен частным лицам. Это подразумевает существование таких технологий в области полиграфии, которые имеются лишь у государства. Такие технологии действительно существуют сейчас, как существовали всегда, однако их уровень постоянно повышается, поскольку совершенствуется техника частных лиц. Разрешение, доступное сейчас бытовой технике, примерно соответствует уровню разрешения глаза. То есть, исполненная в домашних условиях подделка (если сделана грамотно) визуальному выявлению не поддается.

Техника изготовления фальшивых документов находится на достаточно высоком уровне. Если бы авторы фальшивок обладали большей осведомлённостью относительно установленных образцов или были бы более осторожны при сбыте, документы вряд ли привлекли бы внимание правоохранительных органов.

Иными словами, подводит преступников не техника, а собственная безграмотность. Техника свою задачу выполняет отменно. Выявить грамотно сделанную фальшивку без применения специальных технических средств практически не представляется возможным. В связи с этим можно порекомендовать при проверке документа не столько смотреть на исполнение бланков, печатей, других атрибутов, сколько обращать внимание на его содержание.

Выходом из положения многим видится использование таких методов защиты, как голограмма, водяные знаки, флуоресцентные метки, металлические волокна, магнитные метки и т.п. Однако ясно, что из всех перечисленных лишь голограмма поддаётся чисто визуальному контролю, в то время как все прочие новые методы подразумевают в той или иной степени контроль инструментальный. Ясно, что голограммы как метод защиты долго не продержатся: оборудование для их изготовления уже имеется в частном владении и скоро станет ещё более доступным.

Можно прогнозировать сохранение этих тенденций и в дальнейшем: постоянно совершенствующиеся (и дорожающие!) способы защиты документов от подделки и всё большее мастерство изготовителей фальшивок. С ускорением темпов научно-технического прогресса в принципе любое инженерное решение, созданное государственными специалистами, через 2-3 года становится доступным для частных лиц (тем более, для организованных групп). Иными словами, дальнейшее увеличение степеней защиты документов мало перспективно и лишь сулит новые затраты.

Выход из этой ситуации видится в использовании такой системы защиты документов, которую нельзя было бы "вскрыть" даже располагая одинаковой или более мощной техникой, чем у её изготовителя. Такая система может быть создана на основе криптографических методов защиты.

Перспективы эволюции удостоверяющих документов

Основная идея нового принципа удостоверяющих документов основывается на следующем. Если материал, из которого изготавливается удостоверение, стал неустойчив к подделке, то следует отделить информацию документа от материальной основы и защищать именно информацию.

Для разъяснения этого принципа рассмотрим существующие методы защиты информации. Документами, живущими в отрыве от своей материальной основы, являются электронные, представляющие собой содержимое компьютерных файлов. Ещё недавно служащие относились недоверчиво к электронным документам, считая, что подделать их проще, чем документы на бумажном носителе.

Методы защиты и удостоверения подлинности информации в настоящее время разработаны. В качестве примера можно привести программы, основанные на алгоритме RSA (алгоритм с открытым ключом). Хотя его устойчивость до сих пор строго не доказана, но нет серьёзных оснований полагать, что найден или может быть найден в ближайшее время способ "взлома" защиты на основе этого алгоритма. Подобные программы позволяют удостоверить, что данный текст написан и заверен определённым человеком и никем иным, причем осуществить проверку может любой желающий

Схема проверки удостоверяющих документов такова. Разрабатывается специализированный криптоалгоритм типа RSA, основанный на использовании открытого и закрытого ключей (ОК, ЗК). Текст каждого удостоверения (при необходимости - вместе с фотографией) подписывается сигнатурой на основе ЗК. И текст, и фотография, и сигнатура должны быть читаемы как визуально, так и техническими средствами. Для проверки подлинности документа он сканируется специализированным портативным устройством, в которое заранее введён ОК. Сигнатура проверяется, и выдаётся подтверждение подлинности.

Практика выявления поддельных документов

Компьютерные технологии развивается стремительными темпами, которые к тому же искусственно ускоряются производителями оборудования и программного обеспечения для стимулирования сбыта.

Как указывалось выше, эти темпы развития опережают темпы совершенствования методов защиты документов. В частности, изготовление с помощью компьютерной техники поддельных документов в настоящий момент под силу одному человеку, обладающему средней квалификацией в области обращения с компьютером.

Статистика выявленных преступлений говорит, что открывшейся возможностью поспешили воспользоваться многие.

Используемое для подобных целей программное обеспечение общедоступно и обходится в несущественную сумму. Обучиться работе с компьютерной техникой и программным обеспечением средний человек может по многочисленной литературе, а чуть более умелый - даже самостоятельно. Время на освоение подделки документов - от 10 дней до 2-3 месяцев. При этом выполнение всех операций до предела автоматизировано и требует усилий лишь одного человека. Необходимость в сообщниках может возникнуть лишь на этапе сбыта фальшивок. Таким образом, можно сказать, что подделка документов при помощи компьютера сейчас доступна каждому.

Приёмы изготовления поддельных документов различаются не сильно. Они сводятся к формированию в компьютере графических изображений бланков, печатей и штампов и распечатке их на принтере.

Облегчает использование поддельных документов обилие разных видов настоящих документов, например, удостоверений оперативных служб.

Криминальные элементы, использующие фальшивые удостоверения правоохранительных органов, подрывают престиж действующих служб.

Не менее опасно и не менее широко распространено изготовление поддельных сертификатов на пищевые продукты, всевозможных разрешений, лицензий и свидетельств, используемых в сфере торговли. Такие документы, как правило, не подвергаются серьёзной проверке, но "экономят" коммерсантам массу средств, что делает данное преступление всё более распространённым.

Практика показывает, что значительная часть изготовленных на компьютере фальшивок предназначается не для сбыта, а используется изготовителями для личных целей - ввиду простоты и доступности технологии. Большая доля делается для друзей и родственников, а на продажу - не так уж много. Это затрудняет обнаружение и раскрытие данного вида преступления.

Всем практическим работникам правоохранительных органов известны "классические" признаки поддельных документов: несоответствие вида документа установленному образцу, несоответствие или ненатуральность подписей, опечатки и грамматические ошибки в тексте (последний признак - не всегда). В изготовленных на компьютере поддельных документах, в большинстве случаев, отсутствуют специальные меры защиты документов - спецклей, микропечать и т.д.

Для поддельных документов, изготовленных с применением компьютерной техники, не характерен такой признак, как одинаковые номера бланков. В отличие от метода ксеро- или фотокопирования, на компьютере можно без всякого труда поставить любые номера и даже задать автоматическую расстановку последовательных номеров и серий.

Основы криптографии

Криптография Криптография (от крипто... и... графия), тайнопись, специальная система изменения обычного письма, используемая с целью сделать текст понятным лишь для ограниченного числа лиц, знающих эту систему. Различные способы К. применялись для зашифровки военных, дипломатических, торгово-финансовых, нелегально-политических, религиозно-еретических текстов; служат для игры в разгадывание (детская К., ребусы и т. п.). К. известна с древнейших времён на Древнем Востоке, в Древней Греции и Риме, в русских памятниках - с 12-13 вв. В славянских рукописях, кроме основных функций, употреблялась для отделения культового текста от приписок, указаний чтецу и т. д., в заговорах - как магическое средство. Известны следующие основные способы К.: 1) употребление иного алфавита (например, в русских памятниках глаголица, греч., лат.); 2) изменение знаков (например, приписывание дополнительных чёрточек, недописывание букв, т. н. полусловица); 3) условные знаки или цифры; 4) замена одних букв другими по их месту в алфавите (например, т. н. литорея) или их числовому значению; 5) запись текста в виде некоторой фигуры, иногда вкрапленной в др. текст (например, акростих); 6) написание слов в обратном порядке. Надпись или документ, сделанные криптографическим способом, называется криптограммой. (иногда употребляют термин криптология) - область знаний, изучающая тайнопись (криптография) и методы ее раскрытия (криптоанализ). Криптография считается разделом математики.

До недавнего времени все исследования в этой области были только закрытыми, но в последние несколько лет у нас и за рубежом стало появляться всё больше публикаций в открытой печати. Отчасти смягчение секретности объясняется тем, что стало уже невозможным скрывать накопленное количество информации. С другой стороны, криптография всё больше используется в гражданских отраслях, что требует раскрытия сведений.

Принципы криптографии

Цель криптографической системы заключается в том, чтобы зашифровать осмысленный исходный текст (также называемый открытым текстом), получив в результате совершенно бессмысленный на взгляд шифрованный текст (шифртекст, криптограмма). Получатель, которому он предназначен, должен быть способен расшифровать (говорят также "дешифровать") этот шифртекст, восстановив, таким образом, соответствующий ему открытый текст. При этом противник (называемый также криптоаналитиком) должен быть неспособен раскрыть исходный текст. Существует важное отличие между расшифрованием (дешифрованием) и раскрытием шифртекста.

Раскрытием криптосистемы называется результат работы криптоаналитика, приводящий к возможности эффективного раскрытия любого, зашифрованного с помощью данной криптосистемы, открытого текста. Степень неспособности криптосистемы к раскрытию называется ее стойкостью.

Вопрос надёжности систем ЗИ - очень сложный. Дело в том, что не существует надёжных тестов, позволяющих убедиться в том, что информация защищена достаточно надёжно.

Во-первых, криптография обладает той особенностью, что на "вскрытие" шифра зачастую нужно затратить на несколько порядков больше средств, чем на его создание. Следовательно, тестовые испытания системы криптозащиты не всегда возможны.

Во-вторых, многократные неудачные попытки преодоления защиты вовсе не означают, что следующая попытка не окажется успешной. Не исключён случай, когда профессионалы долго, но безуспешно бились над шифром, а некий новичок применил нестандартный подход - и шифр дался ему легко.

В результате такой плохой доказуемости надёжности средств ЗИ на рынке очень много продуктов, о надёжности которых невозможно достоверно судить. Естественно, их разработчики расхваливают на все лады своё произведение, но доказать его качество не могут, а часто это и невозможно в принципе. Как правило, недоказуемость надёжности сопровождается ещё и тем, что алгоритм шифрования держится в секрете.

На первый взгляд, секретность алгоритма служит дополнительному обеспечению надёжности шифра. Это аргумент, рассчитанный на дилетантов. На самом деле, если алгоритм известен разработчикам, он уже не может считаться секретным, если только пользователь и разработчик - не одно лицо. К тому же, если вследствие некомпетентности или ошибок разработчика алгоритм оказался нестойким, его секретность не позволит проверить его независимым экспертам. Нестойкость алгоритма обнаружится только тогда, когда он будет уже взломан, а то и вообще не обнаружится, ибо противник не спешит хвастаться своими успехами.

Поэтому криптограф должен руководствоваться правилом, впервые сформулированным голландцем Керкхоффом: стойкость шифра должна определяться только секретностью ключа. Иными словами, правило Керкхоффа состоит в том, что весь механизм шифрования, кроме значения секретного ключа априори считается известным противнику.

Другое дело, что возможен метод ЗИ (строго говоря, не относящийся к криптографии), когда скрывается не алгоритм шифровки, а сам факт того, что сообщение содержит зашифрованную (скрытую в нём) информацию. Такой приём правильнее назвать маскировкой информации.

Исторический экскурс

История криптографии насчитывает несколько тысяч лет. Потребность скрывать написанное появилась у человека почти сразу, как только он научился писать. По некоторым теориям, сам язык возник не тогда, когда появилась потребность общаться (передавать информацию можно и так), а именно тогда, когда древние люди захотели скрыть свои мысли.

Широко известным историческим примером криптосистемы является так называемый шифр Цезаря, который представляет собой простую замену каждой буквы открытого текста третьей следующей за ней буквой алфавита (с циклическим переносом, когда это необходимо). Например, "A" заменяется на "D", "B" на "E", "Z" на "C".

Несмотря на значительные успехи математики в века, прошедшие со времён Цезаря, тайнопись вплоть до середины 20 века не сделала существенных шагов вперёд. В ней бытовал дилетантский, умозрительный, ненаучный подход.

Например, в 20 веке широко применялись профессионалами "книжные" шифры, в которых в качестве ключа использовалось какое-либо массовое печатное издание. Надо ли говорить, как легко раскрывались подобные шифры! Конечно, с теоретической точки зрения, "книжный" шифр выглядит достаточно надёжным, поскольку множество его ключей - множество всех страниц всех доступных двум сторонам книг, перебрать которое вручную невозможно. Однако, малейшая априорная информация резко суживает этот выбор.

Во время Великой Отечественной войны, как известно, у нас уделяли значительное внимание организации партизанского движения. Почти каждый отряд в тылу врага имел радиостанцию, а также то или иное сообщение с "большой землёй". Имевшиеся у партизан шифры были крайне нестойкими - немецкие дешифровщики "раскалывали" их достаточно быстро. А это, как известно, выливается в боевые поражения и потери. Партизаны оказались хитры и изобретательны и в этой области тоже. Приём был предельно прост. В исходном тексте сообщения делалось большое количество грамматических ошибок, например, писали: "прошсли тры эшшелона з тнками". При верной расшифровке для русского человека всё было понятно. Но криптоаналитики противника перед подобным приёмом оказались бессильны: перебирая возможные варианты, они встречали невозможное для русского языка сочетание "тнк" и отбрасывали данный вариант как заведомо неверный. Этот, казалось бы, доморощенный приём, на самом деле, очень эффективен и часто применяется даже сейчас. В исходный текст сообщения подставляются случайные последовательности символов, чтобы сбить с толку криптоаналитические программы, работающие методом перебора или изменить статистические закономерности шифрограммы, которые также могут дать полезную информацию противнику. Но в целом всё же можно сказать, что довоенная криптография была крайне слаба и на звание серьёзной науки не тянула.

Однако жёстокая военная необходимость вскоре заставила учёных вплотную заняться проблемами криптографии и криптоанализа. Одним из первых существенных достижений в этой области была немецкая пишмашинка "Энигма", которая фактически являлась механическим шифратором и дешифратором с достаточно высокой стойкостью.

Тогда же, в период второй мировой войны появились и первые профессиональные службы дешифровки. Самая известная из них - "Блечли-парк", подразделение английской службы разведки "МИ-5".

Типы шифров

Все методы шифровки можно разделить на две группы: шифры с секретным ключом и шифры с открытым ключом.

Первые характеризуются наличием некоторой информации (секретного ключа), обладание которой даёт возможность, как шифровать, так и расшифровывать сообщения. Поэтому они именуются также одноключевыми.

Шифры с открытым ключом подразумевают наличие двух ключей - открытого и закрытого; один используется для шифровки, другой для расшифровки сообщений. Эти шифры называют также двухключевыми.

Шифры с секретным ключом

Этот тип шифров подразумевает наличие некоей информации (ключа), обладание которой позволяет, как зашифровать, так и расшифровать сообщение.

С одной стороны, такая схема имеет те недостатки, что необходимо кроме открытого канала для передачи шифрограммы наличие также секретного канала для передачи ключа, а кроме того, при утечке информации о ключе, невозможно доказать, от кого из двух корреспондентов произошла утечка.

С другой стороны, среди шифров именно этой группы есть единственная в мире схема шифровки, обладающая абсолютной теоретической стойкостью. Все прочие можно расшифровать хотя бы в принципе. Такой схемой является обычная шифровка (например, операцией XOR) с ключом, длина которого равна длине сообщения. При этом ключ должен использоваться только раз. Любые попытки расшифровать такое сообщение бесполезны, даже если имеется априорная информация о тексте сообщения. Осуществляя подбор ключа, можно получить в результате любое сообщение.

Шифры с открытым ключом

Шифры с открытым ключом подразумевают наличие двух ключей - открытого и закрытого; один используется для шифровки, другой для расшифровки сообщений. Открытый ключ публикуется - доводится до сведения всех желающих, секретный же ключ хранится у его владельца и является залогом секретности сообщений. Суть метода в том, что зашифрованное при помощи секретного ключа может быть расшифровано лишь при помощи открытого и наоборот. Ключи эти генерируются парами и имеют однозначное соответствие друг другу. Причём из одного ключа невозможно вычислить другой.

Характерной особенностью шифров этого типа, выгодно отличающих их от шифров с секретным ключом, является то, что секретный ключ здесь известен лишь одному человеку, в то время как в первой схеме он должен быть известен, по крайней мере, двоим. Это даёт следующие преимущества:

· не требуется защищённый канал для пересылки секретного ключа, вся связь осуществляется по открытому каналу;

· «что знают двое, знает свинья» - наличие единственной копии ключа уменьшает возможности его утраты и позволяет установить чёткую персональную ответственность за сохранение тайны;

· наличие двух ключей позволяет использовать данную шифровальную систему в двух режимах - секретная связь и цифровая подпись.

Простейшим примером рассматриваемых алгоритмов шифровки служит алгоритм RSA. Все другие алгоритмы этого класса отличаются от него непринципиально. Можно сказать, что, по большому счёту, RSA является единственным алгоритмом с открытым ключом.

Алгоритм RSA

RSA (назван по имени авторов - Rivest, Shamir и Alderman) - это алгоритм с открытым ключом (public key), предназначенный как для шифрования, так и для аутентификации (цифровой подписи). Разработан в 1977 году. Он основан на трудности разложения очень больших целых чисел на простые сомножители (факторизации).

RSA - очень медленный алгоритм. Для сравнения, на программном уровне DES по меньше мере в 100 раз быстрее RSA; на аппаратном - в 1 000-10 000 раз, в зависимости от выполнения.

Алгоритм RSA заключается в следующем.

· Берутся два очень больших простых числа и , и находятся их произведение и функция Эйлера от :

· Выбирается случайное целое число D, взаимно простое с M, и вычисляется E, такое, что:

· Потом публикуется D и n как открытый ключ, E сохраняется в тайне (оно вместе с n составляет секретный ключ).

· Пусть S - сообщение, длина которого должна быть в интервале (1..n); если длина его больше, то оно разбивается на части. Шифровка производится возведением в степень D по модулю n:

· Для расшифровки производится аналогичная операция - возведение в степень E по модулю n:

Таким образом, сообщение, зашифрованное открытым ключом, может быть расшифровано только секретным ключом и наоборот.

Задача получения из открытого ключа {D, n} секретного ключа {E, n} сводится к задаче факторизации (разложения на простые сомножители) большого числа n. Такая задача для чисел длиной 100-150 десятичных разрядов пока не решена, и перспектив её решения в ближайшем будущем не видно. Однако, с другой стороны, пока не доказана и невозможность факторизации таких чисел (иначе, чем прямым перебором).

Алгоритм RSA запатентован в США. Его использование другими лицами не разрешено (при длине ключа свыше 56 бит). Правда, справедливость такого установления можно поставить под вопрос: как можно патентовать обычное возведение в степень? Но, тем не менее, RSA защищён законами об авторских правах.

Шифрование с открытым ключом

Рис. 4.1. Шифрование с открытым ключом

Сообщение, зашифрованное при помощи открытого ключа какого-либо абонента, может быть расшифровано только им самим, поскольку только он обладает секретным ключом. Таким образом, чтобы послать закрытое сообщение, вы должны взять открытый ключ получателя и зашифровать сообщение на нём. После этого даже вы сами не сможете его расшифровать.

Цифровая подпись

Рис. 4.2. Цифровая подпись

Когда мы действуем наоборот, то есть, шифруем сообщение при помощи секретного ключа, то расшифровать его может любой желающий (взяв ваш открытый ключ). Но сам факт того, что сообщение было зашифровано вашим секретным ключом, служит подтверждением, что исходило оно именно от вас - единственного в мире обладателя секретного ключа. Этот режим использования алгоритма называется цифровой подписью.

Хэш-функции

Как было показано выше, шифр с открытым ключом может использоваться в двух режимах: шифровки и цифровой подписи. Во втором случае не имеет смысла шифровать весь текст (данные) при помощи секретного ключа. Текст оставляют открытым, а шифруют некую "контрольную сумму" этого текста, в результате чего образуется блок данных, представляющий собой цифровую подпись, которая добавляется в конец текста или прилагается к нему в отдельном файле.

Упомянутая "контрольная сумма" данных, которая и "подписывается" вместо всего текста, должна вычисляться из всего текста, чтобы изменение любой буквы отражалось на ней. Во-вторых, указанная функция должна быть односторонняя, то есть вычислимая лишь "в одну сторону". Это необходимо для того, чтобы противник не смог целенаправленно изменять текст, подгоняя его под имеющуюся цифровую подпись.

Такая функция зовётся хэш-функцией. К её выбору следует отнестись тщательно. Неудачная хэш-функция позволит противнику подделать подписанное сообщение. Хэш-функция, так же, как и криптоалгоритмы, подлежит стандартизации и сертификации. В нашей стране она регламентируется СТБ 1176.1-99.

Кроме цифровой подписи хэш-функции используются и в других приложениях.

Например, при обмене сообщениями удалённых компьютеров, когда требуется аутентификация пользователя, может применяться метод, основанный на хэш-функции. Предположим, что один из компьютеров - клиент - должен несколько раз обратиться с запросами с компьютеру-серверу. Каждый раз проводить аутентификацию пользователя было бы неудобно. В то же время нельзя ограничиться проверкой лишь при первом контакте, поскольку злоумышленник может воспользоваться этим, подменив клиента после успешной проверки. Используется следующий метод. Компьютер-клиент генерирует случайное число и вычисляет от него одностороннюю функцию (хэш-функцию), затем эту же функцию от результата и так далее.

X0=Rnd();

X1=Hash(X0);

X2=Hash(X1);

X3=Hash(X2);

Эта последовательность X0...XN хранится в памяти клиента во время сеанса связи. При первом соединении и аутентификации на сервере клиент пересылает серверу последнее число последовательности XN. При следующем контакте в качестве подтверждения, что запрос исходит от уже прошедшего проверку клиента, пересылается предыдущее число - XN-1. Поскольку хэш-функция односторонняя, легко проверить, что XN=Hash(XN-1). При следующем обращении к серверу пересылается XN-2 и так далее. Но для злоумышленника, даже если он перехватит соединение, станет непосильной задачей из XN-1 вычислить XN, то есть, взять обратную функцию от Hash().

Криптография - оружие

Все государства уделяют пристальное внимание вопросам криптографии. Наблюдаются постоянные попытки наложить некие рамки, запреты и прочие ограничения на производство, использование и экспорт криптографических средств. Например, в России лицензируется ввоз и вывоз средств защиты информации, в частности, криптографических средств, согласно Указу Президента Российской Федерации от 3 апреля 1995 г. N 334 и постановлению Правительства Российской Федерации от 15 апреля 1994 г. N 331.

Объясняется такая политика теми особенностями, которые имеет криптография в плане её доступности для использования и трудности преодоления. О значении информации в технологиях управления и производственных процессах было сказано в начале раздела. Соответственно, с потерей контроля над информацией государство потеряет и свою власть над производственными и другими процессами.

Криптография, в отличие от мер физической защиты, обладает тем уникальным свойством, что при правильном выборе метода затраты на обеспечение защиты информации много меньше затрат на преодоление этой защиты.

Криптография становится оружием. В наш информационный век, когда технология стоит дороже материалов, программное обеспечение - дороже аппаратной части, когда люди гибнут не «за металл», а за ценные сведения, информация становится реальной силой. Следовательно, криптография - оружием. И допустить попадание его в частные руки никакое государство не желает.

Несколько фактов в подтверждение такой точки зрения.

· Законопроект США S.266 - внесенный в 1991 году рамочный законопроект, направленный против преступности, - таил в своих недрах беспрецедентные меры. Если бы этот билль принял форму закона, он принудил бы всех производителей оборудования для защищенной коммуникации оставлять в своих продуктах особые "черные ходы" с тем, чтобы правительство могло читать любую зашифрованную корреспонденцию. Билль гласил: "Конгресс постановляет, что поставщики услуг в области электронной коммуникации и производители оборудования, используемого для оказания услуг в области электронной коммуникации, обязаны обеспечить правительству доступ к незашифрованному содержимому всех передаваемых голосовых, цифровых и других данных в случаях, предусмотренных законом". После решительных протестов гражданских либертарианцев и промышленных групп указанные меры были исключены из законопроекта.

· Законопроект США 1994 года "О цифровой телефонии" обязал телефонные компании устанавливать на центральных телефонных узлах точки входа для удаленного подслушивания, создав тем самым новую технологическую инфраструктуру "моментального подключения" для подслушивания. Конечно, закон все еще требует для осуществления подслушивания судебного постановления.

· Через год после того, как законопроект 1994 года "О цифровой телефонии" стал законом, ФБР обнародовало план, согласно которому от всех телефонных компаний требовалось встраивать в свою инфраструктуру возможность одновременного подслушивания 1% всех телефонных разговоров во всех крупных городах США. ФБР утверждает, что эти возможности понадобятся в будущем. Эти намерения вызвали такое возмущение, что Конгресс отверг план, по крайней мере, на этот раз, в 1995 году.

· В апреле 1993 года администрация Клинтона обнародовала новую инициативу в политике отношения к шифрованию, которая разрабатывалась Агентством национальной безопасности (АНБ) с начала правления Буша. Ядро этой инициативы - разработанное правительством шифровальное устройство под названием "Клиппер", которое содержит новый секретный алгоритм шифрования, придуманный АНБ. Правительство попыталось убедить частную промышленность встроить его во все выпускаемые продукты для обеспечения безопасности коммуникаций, такие как защищенные телефоны, защищенные факсы и т. п. Но дело в том, что в каждый кристалл "Клиппер" во время его производства загружается уникальный ключ шифрования, а правительство получает копию этого ключа, отправляемую в хранилище.

· В докладной записке под названием "Шифрование: угрозы, применения и возможные решения", отправленной ФБР, АНБ и департаментом юстиции в адрес совета по национальной безопасности в феврале 1993 года, утверждается, что "технические решения будут работать только в том случае, если они встраиваются во все шифровальные продукты. Для обеспечения этого необходимо законодательное принуждение к использованию утвержденных правительством шифровальных продуктов или к соблюдению установленных правительством критериев".

· В области средств защищенной телефонии ваш выбор невелик. Самым серьезным является устройство STU-III ("Защищенный телефонный аппарат"), продаваемый Motorola и AT&T по 2000-3000 долларов и используемый правительством для передачи секретной информации. Он использует стойкую криптографию, но для его покупки нужно особое правительственное разрешение. Доступна и его коммерческая версия, которая ослаблена для удобства АНБ, а также экспортная версия, ослабленная в еще большей степени. Затем, существует устройство Surity 3600, продаваемое AT&T по 1200 долларов, в котором для шифрования используется хваленая правительственная микросхема "Клиппер", а копии ключей помещены в правительственное хранилище для удобства подслушивающих.

· После второй мировой войны США продавали немецкую шифровальную машину "Энигма" правительствам стран третьего мира. Однако последним при этом не сообщалось, что во время войны союзники взломали шифр "Энигмы" (факт, многие годы остававшийся засекреченным). Даже сейчас многие Unix-системы во всем мире используют шифр "Энигмы" для шифрования файлов, отчасти потому, что правительство создало юридические препятствия к использованию лучших алгоритмов. Оно даже пыталось помешать первой публикации алгоритма RSA в 1977 году. Кроме того, в течение многих лет правительство противостояло почти всем попыткам коммерческих фирм создать по-настоящему безопасные телефоны для массового использования.

· АНБ отвечает за экспертизу и рекомендацию алгоритмов шифрования. Ряд критиков усматривает в этом конфликт интересов, подобно тому, как если бы козлу поручили сторожить огород. В 1980 годы АНБ проталкивало разработанный им алгоритм обычного шифрования, (COMSEC), но не сообщало о том, как он работает, так как алгоритм был засекречен.

DES и ГОСТ 28147-89; RSA и СТБ 1176.2-99 (Р 34.10-2002)

DES (Data Encryption Standart) это алгоритм с симметричными ключами, т.е. один ключ используется как для шифровки, так и для расшифровки сообщений. Разработан фирмой IBM и утвержден правительством США в 1977 как официальный стандарт для защиты информации, не составляющей государственную тайну.

DES имеет блоки по 64 бит, основан на 16-кратной перестановке данных, для шифрования, использует ключ длиной 56 бит. Существует несколько режимов DES, например Electronic Code Book (ECB) и Cipher Block Chaining (CBC).

56 бит - это 8 семибитовых ASCII-символов, т.е. пароль не может быть больше чем 8 букв. Если вдобавок использовать только буквы и цифры, то количество возможных вариантов будет существенно меньше максимально возможных 256.

Один из шагов алгоритма DES.

Входной блок данных делится пополам на левую (L') и правую (R') части. После этого формируется выходной массив так, что его левая часть L'' представлена правой частью R' входного, а правая R'' формируется как сумма L' и R' операций XOR. Далее, выходной массив шифруется перестановкой с заменой. Можно убедиться, что все проведенные операции могут быть обращены и расшифровывание осуществляется за число операций, линейно зависящее от размера блока.

После нескольких таких <взбиваний> можно считать, что каждый бит выходного блока шифровки может зависеть от каждого бита сообщения.

В России есть аналог алгоритма DES, работающий по тому же принципу секретного ключа. ГОСТ 28147 разработан на 12 лет позже DES и имеет более высокую степень защиты. Сравним их характеристики.

Характеристика

DES

ГОСТ 28147

Длина ключа, бит

56

256

Размер блока, бит

64

512

Количество циклов

16

64

Сертификация и стандартизация криптосистем

Как уже было сказано, криптосистема не может считаться надёжной, если не известен полностью алгоритм её работы. Только зная алгоритм, можно проверить, устойчива ли защита. Однако проверить это может лишь специалист, да и то зачастую такая проверка настолько сложна, что бывает экономически нецелесообразна. Как же обычному пользователю, не владеющему математикой, убедиться в надёжности криптосистемы, которой ему предлагают воспользоваться?

Для неспециалиста доказательством надёжности может служить мнение компетентных независимых экспертов. Отсюда возникла система сертификации. Ей подлежат все системы защиты информации, чтобы ими могли официально пользоваться предприятия и учреждения. Использовать несертифицированные системы не запрещено, но в таком случае вы принимаете на себя весь риск, что она окажется недостаточно надёжной или будет иметь <чёрные ходы>. Но чтобы продавать средства информационной защиты, сертификация необходима.

Для сертификации необходимым условием является соблюдение стандартов при разработке систем защиты информации. Стандарты выполняют сходную функцию. Они позволяют, не проводя сложных, дорогостоящих и даже не всегда возможных исследований, получить уверенность, что данный алгоритм обеспечивает защиту достаточной степени надёжности.

Использование криптографии

PGP - Pretty Good Privacy - (почти полная приватность) - это семейство программных продуктов, которые используют самые стойкие из существующих криптографических алгоритмов. В основу их положен алгоритм RSA. PGP реализует технологию, известную как "криптография с открытыми ключами". Она позволяет, как обмениваться зашифрованными сообщениями и файлами по каналам открытой связи без наличия защищенного канала для обмена ключами, так и накладывать на сообщения и файлы цифровую подпись.

PGP была разработана американским программистом и гражданским активистом Филиппом Циммерманном, обеспокоенным эрозией личных прав и свобод в информационную эпоху. В 1991 г. в США существовала реальная угроза принятия закона, запрещающего использование стойких криптографических средств, не содержащих "чёрного хода", используя который, спецслужбы могли бы беспрепятственно читать зашифрованные сообщения. Тогда Циммерманн бесплатно распространил PGP в Internet. В результате, PGP стал самым популярным криптографическим пакетом в мире (свыше 2 млн. используемых копий), а Циммерманн подвергся трёхлетнему преследованию властей по подозрению в "незаконном экспорте вооружений".

информационный защита шифр криптография

Простейшие практические технологии защиты информации

Правила обращения с секретной информацией и ключами

· Очень часто люди, не надеясь на память, записывают пароли где-то в пределах своего рабочего места.

· Другой благоприятный с точки зрения "взлома" защиты вариант - когда неаккуратно подходят к выбору пароля. Чаще всего в качестве пароля выбирают что-то крепко сидящее в голове: имя, номер телефона или автомашины. Люди с бедной фантазией назначают паролем то, что попадается им на глаза на рабочем месте: марку монитора, название книги, номер комнаты и т.п. Перепробовать все такие варианты можно вручную, и часто это приносит результаты.

· Набираемый пароль можно не только найти на бумажке или угадать, его можно подсмотреть, подслушать, вынудить человека проговориться, наконец, вытянуть обманом или угрозами.

Как работать с паролями

Как известно, слабейшим звеном всякой системы защиты является человек. Даже в самой надёжной криптосистеме можно подобрать пароль, если пользователь выбрал его неаккуратно. Ниже приведены правила выбора паролей и обращения с ними. Несоблюдение их может свести на нет всю сложную систему защиты.


Подобные документы

  • Основные виды угроз безопасности экономических информационных систем. Воздействие вредоносных программ. Шифрование как основной метод защиты информации. Правовые основы обеспечения информационной безопасности. Сущность криптографических методов.

    курсовая работа [132,1 K], добавлен 28.07.2015

  • Необходимость защиты информации. Виды угроз безопасности ИС. Основные направления аппаратной защиты, используемые в автоматизированных информационных технологиях. Криптографические преобразования: шифрование и кодирование. Прямые каналы утечки данных.

    курсовая работа [72,1 K], добавлен 22.05.2015

  • Краткая история развития криптографических методов защиты информации. Сущность шифрования и криптографии с симметричными ключами. Описание аналитических и аддитивных методов шифрования. Методы криптографии с открытыми ключами и цифровые сертификаты.

    курсовая работа [1,2 M], добавлен 28.12.2014

  • Определения криптографии как практической дисциплины, изучающей и разрабатывающей способы шифрования сообщений. История развития шифров. Хэш-функции и понятие электронной подписи. Системы идентификации, аутентификации и сертификации открытых ключей.

    реферат [77,1 K], добавлен 10.12.2011

  • Основные средства и технологии обработки и редактирования текстовых документов, принципы их использования. Характеристика функциональных возможностей текстового процессора Ms. Word. Описание дополнительных возможностей текстового редактора Word 2003.

    курсовая работа [1,4 M], добавлен 19.03.2011

  • Цели, методы и средства защиты информационных ресурсов. Права и обязанности субъектов. Обеспечение организационных мер. Попытки несанкционированного доступа. Виды угроз безопасности. Принципы создания системы защиты. Сущность криптографических методов.

    контрольная работа [25,3 K], добавлен 17.11.2009

  • Понятие информационной технологии, принципы и этапы ее формирования, предъявляемые требования, современные проблемы использования. Виды информационных технологий, специфика и направления их практического применения. Решение прикладной задачи в Excel.

    курсовая работа [680,9 K], добавлен 09.06.2013

  • Применение информационных технологий в управлении проектами (инновациями), определение их эффективности. Методические принципы защиты информации. Виды и особенности интеллектуальных информационных систем. Организация электронного документооборота.

    курс лекций [1,1 M], добавлен 29.04.2012

  • Основные понятия защиты информации и информационной безопасности. Классификация и содержание, источники и предпосылки появления возможных угроз информации. Основные направления защиты от информационного оружия (воздействия), сервисы сетевой безопасности.

    реферат [27,3 K], добавлен 30.04.2010

  • Методы защиты автоматизированных систем и технологии построения виртуальных частных сетей. Использование технологий VРN во взаимодействии распределённых территориальных офисов, сдаче отчетности в контролирующие органы, клиент-банковские технологии.

    курсовая работа [823,3 K], добавлен 02.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.