Особенности преобразования проекций

Способы преобразования и замены плоскостей проекций, плоскопараллельное перемещение. Организация вращения проецируемых прямых и позиционных задач пересечения многогранника с прямой и плоскостью. Особенности плоскопараллельного перемещения фигур и точек.

Рубрика Программирование, компьютеры и кибернетика
Вид отчет по практике
Язык русский
Дата добавления 27.01.2011
Размер файла 10,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Инженерно-экономический институт

Отчет по компьютерной практике

Особенности преобразования проекций

Выполнила: группа 5Скб-11

Проверила: Дорофеюк Е.В.

Отметка: 4

Череповец 2009

Способы преобразования проекций

Преобразование проекций используется для наиболее выгодного изображения геометрических фигур при их исследовании и решение методических и позиционных задач. В итоге при преобразовании чертежа объекты занимают частное положение относительно плоскостей проекций. Существуют несколько способов преобразования.

- способ замены плоскостей проекций.

- способ вращения вокруг проецирующих прямых и прямых уровня.

- способ плоскопараллельного перемещения.

Принципиальная разница первого способа (замены плоскостей проекций) в том, что объект не меняет своего положения в пространстве, а вводятся новые дополнительные плоскости проекций. При использовании способов вращения и плоскопараллельного перемещения - система плоскостей остаётся неизменной, а объект перемещается относительно системы плоскостей.

Способ замены плоскостей проекций

Сущность способа замены плоскостей рассмотрим на примере. На (рис. 5.1). дана точка А в системе плоскостей проекций 1 / 2. Заменим одну из них, например 2, другой вертикальной плоскостью 4 1, т.е. перейдём к новой системе плоскостей проекций 4 / 1. Определим новую фронтальную проекцию точки А4, использую для этого неизменность координаты Z точки А, т.к. горизонтальная плоскость проекций 1 является общей для исходной и новой системы. На эпюре из горизонтальной проекции А1 проведём линию связи, перпендикулярную к новой оси x14 и отложим координату Z точки А.

Рис. 5.1. Способ замены плоскостей.

Способом замены плоскостей определяют натуральную величину прямой, плоскости, определяют расстояние между прямыми, плоскостями и т.д. При решении задач приходится менять последовательно либо одну, либо две плоскости проекций так, чтобы геометрические объекты оказались в частном положении относительно новой системы.

Рассмотрим задачи на преобразование прямой и плоскости:

Задача: Дана прямая АВ общего положения (рис. 5.2). Преобразовать прямую АВ в проецирующую прямую.

Рис. 5.2.

Решение: Прямую общего положения возможно преобразовать в проецирующую прямую только двумя последовательными заменами плоскостей проекций. Т.к. плоскость проекций, перпендикулярная к прямой общего положения, не будет перпендикулярна не к 1, не к 2. Первоначально заменим плоскость проекций 2 на 4 ( 1) параллельно прямой АВ, новая ось проекций x14 || А1В1. Построим новую фронтальную проекцию А4В4, отложив неизменную координату Z. Прямая АВ преобразована в новой системе 1 / 4 во фронталь, А4В4 - натуральная величина отрезка прямой, а угол - угол наклона прямой к плоскости проекций 1. Затем заменим плоскость проекций 1 на 5 ( 4) перпендикулярно прямой АВ, новая ось проекций x45 А4В4. Построим новую горизонтальную проекцию А5В5, отложив неизменную координату Y, прямая АВ, Выражается в точку A5 B5 и является горизонтально - проецирующей прямой в новой системе плоскостей 4 / 5.

Задача: Даны две параллельные прямые линии АВ и СD (рис. 5.3). Определить расстояние между ними.

Рис. 5.3.

Решение: Чтобы определить расстояние между параллельными прямыми, необходимо преобразовать их в проецирующие прямые. Этого можно добиться двумя последовательными заменами плоскостей проекций. Первая замена плоскости проекций 1 на 5 параллельно данным прямым, новая ось проекций Х25 || С2D2 || А2В2. Прямые АВ и СD преобразованы в новой системе плоскостей проекций 2 / 5 в горизонтали. Вторая замена плоскости проекций 2 на 4 перпендикулярно прямым АВ и СD, новая ось проекций x45 С5D5 (А5В5) На новую горизонтальную плоскость 5 прямые АВ и СD проецируются в точки A5 B5, C5 D5. Измеряем расстояние между точками.

Задача: Дана плоскость, треугольник АВС общего положения (рис. 5.4). Определить натуральную величину треугольника АВС.

Рис. 5.4.

Решение: Чтобы определить натуральную величину плоскости, необходимо расположить её параллельно плоскости проекций. Плоскость общего положения невозможно сразу преобразовать в плоскость уровня, т.к. параллельная ей новая плоскость проекций не будет перпендикулярна ни к 1, ни к 2. Поэтому, необходимо выполнить две последовательные замены плоскостей проекций, преобразовав данную плоскость сначала в проецирующую, а затем в плоскость уровня.

Заменим плоскость проекций 2 на 4 перпендикулярно треугольнику АВС. Чтобы определить направление 4, проведём в треугольнике АВС горизонталь h. Новая плоскость проекций 4 будет перпендикулярна горизонтали, новая ось проекций x14 h1. На линии связи откладываем неизменные координаты ZA, ZB, ZC. Новая фронтальная проекция A4B4C4 в системе плоскостей 1/2 представляет собой прямую линию, плоскость (АВС) преобразована во фронтально проецирующую.

Затем заменим плоскость проекций 1 на плоскость 5 параллельно треугольнику АВС, новая ось проекций x45 || А4В4С4, неизменной остаётся координата Y. В новой системе плоскостей 4 / 5 треугольник АВС является горизонтальной плоскостью уровня. Новая горизонтальная проекция А5В5С5 - натуральная величина треугольника АВС.

Способ вращения

Суть способа вращения состоит в том, что геометрический объект вращают в пространстве вокруг выбранной оси i до требуемого положения относительно плоскостей проекций. Траектории движения точек объекта являются дугами окружностей, центр которых находится на оси вращения.

Вращение вокруг проецирующих прямых

Рассмотрим, как изменится положение точки А при её вращение вокруг оси i на некоторый угол (рис. 5.5).

Рис. 5.5. Вращение точки.

Ось i перпендикулярна плоскости проекций 2 (фронтально проецирующая прямая). При вращение точка А будет перемещаться по окружности, плоскость которой параллельна плоскости проекций 2. На плоскость 2 окружность спроецируется без искажения, а на плоскость 1 - в виде прямой 1, параллельной оси x12. Радиус окружности равен расстоянию от точки до оси. Для поворота точки А на некоторый угол на фронтальной проекции перемещаем А2 по окружности на угол . Определяем новое положение точки А. Горизонтальная проекция точки А1 перемещается по траектории параллельной оси x12. Новую горизонтальную проекцию А определяем по линии связи от А. Аналогично, при вращение точки вокруг оси, перпендикулярной плоскости 1, горизонтальная проекция точки будет перемещаться по окружности, а фронтальная - по прямой линии параллельной оси x12.

Задача: Определить натуральную величину отрезка АВ прямой общего положения. Преобразовать данную прямую в проецирующую (рис. 5.6).

Рис. 5.6. Вращение прямой.

Решение: Чтобы определить натуральную величину отрезка прямой общего положения, необходимо преобразовать его в прямую уровня. Одна из проекций прямой уровня параллельна оси x12. Выбираем ось вращения i1 перпендикулярно плоскости 1. Чтобы повернуть прямую линию на некоторый угол , необходимо повернуть на этот угол две её точки. Но задачу можно упростить, если ось вращения будет совпадать с одной из точек прямой. В нашем случае ось совпадает с точкой В. Эта точка остаётся неподвижной. Остаётся повернуть точку А до положения, когда отрезок АВ окажется параллельным плоскости 2. Проекция АВ || x12, на фронтальной проекции точка А2 перемещается параллельно оси x12. Данная прямая линия преобразована таким вращением во фронталь. Проекция АВ является натуральной величиной отрезка АВ, а угол - угол наклона к прямой плоскости 1.

Вторым вращением преобразуем отрезок АВ в проецирующую прямую. Для этого ось вращения с2 выбираем перпендикулярно плоскости 2. Ось i2 совпадает с точкой А, которая останется неподвижной при втором вращении. Повернём точку В до положения, когда прямая займёт положение перпендикулярно плоскости проекций 1. На фронтальной проекции - АВ перпендикулярна оси x12, а на горизонтальной - проекции - В перемещается параллельно оси x12 и совпадает с проекцией А. Новая горизонтальная проекция прямой АВ преобразуется в точку. Вторым вращением данная прямая преобразована в горизонтально проецирующую.

Задача: Преобразовать плоскость Т общего положения во фронтально проецирующую. Определить угол её наклона к плоскости 1 (рис. 5.7).

Решение: Чтобы повернуть плоскость вокруг какой - либо оси на угол , необходимо повернуть на этот угол геометрические элементы, определяющие плоскость на чертеже.

Для преобразования плоскости Т во фронтально проецирующую необходимо повернуть её на такой угол, чтобы горизонтальный след плоскости оказался перпендикулярным оси x12. Выбираем ось вращения i перпендикулярно плоскости 1 так, чтобы в пределах чертежа определялась неподвижная точка плоскости Т - точка пересечения оси i с плоскостью Т. эту точку

Рис. 5.7. Вращение плоскости.

1 (11,12) определяем с помощью горизонтали плоскости h. Определяем радиус вращения горизонтального следа плоскости Т - i1M1 T1. Поворачиваем след плоскости Т1 перпендикулярно оси x12, радиус вращения i1 M || x12. Определяется новая точка схода следов плоскости Т. Для определения нового фронтального следа Т соединяем точку схода следов Т с фронтальной проекцией неподвижной точки плоскости 12. Плоскость Т преобразована во фротально проецирующую, угол - угол наклона плоскости Т к плоскости проекций 1.

Задача: Определить натуральную величину треугольника АВС способом вращения (рис. 5.8). Решение: Первым вращением вокруг оси i, перпендикулярной плоскости 2 и совпадающей с точкой В, преобразуем треугольник АВС в горизонтально проецирующую плоскость. Провернём фронтальную проекцию треугольника АВС в положение, когда фронталь BD окажется перпендикулярной оси x Горизонтальные проекции точек А и С перемещаются параллельно оси x, точка В неподвижна. Плоскость преобразована в горизонтально проецирующую, проекция АВС - прямая линия.

Рис. 5.8. Определение натуральной величины плоскости (АВС) способом вращения

проекция многогранник плоскость

Вторым вращением вокруг оси i1, перпендикулярной плоскости 1 и совпадающей с точкой С преобразуем треугольник во фронтальную плоскость уровня. Проведём горизонтальную проекцию АВС до положения параллельно оси x, АВС || x. На фронтальной проекции точки А и В перемещаются параллельно оси x, точка С - неподвижна. Новая фронтальная проекция АВС является натуральной величиной треугольника АВС.

Вращение вокруг линии уровня

Задачу на определение натуральной величины плоской фигуры можно решить более быстрым способом, если за ось вращения выбрать линию уровня. Одним поворотом вокруг этой линии можно расположить данную плоскость параллельно одной из плоскостей проекций, вращая вокруг горизонтали - параллельно плоскости 1, вокруг фронтали - параллельно плоскости 2. Рассмотрим пример на рис. 5.9.

Рис. 5.9. Вращение вокруг горизонтали.

Горизонталь h плоскости (АВС) является осью вращения i. Точки А и 1 плоскости остаются неподвижными, т.к. расположены на оси вращения. Задача сводится к определению натуральной величины радиусов вращения двух точек плоскости В и С. Определяем радиусы вращения этих точек О1В1 h1, C1 h1. Найдём натуральную величину радиуса ОВ вращением вокруг оси перпендикулярной плоскости 2 в точке О. О1В - натуральная величина ОВ, откладываем её на горизонтальной проекции радиуса, определяем положение точки В после вращения Вo. Через Вo и неподвижную точку 11 проводим прямую до пересечения с прямой С1, по которой пересекается точка С. Определяем положение точки С после вращения - Сo. А1ВoСo - натуральная величина треугольника АВС, преобразованного в горизонтальную плоскость уровня. Фронтальная проекция плоскости треугольника после вращения преобразуется в прямую совпадающую с горизонталью плоскости h.

Способ плоскопараллельного перемещения

При использовании способа вращения иногда происходит наложение изображений. Этого можно избежать, применяя способ плоскопараллельного перемещения.

Сущность этого способа в том, что все точки геометрической фигуры перемещаются в плоскостях параллельных одной из плоскостей проекции.

Следовательно точки движутся в плоскостях уровня, и одна из проекций геометрической фигуры перемещается без изменения формы и размеров, а на другой проекции траектории движения точек параллельны оси x.

Рассмотрим преобразование отрезка АВ прямой общего положения в проецирующую прямую (рис. 5.10). Первоначально преобразуем прямую АВ во франталь, переместив проекцию А1В1 без изменения размеров параллельно оси x (в произвольном месте). Точки прямой АВ перемещаются параллельно плоскости 1. На фронтальной проекции траектории точек параллельны оси x. Новые фронтальные проекции определяем на пересечений линий связи от АВ с траекториями движения точек.

Рис. 5.10. Способ плоскопараллельного перемещения.

Проекция АВ является натуральной величиной АВ, т.к. первым перемещение прямая преобразована во фронталь.

Второе перемещение выполним параллельно плоскости 2. Фронтальную проекцию переместим без изменений размеров перпендикулярно оси x(АВ x). На горизонтальной проекции точки движутся параллельно оси x, и отрезок АВ преобразуется в горизонтально проецирующую прямую.

Задача: Определить расстояние от точки S до плоскости АВС (рис. 5.11) способом плоскопараллельного перемещения.

Решение: Для решения задачи необходимо преобразовать плоскость общего положения в проецирующую. Если одна из проекций плоскости будет преобразована в прямую линию, то можно отпустить перпендикуляр из точки S и определить расстояние. Перемещаем плоскость АВС перпендикулярно плоскости 2.

Рис. 5.11.

Располагаем новую горизонтальную проекцию прямоугольника АВС без изменения формы и размера так, чтобы горизонталь h оказалась перпендикулярно плоскости 2. На фронтальной проекции точки перемещаются параллельно оси x, Новая фронтальная проекция треугольника АВС преобразуется в прямую линию. Опускаем перпендикуляр из перемещенной точки S на новую фронтальную проекцию треугольника.

Вопросы и задачи для самоконтроля

1. В чём сущность способа перемещения плоскостей проекций?

2. Сколько нужно выполнить последовательных преобразований и каких, чтобы определить натуральную величину плоскости общего положения?

3. Как движутся точки геометрического объекта при его вращении вокруг осей перпендикулярных плоскостям проекции?

4. Сколько нужно выполнить последовательных вращений и каких, чтобы преобразовать прямую общего положения в проецирующую?

5. Определите расстояние между двумя параллельными прямыми общего положения способом плоскопараллельного перемещения?

6. Определите натуральную величину треугольника вращением вокруг фронтали.

Классификация многогранников

Многогранник - это замкнутая пространственная фигура, ограниченная плоскими многоугольниками (частями пересекающихся плоскостей).

Выпуклые многоугольники - это такие у которых все вершины и ребра находятся по одну сторону любой из их граней.

Наибольший интерес представляют призмы, пирамиды и правильные выпуклые многоугольники - тела Платона.

Призма - многоугольник, две грани которого представляют собой равные многоугольники (основания призмы) со взаимно параллельными сторонами, все другие грани- параллелограммы (или прямоугольники).

Пирамида - многогранник, одна грань которого - многоугольник, а остальные грани треугольники с общей вершиной.

Тела Платона - многогранники, все грани которых представляют собой правильные и равные многоугольники. Углы при вершинах таких многоугольников равны между собой. Существует 5 типов правильных многогранников: гексаэдр (куб)- 6 квадратов, тетраэдр, октаэдр, икосаэдр - 4, 8, 20 правильных треугольников, додекаэдр - 12 правильных пятиугольников.

Некоторые позиционные задачи пересечения многогранника с прямой и плоскостью

Плоскость пересекает многогранную поверхность по плоской замкнутой ломаной линии, называемой фигурой сечения. Вершины и стороны фигуры сечения определяются пересечением заданной плоскости соответственно с рёбрами и гранями многоугольника. То есть многократно решается задача или на пересечение двух плоскостей (граней многогранника с секущей плоскостью), или на пересечение прямой с плоскостью (рёбер многогранника с секущей плоскостью). Это уже известные задачи.

Задача: Дана треугольная наклонная пирамида и секущая фронтально проецирующая плоскость (рис. 6.1). Определить проекции фигуры сечения.

Рис. 6.1.

Решение: Так как секущая плоскость является фронтально проецирующей, то фронтальная проекция фигуры сечения (122232) совпадет со следом плоскости 2. Фигура сечения является треугольником и определяется на пересечении следа плоскости с соответствующими ребрами пирамиды. По линиям связи определяем горизонтальные проекции вершин треугольника (112131) на соответствующих ребрах пирамиды. Далее определяется видимость звеньев линии сечения в зависимости от видимости граней пирамиды на горизонтальной проекции.

Задача: Дана прямая треугольная призма и секущая плоскость общего положения Т (рис. 6.2). Определить проекции фигуры сечения.

Рис. 6.2. Пересечение многогранника плоскостью.

Решение: Так как боковые грани призмы являются горизонтально проецирующими плоскостями, то горизонтальная проекция фигуры сечения совпадает с горизонтальной проекцией призмы (А1В1С1) (112131). Решение задачи сводится к определению второй проекции точек сечения, принадлежащих и плоскости Т и призме.

Для этого воспользуемся фронталями плоскости , проведенными через соответствующие точки 11 В1, 21 А1, 31 С1. Фронтальную проекцию фигуры сечения (122232) определяем на пересечении фронтальных проекций фронталей с соответствующими рёбрами призмы.

Определяем видимость звеньев линии сечения.

Задача: Дана прямоугольная пирамида и секущая плоскость общего положения Т (рис. 6.3). Определить проекции фигуры сечения.

Рис. 6.3.

Решение: Ребра и грани пирамиды являются геометрическими объектами общего положения. Определим точки фигуры пересечения, решая несколько раз задачу на пересечение прямой с плоскостью (ребра пирамиды с секущей плоскостью). Для этого заключаем последовательно каждое ребро во вспомогательную фронтально проецирующую плоскость: ребро АS - в плоскость (2 А2S2), ребро ВS - в плоскость (2 В2S2), ребро СS - в плоскость (2 С2S2). Определяем линию пересечения каждой вспомогательной плоскости с секущей плоскостью - линии (1121), (3141), (5161). На пересечении линий пересечения и проекций соответствующих ребер определяем искомые точки фигуры сечения (D1E1F1), (D2E2F2).

Задача: Дана прямоугольная пирамида и прямая общего положения l (рис. 6.4). Определить точки пересечения прямой и пирамиды.

Решение: Так как прямая l является прямой общего положения, задача решается аналогично задаче нахождение точки пересечения прямой и плоскости. Заключаем прямую l во вспомогательную фронтально проецирующую плоскость (2 l2). Строим сечение пирамиды вспомогательной плоскостью (аналогично задаче рис. 6.1). На пересечении горизонтальной проекции прямой l1 и контуром сечения (112131) находим искомые точки D и E. Определяем видимость прямой относительно точек пересечения с пирамидой.

Развертка многогранника

Разверткой поверхности называется плоская фигура, полученная совмещением поверхности с плоскостью.

Построение разверток важно для тех видов производства, где продукция изготавливается из листового материала. При проектировании листовых конструкций выполняется построение разверток их поверхностей. При построении развертки многогранника необходимо определить натуральную величину всех его граней.

Рис. 6.4. Пересечение прямой с многогранником.

Существует несколько способов построения разверток: способ нормального сечения, способ раскатки.

Рассмотрим построение развертки призмы способом нормального сечения.

Задача: Дана треугольная призма (рис. 6.5). Построить развертку поверхности данной призмы.

Рис. 6.5. Развёртка призмы. Способ нормального сечения.

Решение: Пересечем призму плоскостью Т перпендикулярно ее боковым ребрам. Полученное сечение (123) называется нормальным. Так как ребра призмы в данной задаче являются горизонталями, то след плоскости нормального сечения Т1 перпендикулярен горизонтальным проекциям ребер A1F1, B1D1, C1E1. Определяем натуральную величину нормального сечения призмы плоскостью Т способом вращения вокруг оси i. Фигура (123) - натуральная величина нормального сечения.

Для построения развертки на горизонтальной линии отложим отрезки, равные сторонам нормального сечения 1020 12, 2030 23, 3010 33. Ребра призмы перпендикулярны линии нормального сечения, их натуральную величину измеряем на горизонтальной плоскости(так как ребра являются горизонталями) B0D0 B1D1, A0F0 A1F1, C0E0 C1E1. Полученная фигура B0A0C0B0D0E0F0D0 являются боковой поверхностью призмы. Для получения полной развертки достраиваем в натуральную величину основания призмы.

Кривые поверхности

В начертательной геометрии кривая поверхность определяются, как непрерывное множество положений перемещающейся в пространстве линии, называемой образующей. Образующая может быть прямой линией (линейчатая поверхность) или кривой (нелинейчатая). Движение образующей в пространстве может осуществляться по некоторому закону. Такая поверхность называется закономерной, в отличии от незакономерной (случайной) поверхности. К числу условий перемещения в пространстве образующей линии относятся: перемещение по неподвижным линиям - направляющим, вращательное движение вокруг неподвижной оси, винтовое перемещение и др.

Одна и та же поверхность может быть образована перемещением различных линий и согласно различных условиям. Например, боковая поверхность прямого кругового цилиндра может быть рассмотрена как результат:

- перемещение окружности вдоль некоторой оси;

- вращение некоторой образующей прямой линии вокруг оси вращения;

- вращение некоторой кривой линии, все точки которой равноудалены от оси вращения.

Рассматривая совокупность прямолинейных образующих с совокупностью образующих окружностей получим каркас данной поверхности цилиндра.

Множество неподвижных линий, инцидентных данной поверхности и объединенных каким либо общим признаком, называется её каркасом.

Задание поверхности вращения на чертеже. Точки и линии на поверхности

На чертеже поверхность изображают очерком проекций поверхности или её отдельных частей.

Задать поверхность на чертеже - значит указать условия, позволяющие построить каждую точку этой поверхности.

Точка принадлежит поверхности, если она находится на линии, принадлежащей данной поверхности. Рассмотрим чертёж конуса и точки, принадлежащие его поверхности (рис. 6.6). Фронтальная проекция конуса задана очерковыми образующими, определяющими границы поверхности, а горизонтальная - проекцией основания конуса. Каркас конуса - это совокупность образующих прямых линий, соединяющих их вершину S и основание конуса и совокупность параллелей - окружностей различного радиуса, плоскость которых перпендикулярна оси конуса.

Рис. 6.6.

Рассмотрим ряд точек на боковой поверхности конуса. Точка А расположена на очерковой образующей конуса, её горизонтальная проекция находится на линии связи, на оси конуса. Обратим внимание, что очерковая образующая является фронталью, т.е. её фронтальная проекция натуральная величина образующей конуса.

Принадлежность точек В и С поверхности конуса определяется соответственно с помощью параллели радиуса R или образующей конуса (S1).

Позиционные задачи на пересечение поверхности с прямой линией и плоскостью

В общем случае пересечения поверхности с плоскостью является кривая линия.

Рассмотрим конические сечения фронтально проецирующимися плоскостями и горизонтальной плоскостью уровня (рис. 6.7) Обозначим угол наклона образующей к оси конуса - а угол наклона следа плоскости - . В зависимости от угла наклона плоскости линией сечения может быть окружность, эллипс, парабола, гипербола. Если:

= 90, линия сечения - окружность,

> - эллипс,

= - парабола,

< - гипербола.

Если секущая плоскость проходит через вершину конуса, то сечением является треугольник.

Задача: Построить линию сечения конуса фронтально проецирующей плоскостью (рис. 6.8).

Решение: Линией сечения в данном случае будет неполны эллипс т.к. угол наклона плоскости к оси конуса больше угла наклона образующей. Фронтальная проекция линии сечения совпадает со следом плоскости, т.к. секущая плоскость является фронтально проецирующей. Определим горизонтальную проекцию сечения. Первоначально отметим опорные точки - точка 1 на очерковой образующей является высшей точкой сечения, точки 2 и 3 на основании конуса - низшие точки. Ряд промежуточных точек 4, 5, 6, 7 определяем с помощью параллелей конуса, проведённых через эти точки. Точки 8, 9 определены через образующую конуса. Полученные точки плавно соединяем с учётом видимости.

Рис. 6.7. Сечение конуса.

Рис. 6.8.

Задача: Определить точки пересечения прямой а с конусом (рис. 6.9).

Решение: Для решения задачи выгоднее всего использовать вспомогательную плоскость, проходящую через вершину конуса. Для этого дополним прямую а до плоскости прямой b, пересекающейся с ней в точке 1 (рис. 6.9). Определим горизонтальный след вспомогательной плоскости (а b). Для этого найдём следы прямых а и b - М и М1. Отметим точки пересечения основания конуса с горизонтальным следом 1 - точки А и В. Определилась линия сечения конуса со вспомогательной плоскостью - это треугольник АВS.

Рис. 6.9. Пересечение прямой с конусом.

На пересечении линии сечения A1B1S1 и проекции прямой а1 находим искомые точки K1 и L1, по линиям связи - K2 и L2. Затем определяем видимость прямой относительно точек пересечения.

Взаимное пересечение поверхностей

Две кривые поверхности в общем случае пересекаются по пространственной кривой линии. Для построения этой линии в зависимости от того, как заданы поверхности применяют метод вспомогательных секущих плоскостей или метод секущих сфер.

При использовании метода секущих плоскостей вводится ряд вспомогательных плоскостей, пересекающих каждую поверхность по линии, простой по построению (окружность или прямая). На пересечении линий пересечения определяются общие для поверхностей точки. Иногда целесообразно использовать вспомогательные секущие сферы, т.к. сфера, центр которой располагается на оси поверхности вращения пересекает его по окружности (рис. 6.10).

Чтобы использовать метод сфер, должны выполняться следующие условия:

1). Оси поверхностей вращения должны пересекаться. Центр секущих сфер выбирается в точке пересечения осей.

2). Оси пересекающихся поверхностей вращения должны быть параллельны какой либо плоскости проекции.

Рис. 6.10.

Задача: Определить линию пересечения вертикального конуса и горизонтального цилиндра (рис. 6.11).

Решение: Для решения задачи удобно использовать способ вспомогательных секущих плоскостей. Если рассекать обе поверхности горизонтальными плоскостями уровня, то линии сечения будут простыми для построения линиями: для конуса - окружности, для цилиндра - образующие.

Рис. 6.11. Способ секущих плоскостей.

Первоначально определим опорные точки. Это точки 1 и 2. Они определяются на пересечении очерковых образующих конуса и фронтальной проекции цилиндра.

Боковая поверхность цилиндра является фронтально проецирующей.

Для нахождения промежуточных точек вводят ряд вспомогательных секущих горизонтальных плоскостей уровня 1-5. Точки 3 и 4, определённые введением плоскости 2, проходящей через ось цилиндра, являются точками границы видимости на горизонтальной проекции сечения. Полученные точки плавно соединяются с учётом видимости.

Задача: Определить линию пересечения вертикального и горизонтального конусов (рис. 6.12).

Решение: В данном случае целесообразно использовать метод секущих сфер, т.к. оси конусов пересекаются и параллельны фронтальной плоскости проекций. Первоначально определяем опорные (характерные) точки на пресечении очерковых образующих - точки 1 и 2. Для определения точек перехода через границу видимости вводим горизонтальную плоскость уровня . Она пересекает вертикальный конус по окружности а горизонтальный по очерковым образующим. На их пересечении определяем точки 3 и 4.

Для нахождения промежуточных точек используем секущие сферы. Минимальная сфера радиуса Rmin вписывается в больший конус. Оба конуса пересекаются сферой по окружностям, которые проецируются на фронтальную плоскость в виде прямых линий. На пересечении этих линий определяем точки 5 и 6. Далее вводим сферу большего радиуса, определяем точки 7 и 8. Полученные точки переносим на горизонтальную проекцию и плавно соединяем с учётом видимости.

Рис. 6.12.

Размещено на http://www.allbest.ru/


Подобные документы

  • Основные правила нахождения монохромных изображений. Задача преобразования Хафа. Выделение кривых, образованных точками интереса. Выделение прямых и окружностей на изображении. Модификации преобразования Хафа. Вероятностное и случайное преобразование.

    презентация [127,4 K], добавлен 26.12.2012

  • Математическое описание операций преобразования плоских фигур. Выбор и обоснование языка программирования и среды разработки. Задание базовой фигуры. Разработка алгоритма работы программы. Проверка корректности работы программы в различных режимах.

    курсовая работа [567,6 K], добавлен 13.10.2014

  • Построение системы классов для описания плоских геометрических фигур: круг, квадрат, прямоугольник. Методы для создания объектов, перемещения на плоскости, изменения размеров и вращения на заданный угол. Реализованные алгоритмы, тестирование программы.

    курсовая работа [129,3 K], добавлен 04.05.2014

  • Задача локализации проекции шаблона на изображении. Свойства биномиального распределения. Определение проекций опорных точек в области локализации. Понижение разрешения и дифференцирование локализованного изображения. Поиск вероятных приближенных решений.

    дипломная работа [3,5 M], добавлен 06.11.2011

  • Рисование линий. Выбор объектов. Создание фигур. Редактирование фигур. Вращение, искажение и другие преобразования объектов. Копирование и наложение объектов. Установка позиции и размеров объекта. Сохранение проекта.

    реферат [55,3 K], добавлен 21.12.2003

  • Понятие растра и растровой графики. Аффинные преобразования на плоскости и в пространстве. Цветовые модели RGB, MCYK. Алгоритмы вывода линий и фигур, устранения ступенчатости, удаления невидимых линий, закраски фигур. Графические эффекты, анимация.

    лекция [281,0 K], добавлен 26.07.2013

  • Принцип работы и назначение основного шага криптопреобразования, его параметры, базовые циклы и их принципиальное устройство. Пошаговый алгоритм действия криптопреобразования. Пример реализации процесса криптопреобразования в режиме простой замены.

    лабораторная работа [1,1 M], добавлен 26.08.2009

  • Анализ тестопригодности графа управления автоматной модели HDL-программы. Фрагмент модуля дискретного косинусного преобразования и кода механизма ассерций. Особенности верификации дискретного косинусного преобразования в среде Questa, Mentor Graphics.

    реферат [306,9 K], добавлен 20.11.2010

  • Запуск 3ds max, особенности размещения инструментов и работы с ними. Навигация по окнам трехмерных проекций, основные элементы управления объектами. Влияние дизайна элементов графического интерфейса на качество работы. Настройка рабочего пространства.

    учебное пособие [3,2 M], добавлен 07.02.2011

  • Проектирование информационной системы (ИС) преобразования данных с помощью математических и алгоритмических подходов. Автоматизированная ИС преобразования измеренных значений сил и моментов в расчетные случаи для виртуальной модели автомобиля для ОММиР.

    курсовая работа [2,6 M], добавлен 25.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.