Периферийные устройства

Micron и Sun анонсировали флэш-память с миллионом циклов записи. Магнитная flash-память на основе углеродных нанотрубок. Flash-память как долгожданный реванш. Версии NAND флэш-памяти корпоративного класса с SLC и MLC ячейками на базе 34-нм техпроцесса.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 26.12.2010
Размер файла 310,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

«Периферийные устройства»

Одесса 2010г.

Flash-память - долгожданный реванш

Изобретателем flash-памяти считается корпорация Intel (1988 г.), а название технологии произошло от метода стирания -- вся микросхема за раз. Впоследствии чипы flash избавились от этого недостатка, и теперь стирание происходит побайтово или постранично. Тем не менее название прижилось и используется по сей день. Здесь необходимо пролить свет на то, что общего и какие различия между терминами flash и EEPROM (Electrically Erasable Programmable Read-Only Memory). Если быть точным до конца, то они не эквивалентны. Архитектура EEPROM была разработана существенно раньше, и она изначально обеспечивала возможность побитового стирания информации. Flash является развитием EEPROM в направлении удешевления производства, но отнюдь не в сторону технического совершенства.

Первый чип на основе flash-технологии емкостью 256 Kb был использован в медицинской аппаратуре производства Hewlett-Packard. Тогда партия чипов обходилась в $20 за штуку или $640 за мегабайт. Спустя 12 лет, в мае 2000 г., Intel отметила продажу миллиардной микросхемы, причем 45% изделий из этого миллиарда было поставлено производителям мобильных телефонов.

В 90-х годах на основе существующей низкоуровневой технологии компании стали одна за другой придумывать способы реализации старой идеи в новой упаковке. Так, вслед за впервые показанной на осеннем COMDEX в ноябре 1995 г. Solid-State Floppy-Disk Card (SSFDC), или SmartMedia, бесконтроллерной памяти типа NAND (Not AND) от Toshiba (плод альянса с IBM, образованного еще в 1992 г.), в 1994 г. появились карты CompactFlash от SanDisk, а совсем недавно, пару лет назад (в 1998 г.) Sony тоже сказала свое "веское слово", анонсировав Memory Stick.

Удобство использования карт памяти и их надежность изначально существенно превышали аналогичные параметры магнитных носителей, однако низкие темпы продаж были обусловлены высокой стоимостью полупроводниковых изделий. Лишь когда спрос на компактные, надежные и с низким потреблением энергии носители информации превысил некоторый критический уровень вследствие увеличения рынка мобильных устройств, а цена на чипы упала -- настал звездный час flash-памяти.

Flash: прошлое и настоящее

Рис. 1 (a)

Рис. 1 (б)

Типы flash-памяти можно рассматривать на трех уровнях: интерфейсном, видов организации ячеек и типов ячеек. Мы остановимся лишь на двух последних. Вначале коснемся вопроса внутренней организации чипа EEPROM. Сперва ответим на вопрос, что подразумевается под "внутренней организацией"? На самом деле, очень простая вещь - способ соединения ячеек. Например, сегодня наиболее популярны (~75% рынка) чипы типа NOR (Not OR). Каждая ячейка в такой микросхеме подключена к двум перпендикулярным линиям -- битов (bit line) и слов (word line). Суть логической операции NOR -- в переходе линии битов в состояние "0", если хотя бы один из транзисторов-ячеек, подсоединенных к ней, включен или, говоря иначе, проводит ток. Селекция читаемой ячейки осуществляется с помощью линии слов. Все ячейки памяти NOR, согласно правилам, подключены к своим битовым линиям параллельно (рис. 1, а).

Другой тип подсоединения называется NAND (Not AND). В этом случае битовая линия переходит в состояние "0", если все транзисторы, подключенные к ней, проводят ток. Теперь ячейки подсоединяются к битовой линии сериями (рис. 1, б), что снижает эффективность и скорость операции чтения (поскольку уменьшается ток каждой ячейки), зато повышает скорость стирания и программирования. Чтобы приуменьшить негативный эффект низкой скорости чтения, чипы NAND снабжаются внутренним регистровым кэшем. Благодаря гирляндному принципу подсоединения ячеек в этом варианте удается добиться более компактной упаковки, чем в случае с параллельной архитектурой NOR-чипов.

Типы ячеек

Stacked Gate Cell

Рис. 2

Ячейка с многослойным затвором -- наиболее старый и одновременно простой тип ячейки памяти EEPROM. В основе ее лежит полевой транзистор, имеющий, впрочем, некоторое отличие от классического аналога в виде еще одного, так называемого плавающего затвора. Этот затвор является неотъемлемой частью всех модификаций flash-памяти: он играет ту же роль, что и конденсатор в DRAM, т. е. хранит запрограммированное значение. На плавающий затвор путем двух квантовых процессов помещаются заряды с разными значениями, которые влияют на поле основного, или управляющего затвора (рис. 2).

Таким образом, состояние транзистора (проводящее или непроводящее) зависит в данном случае сразу от обеих баз. Плавающий затвор изолируется от стока, истока и управляющего затвора тончайшим слоем (около 10 нм при 1-микронном процессе производства) окиси кремния. Следовательно, чтобы сообщить заряд плавающей базе, приходится пускаться на всевозможные ухищрения. Рассмотрим вначале процесс удаления содержимого ячейки. Здесь и далее будем полагать, что исток и сток представляют собой полупроводники p-типа, а значит, для выключения транзистора необходимо создать в канале отрицательное поле, блокирующее процесс перехода электронов. Между истоком (+) и управляющим затвором (--) прикладывается напряжение, которое приводит к появлению электрического поля высокой напряженностью 10 МВ/см вдоль слоя окиси между плавающим затвором и истоком. В результате квантового эффекта туннелирования Фаулера--Нордхейма (Fowler--Nordheim) заряд с плавающей базы перетекает к истоку. Стертая ячейка будет проводить ток ("1"), так как электрический барьер поля, обеспечиваемого плавающим затвором, исчез.

Во время программирования напряжение прикладывается уже между стоком и управляющей базой. Здесь плавающий затвор заряжается горячими" электронами (Channel Hot Electrons -- CHE), которые генерируются в канале транзистора. Эти электроны называют горячими потому, что они обладают высокой энергией, достаточной, чтобы преодолеть потенциальный барьер, создаваемый тонкой пленкой окиси кремния. Эффективность процесса программирования в данной конфигурации ячейки крайне низка. Чтобы довести дело до конца, приходится прибегать к высокому напряжению, ток между истоком и стоком достигает 1 mA. Высокие напряжения, длительное протекание сильных токов, обусловленные невысокой эффективностью, приводят к значительному снижению надежности и устойчивости памяти.

Схема внутричиповых соединений достаточно проста - каждая ячейка подключена как к линии слов, так и к линии битов. Фактически она находится на их пересечении, что вследствие наличия в схеме высокого напряжения приводит к значительному перерасходу места: линии истоков, битов и слов приходится располагать на достаточном удалении от других элементов схемы, чтобы обеспечить необходимый уровень изоляции.

Еще один существенный недостаток однотранзисторной ячейки - подверженность эффекту избыточного удаления (overerase). Иногда плавающая база из-за дефектов в слое окисла, образовавшихся при производстве чипа или впоследствии при его эксплуатации, теряет при стирании слишком много электронов, которые уже не может восполнить процесс программирования. В результате после нескольких циклов стирания начинает проявляться положительное электрическое поле плавающего затвора, что приводит транзистор в состояние "постоянно открыт" вне зависимости от напряжения на управляющем затворе. Происходит заземление стока на битовую линию. А это означает, что битовая линия будет всегда выдавать "1" или "0" (в зависимости от типа базовой логики -- NAND или NOR) и чтение других ячеек станет невозможным.

Помимо эффекта избыточного удаления, однотранзисторная память подвержена и всем прочим недостаткам, присущим flash-ячейкам. В основном, они связаны с нарушениями в окисном слое: медленное стекание заряда (slow leaking bits), вызывающее снижение скорости чтения и даже битовые ошибки; с другой стороны, захват заряда (накопление избыточного отрицательного заряда на плавающем затворе) приводят к ухудшению времени стирания и программирования. Нарушение слоя окисла в некоторых случаях влечет за собой появление "залипающих" битов (stuck bits) -- ячеек, быстро теряющих или, наоборот, не желающих ни при каких обстоятельствах уступать свой заряд. Утешает только, что в не очень запущенных случаях время "лечит" дефекты, возникающие после захвата заряда. Последний постепенно "рассасывается", и ячейка возвращается в свое нормальное состояние. Проблемы доставляет и группа эффектов, связанных с перекрестным влиянием операций чтения, стирания и программирования на соседние ячейки и целые области чипа.

Two Transistor Thin Oxide Cell

Рис. 3

Это двухтранзисторная ячейка с тонким слоем окисла. Второй транзистор позволяет избавиться от многих недостатков, присущих однотранзисторным ячейкам. Второй транзистор (рис. 3) используется для изоляции ячейки от битовой линии. Что ж, чрезмерные требования к производственному процессу и занимаемому ячейкой пространству компенсируются исчезновением проблем, связанных с избыточным удалением, когда одна ячейка блокирует работу всех остальных на общей битовой линии. Напряжения стирания и программирования несколько снижены за счет формирования небольшой зоны более тонкого слоя окиси кремния (8,5 нм). Ток программирования достигает всего 10 pA -- значительный шаг вперед по сравнению с вышеописанным типом ячейки (1 mA). В этом нет ничего удивительного -- в двухтранзисторной ячейке все операции с плавающим затвором основаны на эффекте туннелирования. Чтобы запрограммировать ячейку, отрицательное высокое напряжение подается на управляющий затвор (электроны туннелируют на плавающий затвор), а чтобы стереть -- положительное подается на сток (электроны туннелируют с плавающего затвора на сток).

Экономия в двухтранзисторной конфигурации достигается за счет общей линии слов: ячейки, принадлежащие одной линии, образуют страницу. Благодаря такой внутренней организации реализуется операция постраничной записи и чтения. Далее, несмотря на то, что на иллюстрациях оба транзистора выглядят одинаковыми по размеру, на самом деле это далеко не так. Размеры запоминающего транзистора диктуются необходимостью накопления на его плавающем затворе заряда необходимой величины. В то же время размеры дополнительного, изолирующего, транзистора ограничены только разрешением выбранной технологии производства.

SST Cell

Если предыдущие варианты реализации ячеек памяти EEPROM получили названия согласно своей физической сути, то имя SST является не чем иным, как аббревиатурой от Silicon Storage Technology. Технология была изобретена в этой компании, и она по праву решила увековечить себя хотя бы в наименовании ячейки.

Рис. 4

В сравнении с вышеописанными устройствами SST Cell выглядит более изящно (рис. 4). Как обычно, ячейки объединены вдоль линий слов (страницы) и линий бит (секторы). Ячейки, соединенные управляющими базами, образуют слова, ячейки, соединенные стоками, -- битовые линии. Пару слов (четные и нечетные биты), связанные общим истоком, называют страницей, которая удаляется как единый элемент. Страничная организация частично снимает вопрос перекрестного влияния операций удаления и программирования, ограничивая этот эффект пределами одной страницы.

Процесс удаления заключается в снятии с плавающего затвора отрицательного заряда за счет эффекта туннелирования Фаулера--Нордхейма между управляющей и плавающей базами. Во время удаления к управляющей базе (линия слова) прикладывается высокое напряжение (15 В), в то время как исток и сток ячейки заземляются. За счет выгнутой области у края плавающей базы образуются весьма благоприятные условия для туннелирования. Под воздействием сильного электрического поля электроны, составлявшие отрицательный заряд плавающего затвора, переносятся через тонкий слой диэлектрика-оксида на управляющую базу. В конце концов, на "истощенном" плавающем затворе формируется положительный заряд. Как видно из схемы ячейки, после выполнения операции удаления при подаче тестового напряжения на управляющий затвор (VREF) и 2 В на сток между стоком и истоком будет протекать ток, поскольку плавающая база создает вспомогательное, положительное поле, дополняющее "канал" управляющего затвора.

При программировании возникает обратная задача -- необходимо сообщить плавающей базе отрицательный заряд, своим полем преграждающий путь электронам от истока к стоку. Как и обычно, здесь применяется эффект горячих электронов. Сток заземляется, а к истоку прикладывают напряжение 12 В; на управляющий затвор подается напряжение VT, которое открывает часть канала составного транзистора вплоть до области, контролируемой плавающей базой. Высокое напряжение и мощное электрическое поле, возникающее между истоком и стоком, генерируют так называемые горячие тепловые электроны, обладающие высокой энергией, достаточной, чтобы преодолеть барьер 3,2 эВ, создаваемый оксидным изолирующим слоем, и присоединиться к заряду плавающей базы. Процесс останавливается естественным путем, когда емкость плавающей базы исчерпывается.

SST-память является абсолютным лидером по совокупности положительных качеств. Процесс производства ее прост - 14 масочных слоев против 19 или 21, требуемых для одно- и двухтранзисторных ячеек. Толстый слой окиси (40 нм) снижает вероятность возникновения утечки электронов. Страничная организация уменьшает эффект взаимовлияния при программировании и стирании. Поскольку канал управляется плавающим затвором лишь частично, о такой неприятной вещи, как чрезмерное стирание, можно забыть. Более того, особая форма плавающего затвора снижает требования к напряжению программирования и стирания, а также повышает скорость выполнения данных операций.

Два слова о будущем

И в конце этого небольшого обзора технологий упомянем новые разновидности flash-памяти, одну из которых недавно разработала корпорация Intel - StrataFlash. За счет технологии multilevel cell (MLC), аналога ML-ROM, она позволяет в каждой ячейке хранить два бита информации. Это достигается тем, что StrataFlash оперирует четырьмя уровнями заряда, кодирующими два бита. Уровень заряда определяет напряжение, которое необходимо приложить к управляющему затвору, чтобы открыть транзистор. Забавно, но в данном случае технология повторяет уже пройденный путь: когда-то в прошлом некоторые автоответчики снабжались flash-памятью, позволявшей при небольшом объеме записывать аудиофрагменты значительной длительности. Магия, достойная Гарри Поттера, на поверку оказалась обыкновенным фокусом: в ячейки записывался аналоговый, т. е., выражаясь модными ныне терминами, многоуровневый сигнал.

Intel первый, но не единственный игрок на рынке MLC. Вслед за корпорацией-первопроходцем технологию начали осваивать STMicroelectronics, SanDisk, Hynix, Samsung, Sharp и Toshiba. Помимо вышеперечисленных компаний, необходимо помнить об альянсе AMD (одного из крупнейших поставщиков flash-памяти) и Fujitsu, который обещает скорое появление альтернативы MLC для чипов NAND-типа (разработками занимается венчурная фирма FASL). Методика называется Mirror Bit и в корне отличается от многоуровневой ячейки Intel. В данном случае речь идет действительно о двух раздельно хранящихся битах. Еще одна мультибитовая технология является плодом усилий компании Saifun -- Nitrided ROM (NROM). Методика позволяет не только хранить по два бита в одной ячейке, но и упрощает процесс изготовления микросхем. В разработке участвуют Infineon и Hynix. Первый анонсированный чип будет иметь емкость 512 Mb.

Spansion представляет новую стратегию разработки продуктов MirrorBit™, предусматривающую выпуск чипов флэш-памяти объемом 8 Гбит на основе литографии с минимальным размером элемента в 65 нм.

Технология MirrorBit™ основной пункт стратегии, которая позволит Spansion занять лидирующее положения на рынке флэш-памяти

САННИВЭЙЛ. Spansion LLC - совместное предприятие компаний AMD и Fujitsu Limited по производству флэш-памяти - представила амбициозную трехлетнюю стратегию, включающую планы по увеличению объема чипов памяти, изготовленных по технологии MirrorBit™, до 8 Гбит на основе применения литографии с минимальным размером элементов в 65 нм. Это позволит удовлетворить растущий спрос со стороны потребителей флэш-памяти, которые производят различные продукты - от беспроводных гарнитур и встраиваемых систем до съемных карт и приводов, подключаемых через интерфейс USB. Кроме того, компания объявила о планах по разработке новой архитектуры флэш-памяти ORNAND™, которая позволит объединить преимущества исполнения логики NOR (НЕ-ИЛИ) и средств хранения данных NAND (логика НЕ-И) в рамках одного продукта, изготовленного по технологии MirrorBit.

Ожидается, что недавно объявленная стратегия Spansion в области разработки новых продуктов позволит расширить охват технологии MirrorBit. По этой технологии будут выпускаться разнообразные продукты, которые охватывают весь диапазон характеристик решений, востребованных на рынке флэш-памяти, включая плотность размещения, производительность, стоимость и надежность. Уже в начале 2005 г. Spansion планирует выпустить пробную партию первых в отрасли микросхем NOR объемом 1 Гбит, изготовленных по технологии 90 нм, и новые продукты для массового хранения данных, предназначенные для мобильных телефонов*. Как ожидается, с увеличением объема памяти до 8 Гбит, которое произойдет к 2007 г., линейка продуктов на основе технологии MirrorBit будет охватывать полный спектр решений, необходимых заказчикам Spansion.

Первые продукты Spansion на основе новой архитектуры ORNAND планируется выпустить в 2005 г. Скорость групповой записи этих продуктов будет почти в четыре раза превышать аналогичный показатель выпускаемых сегодня микросхем NAND. При этом новые продукты сохранят такие преимущества технологии MirrorBit NOR, как высокая надежность и скорость считывания, а также низкая стоимость. К 2007 г. Spansion планирует предложить полный пакет продуктов ORNAND с различным объемом памяти вплоть до 8 Гбит. В результате, Spansion ожидает, что продукты на основе технологии MirrorBit смогут принять участие в разделе 8,9 млрд. долл. - суммы, в которую оценивается ежегодный объем рынка средств хранения данных**. Ранее этот рынок в основном занимали продукты на основе логики NAND и транзисторов с плавающим затвором.

Технология MirrorBit является идеальным выбором для новых прикладных областей, выходящих за границы сфер применения традиционной памяти. Поскольку технология MirrorBit удобна с точки зрения логики, Spansion может интегрировать блоки логики в состав сверхбольших массивов флэш-памяти. Это фундаментальное преимущество позволяет Spansion создавать новые типы памяти на основе архитектуры ORNAND, которая обеспечивает интеграцию логических функций, таких, как криптографические процессоры и контроллеры памяти, с целью предоставления заказчикам более полезных и функциональных продуктов.

Великолепная технология Spansion MirrorBit представляет собой сравнительно простой, но в то же время действенный подход к совершенствованию флэш-памяти. Эта уникальная технология позволяет хранить в одной ячейке памяти два и даже большее число битов. Компания Spansion продемонстрировала способность памяти MirrorBit хранить вчетверо больший объем данных, представив рабочий прототип чипа QuadBit™ в своем самом современном центре разработки Submicron Development Center. Кроме того, Spansion располагает рабочим прототипом чипа, изготовленного по технологии MirrorBit с минимальным размером элементов 65 нм, наглядно показав возможность дальнейшего уменьшения геометрических размеров элементов.

Micron и Sun анонсировали флэш-память с миллионом циклов записи

Компания Micron Technology заявила, что в результате сотрудничества с Sun Microsystems ей удалось разработать технологию производства одноуровневых ячеек (single-level cell, SLC) NAND флэш-памяти, обладающих ресурсом в миллион циклов записи, что на порядок превышает характеристики памяти предыдущего поколения. Партнеры считают, что их достижения смогут преодолеть некоторое недоверие к твердотельным накопителям корпоративного уровня на базе NAND-флэш памяти, основывавшееся, прежде всего, на ограниченном количестве циклов записи-стирания, составлявшем для SLC-ячеек предыдущего поколения около 100 тыс.

В настоящее время Micron начала производство 32-Гбит чипов Enterprise NAND, а начало массового выпуска намечено на первый квартал 2009 г. Компания планирует также представить в начале следующего года версии NAND флэш-памяти корпоративного класса с SLC и MLC ячейками на базе 34-нм техпроцесса.

Магнитная flash-память на основе углеродных нанотрубок

Известно, что размеры углеродных нанотрубок сопоставимы с размерами молекул. Средний диаметр однослойной углеродной нанотрубки составляет около 1 нанометра. Если же удастся "заставить" одну нанотрубку хранить один бит информации, то память на их основе будет хранить колоссальные объемы информации, ведь современные ячейки flash-памяти, хранящие один бит информации, имеют размеры от 50 до 90 нанометров.

Ученые из Техасского университета уже довольно давно работают над проблемой создания flash-памяти на основе углеродных нанотрубок. Исследователи хотят добиться плотности хранения информации около 40 гигабит на квадратный сантиметр. Но и это еще не предел. Как утверждают исследователи, расположив нанотрубки в различных слоях памяти, можно создать трехмерный чип flash-памяти, который будет хранить до 1000 терабит информации в кубическом сантиметре. Для сравнения, 1 терабайт - это количество информации, которое можно записать на 26 DVD-дисках.

Архитектура flash-памяти на основе нанотрубок довольно проста: каждая ячейка памяти состоит из двух пересекающихся нанотрубок, содержащие внутри примеси железа, или помещенные в ферромагнитное окружение. Ученые собираются хранить информацию в нанотрубках, используя принцип магнитной записи, аналогичный тому, что применяется в компьютерных винчестерах. В роли носителя информации выступит матрица нанотрубок.

Рис. 1. Модель нанотрубки

Как говорит один из исследователей, Лазло Киш: ". В матрице нанотрубок каждое место их пересечения может хранить один бит информации".

Количество тока, протекающего через немагнитный слой, окруженный двумя намагниченными слоями, зависит от их магнитной ориентации в пространстве. Каждый электрон имеет свою магнитную ориентацию, поэтому слои, ориентированные согласно с электронами, не будут препятствовать протеканию тока, в то время как слои, ориентированные противоположно, будут препятствовать протеканию тока.

В нанопамяти роль слоев будут играть пересекающиеся нанотрубки, магнитную ориентацию которых можно будет менять с помощью электрических импульсов различной полярности. А считывать логическое состояние "1" или "0" будут более слабые электрические сигналы определенной полярности. Таким образом, если магнитная ориентация нанотрубок установлена противоположно посылаемому импульсу считывания, то по низкой величине тока импульса будет определяться значение "0". И наоборот - если магнитная ориентация нанотрубок совпадает с направлением электронов в импульсе, то амплитуда тока импульса будет соответствовать логической "1". Полученная память будет энергонезависимой, т.е. при снятии напряжения с устройства данные на чипе будут храниться.

Рис. 2. Матрица ячеек памяти из нанотрубок

Как мы говорили ранее, нанотрубки характеризуются довольно малыми размерами и хорошей проводимостью электричества. "Благодаря этим двум факторам можно сделать предположение, что готовый чип будет хранить достаточно много информации и потреблять при работе мало энергии. Также скорость чтения/записи будет высокой - до 1000 гигабит в секунду", - говорит Киш.

Однако память на основе нанотрубок - только проект. В этом году ученые планируют изготовить прототип одной ячейки хранения данных для того, чтобы узнать, при каком напряжении и в каких условиях будет работать новое наноустройство. Далее, собрав несколько элементов в трехмерный слой, исследователи хотят создать первый трехмерный чип памяти Как заявляет руководитель работ, профессор Аджаян, прототип рабочего трехмерного чипа будет готов уже через пять лет.

Однако известно, что потребовалось около 15 лет для того, чтобы создать интегральные компьютерные чипы, разработанные Нобелевским лауреатом Джеком Килби. Работа над элементами на основе нанотрубок находится в таком же зачаточном состоянии, как и изготовление первого транзистора, поэтому внедрения этой технологии в наноэлектронику придется подождать.

флэш память нанотрубка

Список источников:

1. Intel StartaFlash® Embedded Memory (P30) Datasheet. Order number 306666-001, April 2005.

2. Intel StrataFlash® Memory (J3) Datasheet, Order number 290667-021, March 2005.

3. 256M Ч 8 bit NAND Flash memory Datasheet, Rev. 0.2, Samsung, 2005.

2, 4 and 8 Mbit Ч 8/Ч 16 Multiplexed NAND Flash Memory Datasheet, Micron, 2005.

4. Increasing NAND Flashperformance, Using Micron® PAGE CACHE READE MODE, Technical Note 2901.

Размещено на Allbest.ru


Подобные документы

  • Характеристика флэш-памяти, особого вида энергонезависимой перезаписываемой полупроводниковой памяти. Исследование особенностей организации флэш-памяти. Общий принцип работы ячейки. Обзор основных типов карт памяти. Защита информации на флеш-накопителях.

    презентация [9,3 M], добавлен 12.12.2013

  • Проектирование микропроцессорного устройства для записи и чтения данных из памяти flash-типа и осуществления взаимодействия с персональным компьютером посредством универсальной последовательной шины (USB). Программное обеспечение для устройства.

    курсовая работа [868,3 K], добавлен 23.12.2012

  • Память персонального компьютера, виды и их характеристика. Классификация памяти компьютера. Кэш память как память с большей скоростью доступа, предназначенная для ускорения обращения к данным. Гибкие магнитные диски, CD-ROM, DVD-ROM и флэш-память.

    презентация [1,8 M], добавлен 15.11.2011

  • Обобщение основных видов и назначения оперативной памяти компьютера. Энергозависимая и энергонезависимая память. SRAM и DRAM. Триггеры, динамическое ОЗУ и его модификации. Кэш-память. Постоянное запоминающее устройство. Флэш-память. Виды внешней памяти.

    курсовая работа [1,7 M], добавлен 17.06.2013

  • История создания твердотельного накопителя на основе флэш-памяти. Назначение, область применения, плюсы и минусы устройств, перспективы их развития. Объем флэш-накопителей. Скорость обмена данными. Концепция компьютерной памяти на фазовых переходах.

    доклад [26,9 K], добавлен 04.11.2014

  • Назначение и разновидности постоянных запоминающих устройств (ПЗУ). Конструкция и виды полупроводниковых ПЗУ. История разработки и типы Flash-памяти, ее программирование и структурная организация. Характеристика современных стандартов карт памяти.

    презентация [933,6 K], добавлен 11.12.2013

  • Предназначение дисковых накопителей, схема устройства жесткого диска. Критерии эффективности физической организации файлов. Схема адресации кластеров файла, используемая в стандартной на сегодняшний день для UNIX файловой системе ufs. Функции флэш-памяти.

    реферат [4,0 M], добавлен 09.12.2009

  • Хранение различной информации как основное назначение памяти. Характеристика видов памяти. Память типа SRAM и DRAM. Кэш-память или сверхоперативная память, ее специфика и области применения. Последние новинки разработок в области в оперативной памяти.

    презентация [2,1 M], добавлен 01.12.2014

  • История появления "флешек". Устройство и технические характеристики USB-флеш-памяти, принцип ее действия, дополнительные опции и программное обеспечение, типы разъемов. Карты памяти, их виды и форматы. Способы организации записи информации в ячейку.

    реферат [439,2 K], добавлен 21.12.2010

  • Архитектура микроконтроллеров семейства Mega. Организация памяти. Способы адресации памяти данных. Энергонезависимая память данных. Таблица векторов прерываний. Счетчик команд и выполнение программы. Абсолютный вызов подпрограммы. Сторожевой таймер.

    дипломная работа [213,9 K], добавлен 02.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.