Геоинформационные системы в экологии
Характеристика информационных технологий, их влияние на человека и окружающую среду. Понятие о геоинформационной системе (ГИС), ее основные задачи и функции. Особенности программного обеспечения ГИС, их использование в экологии и природопользовании.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 12.12.2010 |
Размер файла | 28,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
Информационные системы
Понятие о Геоинформационной системе (ГИС)
Программное обеспечение ГИС
Геоинформационные системы в экологии
Проект МЭМОС
Список литературы
Введение
Информационные технологии служат прежде всего цели экономии ресурсов путем поиска и последующего использования информации для повышения эффективности человеческой деятельности. В настоящее время исследования по охране окружающей среды ведутся во всех областях науки и техники различными организациями и на различных уровнях, в том числе и на государственном. Однако информация по этим исследованиям характеризуется высокой рассеянностью.
Большие объемы экологической информации, данные многолетних наблюдений, новейшие разработки разбросаны по различным информационным базам или даже находятся на бумажных носителях в архивах, что не только затрудняет их поиск, использование, но и приводит к сомнению в достоверности данных и эффективном использовании средств, выделяемых на экологию из бюджета, иностранных фондов или коммерческими структурами.
Вторым моментом, обуславливающим необходимость информатизации, является проведение постоянного мониторинга за фактическим состоянием окружающей среды, уплатой налогов, проведением экологических мероприятий. Необходимость контроля возникла с принятием платы за загрязнение еще с 1992г, когда обнаружились такие проблемы, как переиндексация платежей в связи с инфляцией, неуплата за загрязнение воз уха, «уход» от экологических платежей, обусловленные отсутствием необходимой технической базы для своевременного контроля за исполнением норм закона.
Благодаря автоматизированным мониторинговым системам контроль за природоохранной деятельностью становится более эффективным, поскольку постоянное наблюдение позволяет не только следить за правильностью выполнения закона, но и вносить в него поправки соответственно фактическим условиям экологической и социально-экономической обстановки.
На рубеже двух тысячелетий проблема взаимоотношения человеческого общества с окружающей средой приобрела острый характер. За последние десятилетия возрос риск возникновения крупных экологических катастроф, вызываемых человеком и возникающих вследствие защитной реакции природы.
Природные и антропогенные экологические катастрофы имеют исторический аспект. Различные природные катастрофы, такие как наводнения и лесные пожары, существовали на протяжении всей истории нашей планеты. Однако с развитием современной цивилизации возникли катастрофы нового типа, включающие опустынивание, деградацию земельных ресурсов, пылевые бури, загрязнение Мирового океана и др. Начало XXI столетия остро ставит задачи оценки риска экологических катастроф, принятия мер по их предотвращению. Другими словами, актуальной стала задача управления экологическими катастрофами. А это возможно при наличии необходимого информационного обеспечения о прошлом, текущем и будущем состоянии объектов окружающей среды, включая природные, природно-техногенные и антропогенные системы.
Информационные системы
Современные информационные технологии предназначаются для поиска, обработки и распространения больших массивов данных, создания и эксплуатации различных информационных систем, содержащих базы и банки данных и знаний.
В широком смысле слова, информационная система - это система, некоторые элементы которой являются информационными объектами (тексты, графики, формулы, сайты, программы и пр.), а связи носят информационный характер.
Информационная система, понимаемая в более узком смысле, - это система, предназначенная для хранения информации в специальным образом организованной форме, снабженная средствами для выполнения процедур ввода, размещения, обработки, поиска и выдачи информации по запросам пользователей.
Важнейшими подсистемами автоматизированных информационных систем являются базы и банки данных, а также относящиеся к классу систем искусственного интеллекта экспертные системы. Отдельно следует рассмотреть геоинформационные системы, как одни из наиболее развитых глобальных АИС в экологии на данный момент.
Понятие о Геоинформационной системе (ГИС)
Геоинформационная система (ГИС) - это программно-аппаратный комплекс, решающий совокупность задач по хранению, отображению, обновлению и анализу пространственной и атрибутивной информации по объектам территории. Одна из основных функций ГИС - создание и использование компьютерных (электронных) карт, атласов и других картографических произведений. Берлянт А.М. Картография: Учебник для вузов. - М.: Аспект Пресс, 2001. - 336 с. Основой любой информационной системы служат данные. Данные в ГИС подразделяются на пространственные, семантические и метаданные. Пространственные данные - данные, описывающие местоположение объекта в пространстве. Например, координаты угловых точек здания, представленные в местной или любой другой системе координат. Семантические (атрибутивные) данные - данные о свойствах объекта. Например, адрес, кадастровый номер, этажность и прочие характеристики здания. Метаданные - данные о данных. Например, информация о том, кем, когда и с использованием какого исходного материала, в систему было внесено здание. Первые ГИС были созданы в Канаде, США и Швеции для изучения природных ресурсов в середине 1960-х годах, а сейчас в промышленно развитых странах существует тысячи ГИС, используемых в экономике, политике, экологии, управлении и охране природных ресурсов, кадастре, науке, образовании и т.д. Они интегрируют картографическую информацию, данные дистанционного зондирования и экологического мониторинга, статистику и переписи, гидрометеорологические наблюдения, экспедиционные материалы, результаты бурения и др. Структурно, муниципальная ГИС представляет собой централизованную базу данных пространственных объектов и инструмент, который предоставляет возможности хранения, анализа и обработки любой информации, связанной с тем или иным объектом ГИС, что сильно упрощает процесс использования информации об объектах городской территории заинтересованными службами и лицами. Также стоит отметить, что ГИС может быть (и должна) интегрирована с любой другой муниципальной информационной системой, использующей данные об объектах городской территории. Например, система автоматизации деятельности комитета по управлению муниципальным имуществом должна использовать в своей работе адресный план и карту земельных участков муниципальной ГИС. Также в ГИС могут храниться зоны, содержащие коэффициенты арендных ставок, которые могут использоваться при расчете арендной платы. В том случае, когда в городе используется централизованная муниципальная ГИС, все сотрудники ОМСУ и городских служб имеют возможность получать регламентированный доступ к актуальным данным ГИС, при этом затрачивая гораздо меньшее время на их поиск, анализ и обобщение. ГИС предназначены для решения научных и прикладных задач инвентаризации, анализа, оценки, прогноза и управления окружающей средой и территориальной организацией общества. Основу ГИС составляют автоматизированные картографические системы, а главными источниками информации служат различные геоизображения. Геоинформатика - наука, технология и производственная деятельность:
- по научному обоснованию, проектированию, созданию, эксплуатации и использованию географических информационных систем;
- по разработке геоинформационных технологий;
- по прикладным аспектам или приложениям ГИС для практических или геонаучных целей. Дьяченко Н.В. Использование ГИС-технологий
Программное обеспечение ГИС
Программные обеспечения ГИС делятся на пять основных используемых классов. Первый наиболее функционально полный класс программного обеспечения - это инструментальные ГИС. Они могут быть предназначены для самых разнообразных задач: для организации ввода информации (как картографической, так и атрибутивной), ее хранения (в том числе и распределенного, поддерживающего сетевую работу), отработки сложных информационных запросов, решения пространственных аналитических задач (коридоры, окружения, сетевые задачи и др.), построения производных карт и схем (оверлейные операции) и, наконец, для подготовки к выводу на твердый носитель оригинал-макетов картографической и схематической продукции. Как правило, инструментальные ГИС поддерживают работу, как с растровыми, так и с векторными изображениями, имеют встроенную базу данных для цифровой основы и атрибутивной информации или поддерживают для хранения атрибутивной информации одну из распространенных баз данных: Paradox, Access, Oracle и др. Наиболее развитые продукты имеют системы run time, позволяющие оптимизировать необходимые функциональные возможности под конкретную задачу и удешевить тиражирование созданных с их помощью справочных систем. Второй важный класс - так называемые ГИС-вьюверы, то есть программные продукты, обеспечивающие пользование созданными с помощью инструментальных ГИС базами данных. Как правило, ГИС-вьюверы предоставляют пользователю (если предоставляют вообще) крайне ограниченные возможности пополнения баз данных. Во все ГИС-вьюверы включается инструментарий запросов к базам данных, которые выполняют операции позицирования и зуммирования картографических изображений. Естественно, вьюверы всегда входят составной частью в средние и крупные проекты, позволяя сэкономить затраты на создание части рабочих мест, не наделенных правами пополнения базы данных. Третий класс - это справочные картографические системы (СКС). Они сочетают в себе хранение и большинство возможных видов визуализации пространственно распределенной информации, содержат механизмы запросов по картографической и атрибутивной информации, но при этом существенно ограничивают возможности пользователя по дополнению встроенных баз данных. Их обновление (актуализация) носит цикличный характер и производится обычно поставщиком СКС за дополнительную плату. Четвертый класс программного обеспечения - средства пространственного моделирования. Их задача - моделировать пространственное распределение различных параметров (рельефа, зон экологического загрязнения, участков затопления при строительстве плотин и другие). Они опираются на средства работы с матричными данными и снабжаются развитыми средствами визуализации. Типичным является наличие инструментария, позволяющего проводить самые разнообразные вычисления над пространственными данными (сложение, умножение, вычисление производных и другие операции).
Пятый класс, на котором стоит заострить внимание - это специальные средства обработки и дешифрирования данных зондирований земли. Сюда относятся пакеты обработки изображений, снабженные в зависимости от цены различным математическим аппаратом, позволяющим проводить операции со сканированными или записанными в цифровой форме снимками поверхности земли. Это довольно широкий набор операций, начиная со всех видов коррекций (оптической, геометрической) через географическую привязку снимков вплоть до обработки стереопар с выдачей результата в виде актуализированного топоплана. Кроме упомянутых классов существует еще разнообразные программные средства, манипулирующие с пространственной информацией. Это такие продукты, как средства обработки полевых геодезических наблюдений (пакеты, предусматривающие взаимодействие с GPS-приемниками, электронными тахометрами, нивелирами и другим автоматизированным геодезическим оборудованием), средства навигации и ПО для решения еще более узких предметных задач (изыскания, экология, гидрогеология и пр). Естественно, возможны и другие принципы классификации программного обеспечения: по сферам применения, по стоимости, поддержке определенным типом (или типами) операционных систем, по вычислительным платформам (ПК, рабочие Unix-станции) и т д. Стремительный рост количества потребителей ГИС-технологий за счет децентрализации расходования бюджетных средств и приобщения к ним все новых и новых предметных сфер их использования. Если до середины 90-х годов основной рост рынка был связан лишь с крупными проектами федерального уровня, то сегодня главный потенциал перемещается в сторону массового рынка. Это мировая тенденция: по данным исследовательской фирмы Daratech (США), мировой рынок ГИС для персональных компьютеров в настоящий момент в 121,5 раза опережает общий рост рынка ГИС-решений. Массовость рынка и возникающая конкуренция приводят к тому, что потребителю за ту же или меньшую цену предлагается все более качественный товар. Так, для ведущих поставщиков инструментальных ГИС стала уже правилом поставка вместе с системой и цифровой картографической основы того региона, где распространяется товар. Да и сама приведенная классификация ПО стала реальностью. Еще буквально два-три года назад функции автоматизированной векторизации и справочных систем можно было реализовать только с помощью развитых и дорогостоящих инструментальных ГИС (Arc/Info, Intergraph). Прогрессирующая тенденция к модульности систем, позволяющая оптимизировать затраты для конкретного проекта. Сегодня даже пакеты, обслуживающие какой-либо технологический этап, например векторизаторы, можно приобрести как в полном, так и в сокращенном наборе модулей, библиотек символов и т.п. Выход целого ряда отечественных разработок на "рыночный" уровень. Такие продукты, как GeoDraw / GeoGraph, Sinteks / Tri, GeoCAD, EasyTrace, обладают не только значительным количеством пользователей, но и имеют уже все атрибуты рыночного оформления и поддержки. В российской, геоинформатике есть некая критичная цифра работающих инсталляций - пятьдесят. Как только вы ее достигли, дальше есть только два пути: или резко вверх, наращивая число своих пользователей, либо - уход с рынка из-за невозможности обеспечить необходимую поддержку и развитие своему продукту. Интересно, что все упомянутые программы обслуживают нижний ценовой уровень; другими словами, в них найдено оптимальное соотношение между ценой и напором функциональных возможностей именно для российского рынка.
Геоинформационные системы в экологии и природопользовании
геоинформационная технология экология природопользование
Географические информационные системы (ГИС) появились в 60-х годах XX века как инструменты для отображения географии Земли и расположенных на ее поверхности объектов. Сейчас ГИС представляют собой сложные и многофункциональные инструменты для работы с данными о Земле.
Возможности, предоставляемые пользователю ГИС:
работа с картой (перемещение и масштабирование, удаление и добавление объектов);
печать в заданном виде любых объектов территории;
вывод на экран объектов определенного класса;
вывод атрибутивной информации об объекте;
обработка информации статистическими методами и отображение результатов такого анализа непосредственным наложением на карту
Так, с помощью ГИС специалисты могут оперативно спрогнозировать возможные места разрывов трубопроводы, проследить на карте пути распространения загрязнений и оценить вероятный ущерб для природной среды, вычислить объем средств, необходимых для устранения последствий аварии. С помощью ГИС можно отобрать промышленные предприятия, осуществляющие выбросы вредных веществ, отобразить розу ветров и грунтовые воды в окружающей их местности и смоделировать распространение выбросов в окружающей среде.
В 2004г. президиумом Российской академии наук было принято решение о проведении работ по программе «Электронная Земля», суть которой заключается в создании многопрофильной геоинформационной системы, характеризующей нашу планету, практически - цифровой модели Земли.
Зарубежные аналоги программы «Электронная Земля» можно подразделить на локальные (централизованные, данные хранят на одном сервере) и распределенные (данные хранятся и распространяются различными организациями на разных условиях).
Безусловным лидером в создании локальных баз данных является ESRI (Environmental Systems Research Institute, Inc., США) Сервер ArcAtlas “Our Earth” содержит более 40 тематических покрытий, которые широко используются во всем мире. Практически все картографические проекты масштаба 1:10 000 000 и более мелких масштабов создаются с его использованием.
Наиболее серьезным проектом по созданию распределенной базы данных является «Цифровая Земля» (Digital Earth). Этот проект был предложен вице-президентом США Гором в 1998г., основным исполнителем является NASA. В проекте участвуют министерства и государственные ведомства США, университеты, частные организации, Канада, Китай, Израиль и Европейский союз. Все проекты распределенных баз данных испытывают серьезные трудности в вопросах стандартизации метаданных и совместимости отдельных ГИС и проектов, созданных разными организациями с применением разного программного обеспечения.
Деятельность человека постоянно связана с накоплением информации об окружающей среде, ее отбором и хранением. Информационные системы, основное назначение которых - информационное обеспечение пользователя, то есть предоставление ему необходимых сведений по конкретной проблеме или вопросу, помогают человеку решать задачи быстрее и качественнее. При этом одни и те же данные могут использоваться при решении разных задач и наоборот. Любая информационная система предназначена для решения некоторого класса задач и включает в себя как хранилище данных, так и средства для реализации различных процедур.
Информационное обеспечение экологических исследований реализуется главным образом за счет двух информационных потоков:
информация, возникшая при проведении экологических исследований;
научно-техническая информация по мировому опыту разработки экологических проблем по различным направлениям.
Общей целью информационного обеспечения экологических исследований является изучение информационных потоков и подготовка материалов для принятия решений на всех уровнях управления в вопросах выполнения экологических исследований, обоснования отдельных научно-исследовательских работ, а также распределения финансирования.
Поскольку объектом описания и изучения является планета Земля, и экологическая информация имеет общие черты с геологической, то перспективно построение географических информационных систем для сбора, хранения и обработки фактографической и картографической информации:
о характере и степени экологических нарушений естественного и техногенного происхождения;
об общих экологических нарушениях естественного и техногенного происхождения;
об общих экологических нарушениях в определенной сфере человеческой деятельности;
о недроиспользовании;
об экономическом управлении определенной территорией.
Географические информационные системы рассчитаны, как правило, на установку и подключение большого количества автоматизированных рабочих мест, располагающих собственными базами данных и средствами вывода результатов. Экологи на автоматизированном рабочем месте на основе пространственно привязанной информации может решить задачи различного спектра:
анализ изменения окружающей среды под влиянием природных и техногенных факторов;
рациональное использование и охрана водных, земельных, атмосферных, минеральных и энергетических ресурсов;
снижение ущерба и предотвращение техногенных катастроф;
обеспечение безопасного проживания людей, охрана их здоровья.
Все потенциально экологически опасные объекты и сведения о них, о концентрации вредных веществ, допустимых нормах и т.д. сопровождаются географической, геоморфологической, ландшафтно-геохимической, гидрогеологической и другими типами информации. Рассеянность и нехватка информационных ресурсов в экологии легла в основу разработанных ИГЕМ РАН аналитических справочно-информационных систем (АСИС) по проектам в области экологии и охраны окружающей среды на территории Российской Федерации АСИС «ЭкоПро», а также разработка автоматизированной системы для Московской области, призванной осуществить ее экомониторинг. Разница задач обоих проектов обуславливается не только территориальными границами (в первом случае это территория всей страны, а во втором непосредственно Московская область), но и по областям применения информации. Система «ЭкоПро» предназначена для накопления, обработки и анализа данных об экологических проектах прикладного и исследовательского характера на территории РФ за иностранные деньги. Система мониторинга Московской области призвана служить источником информации об источниках и реальном загрязнении окружающей среды, предотвращения катастроф, экологических мероприятиях в области охраны окружающей среды, платежах предприятий на территории области в целях экономического управления и контроля со стороны государственных органов. Так как информация по природе своей обладает гибкостью, то можно сказать, что и та, и другая система, разработанная ИГЕМ РАК может использоваться как с целью проведения исследований, так и для управления. То есть задачи двух систем могут переходить одна в другую.
В качестве более частного примера базы данных, хранящей информацию по охране окружающей среды, можно привести работу О.С. Брюховецкого и И.П. Ганина «Проектирование базы данных по методам ликвидации локальных техногенных загрязнений в массивах горных пород». В ней рассматривается методология построения такой базы данных, дается характеристика оптимальных условий ее применения.
При оценке чрезвычайных ситуаций информационная подготовка занимает 30-60% времени, а информационные системы в состоянии быстро предоставить информацию и обеспечить нахождение эффективных методов урегулирования. В условиях чрезвычайной ситуации решения не могут быть смоделированы в явном виде, однако основой для их принятия может служить большой объем разнообразной информации, хранимой и передаваемой базой данных. По предоставленным результатам управленческий персонал на основе своего опыта и интуиции принимает конкретные решения.
Моделирование процессов принятия решений становится центральным направлением автоматизации деятельности лица, принимающего решения (ЛПР). К задачам ЛПР относится принятие решений в геоинформационной системе. Современную геоинформационную систему можно определить как совокупность аппаратно-программных средств, географических и семантических данных, предназначенную для получения, хранения, обработки, анализа и визуализации пространственно-распределенной информации. Экологические геоинформационные системы позволяют работать с картами различных экологических слоев и автоматически строить аномальную зону по заданному химическому элементу. Это достаточно удобно, так как эксперту-экологу не нужно в ручную рассчитывать аномальные зоны и производить их построение. Однако, для полного анализа экологической обстановки эксперту-экологу требуется распечатывать карты всех экологических слоев и карты аномальных зон для каждого химического элемента. Берштейн Л.С., Целых А.Н. Гибридная экспертная система с вычислительным модулем для прогноза экологических ситуаций. Труды международного симпозиума “Интеллектуальные системы - ИнСис - 96”, г.Москва, 1996г.В геоинформационной системе построение аномальных зон производилось для тридцати четырех химических элементов. Сначала он должен получить сводную карту загрязнения почвы химическими элементами. Для этого путем последовательного копирования на кальку со всех карт, строится карта загрязнения почвы химическими элементами Алексеенко В.А. Геохимия ландшафта и окружающая cреда. - М.:Недра, 1990. -142с.:ил.. Затем полученную карту таким же образом сопоставляют с картами гидрологии, геологии, геохимических ландшафтов, глин. На основании сопоставления строится карта качественной оценки опасности окружающей среды для человека. Таким образом осуществляется мониторинг окружающей среды. Этот процесс требует много времени и высокой квалификации эксперта, для того, чтобы точно и объективно оценить обстановку. При таком большом объеме информации, одновременно, обрушивающейся на эксперта могут возникать ошибки. Поэтому возникла необходимость в автоматизации процесса принятия решений. Для этого существующая геоинформационная система была дополнена подсистемой принятия решений. Особенностью разработанной подсистемы является то, что одна часть данных с которыми работает программа, представлена в виде карт. Другая часть данных обрабатывается и на их основе строится карта, которая затем также подлежит обработке. Для реализации системы принятия решений был избран аппарат теории нечетких множеств. Это вызвано тем, что с помощью нечетких множеств можно создавать методы и алгоритмы способные моделировать приемы принятия решений человеком в ходе решения различных задач. В качестве математической модели слабоформализованных задач выступают нечеткие алгоритмы управления, позволяющие получать решение хотя приближенные, но не худшие, чем при использовании точных методов. Под нечетким алгоритмом управлению будем понимать упорядоченную последовательность нечетких инструкций (могут иметь место и отдельные четкие инструкции), обеспечивающую функционирование некоторого объекта или процесса. Методы теории нечетких множеств позволяют, во-первых, учитывать различного рода неопределенности и неточности, вносимые субъектом и процессами управления, и формализовать словесную информацию человека о задаче; во-вторых, существенно уменьшить число исходных элементов модели процесса управления и извлечь полезную информацию для построения алгоритма управления. Сформулируем основные принципы построения нечетких алгоритмов. Нечеткие инструкции, используемые в нечетких алгоритмах, формируются или на основе обобщения опыта специалиста при решении рассматриваемой задачи, или на основе тщательного изучения и содержательного ее анализа. Для построения нечетких алгоритмов учитываются все ограничения и критерии, вытекающие из содержательного рассмотрения задачи, однако полученные нечеткие инструкции используются не все: выделяются наиболее существенные из них, исключаются возможные противоречия и устанавливается порядок их выполнения, приводящий к решению задачи. С учетом слабоформализованных задач существуют два способа получения исходных нечетких данных - непосредственный и как результат обработки четких данных. В основе обоих способов лежит необходимость субъективной оценки функций принадлежности нечетких множеств.
Логическая обработка данных проб почвы и построение сводной карты загрязнения почвы химическими элементами.
Программа являлась развитием уже существующей версии программы “ТагЭко”, дополняет существующую программу новыми функциями. Для работы новых функций необходимы данные содержащиеся в предыдущей версии программы. Этим обусловлено использование методов доступа к данным разработанных в предыдущей версии программы. Используется функция для получения информации, хранящейся в базе данных. Это необходимо для получения координат каждой точки пробы, хранящейся в базе данных. Также используется функция для расчета величины аномального содержания химического элемента в ландшафте. Таким образом через эти данные и эти функции происходит взаимодействие предыдущей программы с подсистемой принятия решений. В случае изменения в базе данных значения пробы или координат пробы это будет автоматически учитываться в подсистеме принятия решений. Необходимо отметить, что при программировании используется динамический стиль выделения памяти и данные хранятся в виде односвязных, либо двусвязных списков. Это обусловлено тем, что заранее неизвестно количество проб или количество участков поверхности на которые будет разбита карта.
Построение карты качественной оценки влияния окружающей среды на человека.
Построение карты происходит согласно алгоритму, описанному выше. Пользователь указывает интересующую его область, а также шаг с которым будет производиться анализ карт. Перед началом обработки данных производится считывание информации из WMF файлов и формирование списков, элементами которых являются указатели на полигоны. Для каждой карты составляется свой список. Затем после формирования списков полигонов производится формирование карты загрязнения почвы химическими элементами. По окончании формирования всех карт и ввода исходных данных формируются координаты точек, в которых будет производиться анализ карт. Данные, получаемые функциями опроса заносятся в специальную структуру. Завершив формирование структуры программа производит ее классификацию. Каждая точка сетки опроса получает номер эталонной ситуации. Этот номер с указанием номера точки заносится в двусвязный список, чтобы потом можно было бы построить карту графически. Специальная функция анализирует этот двусвязный список и производит графическое построение изолиний вокруг точек, имеющих одинаковые классификационные ситуации. Она считывает точку из списка и анализирует значение номера ее ситуации с номерами соседних точек, и в случае совпадения объединяет рядом расположенные точки в зоны. В результате работы программы вся территория г.
Таганрога окрашивается в один из трех цветов. Каждый цвет характеризует качественную оценку экологической обстановки в городе. Так красный цвет указывает на “особо опасные участки”, желтый на “опасные участки”, зеленый на “безопасные участки”. Таким образом информация представляется в доступной для пользователя и удобной для восприятия форме. Берштейн Л.С., Целых А.Н. Гибридная экспертная система с вычислительным модулем для прогноза экологических ситуаций. Труды международного симпозиума “Интеллектуальные системы - ИнСис - 96”, г.Москва, 1996г.
Проект МЭМОС
На государственном уровне возникла необходимость организовать цельную систему, которая позволила бы объединить в себе параметры окружающей среды и показатели здоровья населения, проанализировать и представить лицам, принимающим управленческие решения, возможные варианты совершенствования системы. Цель такой сложной системы очевидна и проста -- это улучшение состояния человеческого здоровья путем снижения влияния негативных факторов окружающей среды. Такая система мониторинга вводиться сейчас в РФ на региональных уровнях. Это система социально-гигиенического мониторинга. Функциональные возможности географических информационных систем (ГИС) и их экономическая эффективность позволяют объединить в себе некоторые блоки системы социально-гигиенического мониторинга. Таким представляется наиболее «экономичный» и, в то же время эффективный и реализуемый вариант системы на примере выделения одного компонента среды (атмосферы). Ее название Система медико-эпидемиологического мониторинга окружающей среды (МЭМОС).
Цель проекта: на основе постоянно собираемой информации о факторах среды и здоровья, разработка и внедрение комплексной системы представления данных и оценки риска здоровью, его экономического обоснования и управления инвестициями, позволяющая поддерживать устойчивое экономическое развитие на основе медико-экологического благополучия.
Задачи МЭМОС:
формирование экологического и социально-гигиенического мониторинга;
расчет риска здоровью населения от ведущих факторов среды;
прогнозирование состояния здоровья населения на перспективу;
обоснование выбора ведущих (определяющих) факторов здоровья населения;
построение организационно-методической и правовой систем управления здоровьем населения;
формирование экономических механизмов поддержания устойчивого развития региона на основе медико-экологического благополучия.
Система МЭМОС имеет ряд существенных преимуществ. Она дает возможность лицам, принимающим решения:
оценить стоимость затрат на здравоохранение, связанных с отрицательным воздействием на здоровье конкретного фактора;
выполнить прогноз государственных затрат на здравоохранение, связанных с воздействием одного или нескольких факторов;
обосновать материальный иск граждан на ущерб здоровью, связанный с вредным воздействием факторов среды обитания;
в рамках существующей правовой системы создать возможности экономической защиты граждан в связи с влиянием окружающей среды.
Рисунок 1. Блок-схема системы МЭМОС
Целевой функцией системы МЭМОС является принятие решений о корректировке деятельности государственных и негосударственных учреждений здравоохранения и предприятий с учетом выявленных экологически неблагоприятных зон с повышенными рисками для здоровья населения этих районов. Применение и внедрение МЭМОС в области здравоохранения более предпочтительно и реально по сравнению с разработкой социально-гигиенического мониторинга. Главное обоснование этому является применение одного унифицированного и, в то же время, «настроенного» на данную отрасль программного продукта на основе современных ГИС-технологий. В этом видится ее экономически более выгодная реализация по сравнению с реализацией Системы социально-гигиенического мониторинга, т.к. МЭМОС использует минимум технических и людских ресурсов и является целевой системой, призванной решать конкретные задачи обработки, представления и анализа медицинских и экологических данных. Функциональные возможности ГИС и их экономическая эффективность позволяют объединить в себе некоторые блоки системы социально-гигиенического мониторинга. ГИС МЭМОС дает возможность получения результатов в кратчайшие сроки в дружественном виде, что приводит к принятию соответствующими лицами эффективных решений в условиях больших неопределенностей, связанных с самими сложными объектами исследований (население, компоненты окружающей среды), с одной стороны. А с другой стороны, результатом является получение достоверных результатов и их доступное, понятное представление для последующего принятия решений в жестко ограниченной финансовой и временной среде. Система МЭМОС призвана также объединить усилия специалистов различного профиля из различных государственных структур владеющих разнородной информацией (экологической, медицинской, социальной) для реализации главной задачи -- оздоровления окружающей среды и профилактики здоровья населения крупных мегаполисов. www.gisa.ru Проект системы медико-экологического мониторинга окружающей среды на базе ГИС. Д.Р. Струков. 10.03 2005
Вывод
ГИС реализуют задачу в целях диагностики и обеспечения сохранности здоровья человека и окружающей среды.
Влияние информационных технологий на человека и окружающую среду носит двунаправленный характер. С одной стороны, информационные технологии - это один из наиболее перспективных инструментов сбора данных и научного познания, в том числе в медицине и экологии. С другой - это важный фактор, влияющий на здоровье человека и окружающую среду.
Несмотря на эти препятствия, информационные технологии получают все более широкое распространение в сферах медицины и экологии. На данный момент разработаны общие принципы и структуры глобальных информационных систем, решающих проблемы охраны здоровья человека и окружающей среды. Однако потенциал в данной области намного превышает наши возможности.
Необходимо решить, кто обладает достаточными административными и финансовыми ресурсами для реализации подобных систем. Российская академия наук обладает рядом преимуществ перед зарубежными организациями в силу своей централизованности, способствующей решению проблем начального этапа (стандартизация и структурирование информации). Но это только стартовое преимущество. Вскоре после старта решающую роль начнут играть финансы и менеджмент проекта, а это не самые сильные наши стороны.
Список литературы
1) Берлянт А.М. Картография: Учебник для вузов. - М.: Аспект Пресс, 2001. - 336 с.
2) www.gisa.ru Проект системы медико-экологического мониторинга окружающей среды на базе ГИС. Д.Р. Струков.
3) Берштейн Л.С., Целых А.Н. Гибридная экспертная система с вычислительным модулем для прогноза экологических ситуаций. Труды международного симпозиума “Интеллектуальные системы - ИнСис - 96”, г.Москва, 1996г.
4) Алексеенко В.А. Геохимия ландшафта и окружающая cреда. - М.:Недра, 1990. -142с.:ил.
5) http: // www. gis. su
6) Дьяченко Н.В. Использование ГИС-технологий
Размещено на Allbest.ru
Подобные документы
Понятие геоинформационной системы, ее связь с научными дисциплинами и технологиями. Основные направления и использование ГИС в современном обществе. Растровая и векторная модели пространственных данных. Топологическое представление векторных объектов.
курсовая работа [4,0 M], добавлен 26.04.2015Теоритические аспекты информационных технологий на предприятиях. Системы, используемые в информационных технологиях. Особенности применения информационных технологий в маркетинговой деятельности. Влияние информационных технологий на туристическую отрасль.
курсовая работа [498,9 K], добавлен 29.10.2014Использование геоинформационных систем в здравоохранении. Создание ГИС-технологии изучения генетических процессов, происходящих в генофонде народов России. Характеристика и информационная безопасность мобильной геоинформационной системы "ArcPad".
курсовая работа [1,5 M], добавлен 04.03.2014Реализация задачи использования методики SDLC (управление жизненным циклом разработки программного обеспечения) при внедрении реальной системы информационных технологий. Описание проекта внедрения системы автоматической регистрации участников выставок.
реферат [585,1 K], добавлен 10.09.2010Разработка программного обеспечения для управления базой данных. Место задачи в системе автоматизации. Семантическое моделирование данных. Разработка программного обеспечения и базы данных. Расчет трудоемкости и себестоимости этапов проектирования.
дипломная работа [2,9 M], добавлен 04.02.2016История возникновения тестирования программного обеспечения, основные цели и особенности его проведения. Виды и типы тестирования, уровни его автоматизации. Использование и исследование необходимых технологий. Полный цикл прогона всей системы мониторинга.
дипломная работа [1,7 M], добавлен 03.05.2018Основные черты современных информационных технологий и компьютерной обработки информации. Структура экономической системы с позиции кибернетики. Ключевые функции системы управления: планирование, учет, анализ. Классификация информационных технологий.
контрольная работа [45,9 K], добавлен 04.10.2011Понятие программного обеспечения, вопросы его разработки и использования. Общая характеристика системного программного обеспечения и работа операционной системы. Специфика процесса управления разработкой программного обеспечения и его особенности.
курсовая работа [636,2 K], добавлен 23.08.2011Понятие и общая характеристика дистанционных информационных систем, их основные функции и задачи. Разработка ДИС для IT-компании Envisionext и проектирование компьютерной системы, объединяющей 20 рабочих станций. Обзор сайтов конкурентов данной компании.
курсовая работа [1,8 M], добавлен 24.09.2012Понятие информационных технологий, история их становления. Цели развития и функционирования информационных технологий, характеристика применяемых средств и методов. Место информационного и программного продукта в системе информационного кругооборота.
реферат [318,9 K], добавлен 20.05.2014