Сжатие графической информации

Изучение классов изображений, подразделяющихся на две группы - с палитрой и без нее. Параметры изображений с палитрой, у которых в пикселе хранится число-индекс в некотором одномерном векторе цветов, называемое палитрой. Алгоритмы сжатия без потерь.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 09.11.2010
Размер файла 72,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

СЖАТИЕ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ

1. Классы изображений

Все изображения можно подразделить на две группы -- с палитрой и без нее. У изображений с палитрой в пикселе хранится число -- индекс в некотором одномерном векторе цветов, называемом палитрой.

Чаще всего встречаются палитры из 16 и 256 цветов.

Изображения без палитры бывают в какой-либо системе цветопредставления и в градациях серого (grayscale).

Самой распространенной является система RGB. Существуют и другие системы цветопредставления, такие, как CMYK, YUV и т.п.

Для того, чтобы корректнее оценивать степень сжатия, нужно ввести понятие класса изображений. Под классом будет пониматься некая совокупность изображений, применение к которым алгоритма архивации дает качественно одинаковые результаты. Например, для одного класса алгоритм дает очень высокую степень сжатия, для другого -- почти не сжимает, для третьего -- увеличивает файл в размере.

Рассмотрим следующие примеры неформального определения классов изображений:

1. Класс 1. Изображения с небольшим количеством цветов (4-16) и большими областями, заполненными одним цветом. Плавные переходы цветов отсутствуют. Примеры: деловая графика -- гистограммы, диаграммы, графики и т.п.

2. Класс 2. Изображения, с плавными переходами цветов, построенные на компьютере. Примеры: графика презентаций, эскизные модели в САПР, изображения, построенные по методу Гуро.

3. Класс 3. Фотореалистичные изображения. Пример: отсканированные фотографии.

4. Класс 4. Фотореалистичные изображения с наложением деловой графики. Пример: реклама.

Достаточно сложной и интересной задачей является поиск наилучшего алгоритма для конкретного класса изображений.

Нет смысла говорить о том, что какой-то алгоритм сжатия лучше другого, если мы не обозначили классы изображений, на которых сравниваются наши алгоритмы.

2. Алгоритмы сжатия без потерь

2.1 Алгоритм RLE

Первый вариант алгоритма

Данный алгоритм необычайно прост в реализации. Групповое кодирование -- от английского Run Length Encoding (RLE) -- один из самых старых и самых простых алгоритмов архивации графики. Изображение в нем (как и в нескольких алгоритмах, описанных ниже) вытягивается в цепочку байт по строкам растра. Само сжатие в RLE происходит за счет того, что в исходном изображении встречаются цепочки одинаковых байт. Замена их на пары <счетчик повторений, значение> уменьшает избыточность данных.

В данном алгоритме признаком счетчика (counter) служат единицы в двух верхних битах считанного файла:

Соответственно оставшиеся 6 бит расходуются на счетчик, который может принимать значения от 1 до 64. Строку из 64 повторяющихся байтов мы превращаем в два байта, т.е. сожмем в 32 раза.

Алгоритм рассчитан на деловую графику -- изображения с большими областями повторяющегося цвета. Ситуация, когда файл увеличивается, для этого простого алгоритма не так уж редка. Ее можно легко получить, применяя групповое кодирование к обработанным цветным фотографиям. Для того, чтобы увеличить изображение в два раза, его надо применить к изображению, в котором значения всех пикселов больше двоичного 11000000 и подряд попарно не повторяются.

Данный алгоритм реализован в формате PCX.

Второй вариант алгоритма

Второй вариант этого алгоритма имеет больший максимальный коэффициент архивации и меньше увеличивает в размерах исходный файл.

Признаком повтора в данном алгоритме является единица в старшем разряде соответствующего байта:

Как можно легко подсчитать, в лучшем случае этот алгоритм сжимает файл в 64 раза (а не в 32 раза, как в предыдущем варианте), в худшем увеличивает на 1/128. Средние показатели степени компрессии данного алгоритма находятся на уровне показателей первого варианта.

Похожие схемы компрессии использованы в качестве одного из алгоритмов, поддерживаемых форматом TIFF, а также в формате TGA.

Характеристики алгоритма RLE:

- Коэффициенты компрессии: Первый вариант: 32, 2, 0,5. Второй вариант: 64, 3, 128/129. (Лучший, средний, худший коэффициенты)

- Класс изображений: Ориентирован алгоритм на изображения с небольшим количеством цветов: деловую и научную графику.

- Симметричность: Примерно единица.

- Характерные особенности: К положительным сторонам алгоритма, пожалуй, можно отнести только то, что он не требует дополнительной памяти при архивации и разархивации, а также быстро работает. Интересная особенность группового кодирования состоит в том, что степень архивации для некоторых изображений может быть существенно повышена всего лишь за счет изменения порядка цветов в палитре изображения.

2.2 Алгоритм LZW

Название алгоритм получил по первым буквам фамилий его разработчиков -- Lempel, Ziv и Welch. Сжатие в нем, в отличие от RLE, осуществляется уже за счет одинаковых цепочек байт.

2.2.1 Алгоритм LZ

Существует довольно большое семейство LZ-подобных алгоритмов, различающихся, например, методом поиска повторяющихся цепочек. Один из достаточно простых вариантов этого алгоритма, например, предполагает, что во входном потоке идет либо пара <счетчик, смещение относительно текущей позиции>, либо просто <счетчик> “пропускаемых” байт и сами значения байтов (как во втором варианте алгоритма RLE). При разархивации для пары <счетчик, смещение> копируются <счетчик> байт из выходного массива, полученного в результате разархивации, на <смещение> байт раньше, а <счетчик> (т.е. число равное счетчику) значений “пропускаемых” байт просто копируются в выходной массив из входного потока. Данный алгоритм является несимметричным по времени, поскольку требует полного перебора буфера при поиске одинаковых подстрок. В результате нам сложно задать большой буфер из-за резкого возрастания времени компрессии. Однако потенциально построение алгоритма, в котором на <счетчик> и на <смещение> будет выделено по 2 байта (старший бит старшего байта счетчика -- признак повтора строки / копирования потока), даст нам возможность сжимать все повторяющиеся подстроки размером до 32Кб в буфере размером 64Кб.

При этом мы получим увеличение размера файла в худшем случае на 32770/32768 (в двух байтах записано, что нужно переписать в выходной поток следующие 215 байт), что совсем неплохо. Максимальный коэффициент сжатия составит в пределе 8192 раза. В пределе, поскольку максимальное сжатие мы получаем, превращая 32Кб буфера в 4 байта, а буфер такого размера мы накопим не сразу. Однако, минимальная подстрока, для которой нам выгодно проводить сжатие, должна состоять в общем случае минимум из 5 байт, что и определяет малую ценность данного алгоритма. К достоинствам LZ можно отнести чрезвычайную простоту алгоритма декомпрессии.

2.2.2 Алгоритм LZW

Рассматриваемый нами ниже вариант алгоритма будет использовать дерево для представления и хранения цепочек. Очевидно, что это достаточно сильное ограничение на вид цепочек, и далеко не все одинаковые подцепочки в нашем изображении будут использованы при сжатии. Однако в предлагаемом алгоритме выгодно сжимать даже цепочки, состоящие из 2 байт.

Процесс сжатия выглядит достаточно просто. Мы считываем последовательно символы входного потока и проверяем, есть ли в созданной нами таблице строк такая строка. Если строка есть, то мы считываем следующий символ, а если строки нет, то мы заносим в поток код для предыдущей найденной строки, заносим строку в таблицу и начинаем поиск снова.

Пример:

Пусть мы сжимаем последовательность 45, 55, 55, 151, 55, 55, 55. Тогда, согласно изложенному выше алгоритму, мы поместим в выходной поток сначала код очистки <256>, потом добавим к изначально пустой строке “45” и проверим, есть ли строка “45” в таблице. Поскольку мы при инициализации занесли в таблицу все строки из одного символа, то строка “45” есть в таблице. Далее мы читаем следующий символ 55 из входного потока и проверяем, есть ли строка “45, 55” в таблице. Такой строки в таблице пока нет. Мы заносим в таблицу строку “45, 55” (с первым свободным кодом 258) и записываем в поток код <45>. Можно коротко представить архивацию так:

· “45” -- есть в таблице;

· “45, 55” -- нет. Добавляем в таблицу <258>“45, 55”. В поток: <45>;

· “55, 55” -- нет. В таблицу: <259>“55, 55”. В поток: <55>;

· “55, 151” -- нет. В таблицу: <260>“55, 151”. В поток: <55>;

· “151, 55” -- нет. В таблицу: <261>“151, 55”. В поток: <151>;

· “55, 55” -- есть в таблице;

· “55, 55, 55” -- нет. В таблицу: “55, 55, 55” <262>. В поток: <259>;

Последовательность кодов для данного примера, попадающих в выходной поток: <256>, <45>, <55>, <55>, <151>, <259>.

Особенность LZW заключается в том, что для декомпрессии нам не надо сохранять таблицу строк в файл для распаковки. Алгоритм построен таким образом, что мы в состоянии восстановить таблицу строк, пользуясь только потоком кодов.

Мы знаем, что для каждого кода надо добавлять в таблицу строку, состоящую из уже присутствующей там строки и символа, с которого начинается следующая строка в потоке.

Подсчитаем лучший и худший коэффициенты компрессии для данного алгоритма. Лучший коэффициент, очевидно, будет получен для цепочки одинаковых байт большой длины (т.е. для 8-битного изображения, все точки которого имеют, для определенности, цвет 0). При этом в 258 строку таблицы мы запишем строку “0, 0”, в 259 -- “0, 0, 0”, ... в 4095 -- строку из 3839 (=4095-256) нулей. При этом в поток попадет (проверьте по алгоритму!) 3840 кодов, включая код очистки. Следовательно, посчитав сумму арифметической прогрессии от 2 до 3839 (т.е. длину сжатой цепочки) и поделив ее на 3840*12/8 (в поток записываются 12-битные коды), мы получим лучший коэффициент компрессии.

Худший коэффициент будет получен, если мы ни разу не встретим подстроку, которая уже есть в таблице (в ней не должно встретиться ни одной одинаковой пары символов).

В случае, если мы постоянно будем встречать новую подстроку, мы запишем в выходной поток 3840 кодов, которым будет соответствовать строка из 3838 символов. Без учета замечания 1 это составит увеличение файла почти в 1.5 раза.

LZW реализован в форматах GIF и TIFF.

Характеристики алгоритма LZW:

- Коэффициенты компрессии: Примерно 1000, 4, 5/7 (Лучший, средний, худший коэффициенты). Сжатие в 1000 раз достигается только на одноцветных изображениях размером кратным примерно 7 Мб.

- Класс изображений: Ориентирован LZW на 8-битные изображения, построенные на компьютере. Сжимает за счет одинаковых подцепочек в потоке.

- Симметричность: Почти симметричен, при условии оптимальной реализации операции поиска строки в таблице.

- Характерные особенности: Ситуация, когда алгоритм увеличивает изображение, встречается крайне редко. LZW универсален -- именно его варианты используются в обычных архиваторах.

2.3 Алгоритм Хаффмана

Один из классических алгоритмов, известных с 60-х годов. Использует только частоту появления одинаковых байт в изображении. Сопоставляет символам входного потока, которые встречаются большее число раз, цепочку бит меньшей длины. И, напротив, встречающимся редко -- цепочку большей длины. Для сбора статистики требует двух проходов по изображению.

Как стало понятно из изложенного выше, классический алгоритм Хаффмана требует записи в файл таблицы соответствия кодируемых символов и кодирующих цепочек.

На практике используются его разновидности. Так, в некоторых случаях резонно либо использовать постоянную таблицу, либо строить ее “адаптивно”, т.е. в процессе архивации/разархивации. Эти приемы избавляют нас от двух проходов по изображению и необходимости хранения таблицы вместе с файлом.

2.4 Алгоритм JPEG

JPEG -- один из самых новых и достаточно мощных алгоритмов. Практически он является стандартом де-факто для полноцветных изображений. Оперирует алгоритм областями 8х8, на которых яркость и цвет меняются сравнительно плавно. Вследствие этого, при разложении матрицы такой области в двойной ряд по косинусам (см. формулы ниже) значимыми оказываются только первые коэффициенты. Таким образом, сжатие в JPEG осуществляется за счет плавности изменения цветов в изображении.

Алгоритм разработан группой экспертов в области фотографии специально для сжатия 24-битных изображений. JPEG -- Joint Photographic Expert Group -- подразделение в рамках ISO -- Международной организации по стандартизации. Название алгоритма читается ['jei'peg]. В целом алгоритм основан на дискретном косинусоидальном преобразовании (в дальнейшем ДКП), применяемом к матрице изображения для получения некоторой новой матрицы коэффициентов. Для получения исходного изображения применяется обратное преобразование.

ДКП раскладывает изображение по амплитудам некоторых частот. Таким образом, при преобразовании мы получаем матрицу, в которой многие коэффициенты либо близки, либо равны нулю. Кроме того, благодаря несовершенству человеческого зрения, можно аппроксимировать коэффициенты более грубо без заметной потери качества изображения.

Для этого используется квантование коэффициентов (quantization). В самом простом случае -- это арифметический побитовый сдвиг вправо. При этом преобразовании теряется часть информации, но могут достигаться большие коэффициенты сжатия.

Итак, рассмотрим алгоритм подробнее. Пусть мы сжимаем 24-битное изображение.

Шаг 1.

Переводим изображение из цветового пространства RGB, с компонентами, отвечающими за красную (Red), зеленую (Green) и синюю (Blue) составляющие цвета точки, в цветовое пространство YCrCb (иногда называют YUV).

В нем Y -- яркостная составляющая, а Cr, Cb -- компоненты, отвечающие за цвет (хроматический красный и хроматический синий). За счет того, что человеческий глаз менее чувствителен к цвету, чем к яркости, появляется возможность архивировать массивы для Cr и Cb компонент с большими потерями и, соответственно, большими коэффициентами сжатия. Подобное преобразование уже давно используется в телевидении. На сигналы, отвечающие за цвет, там выделяется более узкая полоса частот.

Упрощенно перевод из цветового пространства RGB в цветовое пространство YCrCb можно представить с помощью матрицы перехода:

Обратное преобразование осуществляется умножением вектора YUV на обратную матрицу.

Шаг 2.

Разбиваем исходное изображение на матрицы 8х8. Формируем из каждой три рабочие матрицы ДКП -- по 8 бит отдельно для каждой компоненты. При больших коэффициентах сжатия этот шаг может выполняться чуть сложнее. Изображение делится по компоненте Y -- как и в первом случае, а для компонент Cr и Cb матрицы набираются через строчку и через столбец. Т.е. из исходной матрицы размером 16x16 получается только одна рабочая матрица ДКП. При этом, как нетрудно заметить, мы теряем 3/4 полезной информации о цветовых составляющих изображения и получаем сразу сжатие в два раза. Мы можем поступать так благодаря работе в пространстве YCrCb. На результирующем RGB изображении, как показала практика, это сказывается несильно.

Шаг 3.

Применяем ДКП к каждой рабочей матрице. При этом мы получаем матрицу, в которой коэффициенты в левом верхнем углу соответствуют низкочастотной составляющей изображения, а в правом нижнем -- высокочастотной.

В упрощенном виде это преобразование можно представить так:

где

Шаг 4.

Производим квантование. В принципе, это просто деление рабочей матрицы на матрицу квантования поэлементно. Для каждой компоненты (Y, U и V), в общем случае, задается своя матрица квантования q[u,v] (далее МК).

На этом шаге осуществляется управление степенью сжатия, и происходят самые большие потери. Понятно, что, задавая МК с большими коэффициентами, мы получим больше нулей и, следовательно, большую степень сжатия.

В стандарт JPEG включены рекомендованные МК, построенные опытным путем. Матрицы для большего или меньшего коэффициентов сжатия получают путем умножения исходной матрицы на некоторое число gamma.

С квантованием связаны и специфические эффекты алгоритма. При больших значениях коэффициента gamma потери в низких частотах могут быть настолько велики, что изображение распадется на квадраты 8х8. Потери в высоких частотах могут проявиться в так называемом “эффекте Гиббса”, когда вокруг контуров с резким переходом цвета образуется своеобразный “нимб”.

Шаг 5.

Переводим матрицу 8x8 в 64-элементный вектор при помощи “зигзаг”-сканирования, т.е. берем элементы с индексами (0,0), (0,1), (1,0), (2,0)...

Таким образом, в начале вектора мы получаем коэффициенты матрицы, соответствующие низким частотам, а в конце -- высоким.

Шаг 6.

Свертываем вектор с помощью алгоритма группового кодирования. При этом получаем пары типа (пропустить, число), где “пропустить” является счетчиком пропускаемых нулей, а “число” -- значение, которое необходимо поставить в следующую ячейку. Так, вектор 42 3 0 0 0 -2 0 0 0 0 1 ... будет свернут в пары (0,42) (0,3) (3,-2) (4,1) ... .

Шаг 7.

Свертываем получившиеся пары кодированием по Хаффману с фиксированной таблицей.

Процесс восстановления изображения в этом алгоритме полностью симметричен. Метод позволяет сжимать некоторые изображения в 10-15 раз без серьезных потерь.

Рис. Конвейер операций, используемый в алгоритме JPEG.

Существенными положительными сторонами алгоритма является то, что:

1. Задается степень сжатия.

2. Выходное цветное изображение может иметь 24 бита на точку.

Отрицательными сторонами алгоритма является то, что:

1. При повышении степени сжатия изображение распадается на отдельные квадраты (8x8). Это связано с тем, что происходят большие потери в низких частотах при квантовании, и восстановить исходные данные становится невозможно.

2. Проявляется эффект Гиббса -- ореолы по границам резких переходов цветов.

Как уже говорилось, стандартизован JPEG относительно недавно -- в 1991 году. Но уже тогда существовали алгоритмы, сжимающие сильнее при меньших потерях качества. Дело в том, что действия разработчиков стандарта были ограничены мощностью существовавшей на тот момент техники. То есть даже на персональном компьютере алгоритм должен был работать меньше минуты на среднем изображении, а его аппаратная реализация должна быть относительно простой и дешевой. Алгоритм должен был быть симметричным (время разархивации примерно равно времени архивации).

Последнее требование сделало возможным появление таких игрушек, как цифровые фотоаппараты -- устройства, размером с небольшую видеокамеру, снимающие 24-битовые фотографии на 10-20 Мб флэш карту с интерфейсом PCMCIA. Потом эта карта вставляется в разъем на вашем лэптопе и соответствующая программа позволяет считать изображения. Не правда ли, если бы алгоритм был несимметричен, было бы неприятно долго ждать, пока аппарат “перезарядится” -- сожмет изображение.

Не очень приятным свойством JPEG является также то, что нередко горизонтальные и вертикальные полосы на дисплее абсолютно не видны и могут проявиться только при печати в виде муарового узора. Он возникает при наложении наклонного растра печати на горизонтальные и вертикальные полосы изображения. Из-за этих сюрпризов JPEG не рекомендуется активно использовать в полиграфии, задавая высокие коэффициенты. Однако при архивации изображений, предназначенных для просмотра человеком, он на данный момент незаменим.

Широкое применение JPEG долгое время сдерживалось, пожалуй, лишь тем, что он оперирует 24-битными изображениями. Поэтому для того, чтобы с приемлемым качеством посмотреть картинку на обычном мониторе в 256-цветной палитре, требовалось применение соответствующих алгоритмов и, следовательно, определенное время. В приложениях, ориентированных на придирчивого пользователя, таких, например, как игры, подобные задержки неприемлемы. Кроме того, если имеющиеся у вас изображения, допустим, в 8-битном формате GIF перевести в 24-битный JPEG, а потом обратно в GIF для просмотра, то потеря качества произойдет дважды при обоих преобразованиях. Тем не менее, выигрыш в размерах архивов зачастую настолько велик, а потери качества настолько малы, что хранение изображений в JPEG оказывается очень эффективным.

Несколько слов необходимо сказать о модификациях этого алгоритма. Хотя JPEG и является стандартом ISO, формат его файлов не был зафиксирован. Пользуясь этим, производители создают свои, несовместимые между собой форматы, и, следовательно, могут изменить алгоритм. Так, внутренние таблицы алгоритма, рекомендованные ISO, заменяются ими на свои собственные. Кроме того, легкая неразбериха присутствует при задании степени потерь. Например, при тестировании выясняется, что “отличное” качество, “100%” и “10 баллов” дают существенно различающиеся картинки. При этом, кстати, “100%” качества не означают сжатие без потерь. Встречаются также варианты JPEG для специфических приложений.

Как стандарт ISO JPEG начинает все шире использоваться при обмене изображениями в компьютерных сетях. Поддерживается алгоритм JPEG в форматах Quick Time, PostScript Level 2, Tiff 6.0 и, на данный момент, занимает видное место в системах мультимедиа.

Характеристики алгоритма JPEG:

- Коэффициенты компрессии: 2-200 (Задается пользователем).

- Класс изображений: Полноцветные 24 битные изображения или изображения в градациях серого без резких переходов цветов (фотографии).

- Симметричность: 1

- Характерные особенности: В некоторых случаях, алгоритм создает “ореол” вокруг резких горизонтальных и вертикальных границ в изображении (эффект Гиббса). Кроме того, при высокой степени сжатия изображение распадается на блоки 8х8 пикселов.


Подобные документы

  • Обработка изображений на современных вычислительных устройствах. Устройство и представление различных форматов изображений. Исследование алгоритмов обработки изображений на базе различных архитектур. Сжатие изображений на основе сверточных нейросетей.

    дипломная работа [6,1 M], добавлен 03.06.2022

  • Типы изображений (черно-белые, полутоновые, цветные) и их форматы. Устройства, создающие цифровые изображения, и их параметры. Применение и характеристики методов сжатия изображений. Поиск по содержимому в базах данных изображений. Структуры баз данных.

    презентация [360,4 K], добавлен 11.10.2013

  • Методика устранения посторонних шумов и коррекции искажения типа дисфокусировки. Обрезка сильно искаженных краев изображения. Построение яркостной гистограммы изображения и его преобразование в индексный формат с восьмицветовой палитрой в пакете Matlab.

    контрольная работа [4,7 M], добавлен 13.01.2012

  • Понятие цвета с точки зрения ЭВМ, принципы хранения в памяти ЭВМ графической информации. Индексированный цвет, работа с палитрой. Цветовая модель CMYK. Особые взаимоотношения двух цветовых моделей. Основные области применения компьютерной графики.

    курсовая работа [1,0 M], добавлен 06.12.2010

  • Высокопроизводительные вычисления в обработке данных дистанционного зондирования Земли. Классификация аэрокосмических изображений. Способы удаленного доступа к суперкомпьютеру. Сжатие без потерь и с потерями. Программное обеспечение системы сжатия.

    дипломная работа [2,6 M], добавлен 28.09.2011

  • Положения алгоритмов сжатия изображений. Классы приложений и изображений, критерии сравнения алгоритмов. Проблемы алгоритмов архивации с потерями. Конвейер операций, используемый в алгоритме JPEG. Характеристика фрактального и рекурсивного алгоритмов.

    реферат [242,9 K], добавлен 24.04.2015

  • Архивация и компрессия как методы сжатия изображений. Алгоритмы сжатия данных. Вспомогательные средства, которые используются для понижения объемов файлов: изменение цветовой модели изображения, изменение разрешения растрового файла, ресемплирование.

    презентация [45,3 K], добавлен 06.01.2014

  • Изучение современных методик компьютерной обработки биомедицинских изображений с целью улучшения изображений для их наилучшего визуального восприятия врачом-диагностом и эффективного сжатия изображений – для надежного хранения и быстрой передачи данных.

    курсовая работа [2,3 M], добавлен 15.04.2019

  • Сущность универсального метода упаковки, его преимущества и недостатки. Кодирование путем учета числа повторений. Примеры схем распаковки последовательности байтов. Алгоритмы сжатия звуковой, графической и видеоинформации. Разновидности формата МРЕG.

    презентация [96,2 K], добавлен 19.05.2014

  • Способ улучшения сжатия файлов формата DjVu. Общая схема алгоритма классификации букв. Основной алгоритм сравнения пары букв. Быстрый отказ для пары разных букв. Дерево разрезов. Получение монохромных изображений. Алгоритм для устранения мусора.

    курсовая работа [64,7 K], добавлен 28.10.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.