Взаимные блокировки

Выгружаемые и невыгружаемые аппаратные и программные ресурсы. Проблема взаимоблокировок процессов при борьбе за невыгружаемые ресурсы. Условия необходимые для взаимоблокировки. Моделирование тупиков с помощью графов. Алгоритм обнаружения тупика.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 06.10.2010
Размер файла 316,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ВЗАИМНЫЕ БЛОКИРОВКИ

Взаимоблокировка процессов может происходить, когда несколько процессов борются за один ресурс.

Ресурсы бывают выгружаемые и невыгружаемые, аппаратные и программные.

Выгружаемый ресурс - этот ресурс безболезненно можно забрать у процесса (например: память).

Невыгружаемый ресурс - этот ресурс нельзя забрать у процесса без потери данных (например: принтер).

Проблема взаимоблокировок процессов возникает при борьбе за невыгружаемый ресурсы.

Условия необходимые для взаимоблокировки:

1. Условие взаимного исключения - в какой-то момент времени, ресурс занят только одним процессом или свободен.

2. Условие удержания и ожидания - процесс удерживающий ресурс может запрашивать новые ресурсы.

3. Условие отсутствия принудительной выгрузки ресурса.

4. Условие циклического ожидания - должна существовать круговая последовательность из процессов, каждый из которого ждет доступа к ресурсу, удерживаемому следующим членом последовательности.

Моделирование тупиков с помощью графов.

На такой модели очень хорошо проверить возникает ли взаимоблокировка. Если есть цикл значит есть и взаимоблокировка.

Рассмотрим простой пример:

три процесса A, B, C

три ресурса R, S, T

Последовательное выполнение процессов, взаимоблокировка не возникает

Рассмотрим циклический алгоритм:

три процесса A, B, C

три ресурса R, S, T

Возникает взаимоблокировка

Рассмотрим тот же самый случай, но допустим что система зная о предстоящей взаимоблокировке, заблокирует процесс B.

Взаимоблокировка не возникает.

Четыре стратегии избегания взаимоблокировок:

1. Пренебрежением проблемой в целом (вдруг пронесет).

2. Обнаружение и устранение (взаимоблокировка происходит, но оперативно ликвидируется).

3. Динамическое избежания тупиков.

4. Предотвращение четырех условий, необходимых для взаимоблокировок.

1. Пренебрежением проблемой в целом (страусовый алгоритм)

Если вероятность взаимоблокировки очень мала, то ею легче пренебречь, т.к. код исключения может очень усложнить ОС и привести к большим ошибкам. Также многие взаимоблокировки тяжело обнаружить.

Этот алгоритм используется как в Linux, так и в Windows.

Поэтому (и не только) на серверах часто устанавливают автоматическую перезагрузку (раз в сутки, как правило ночью), если возникнет взаимоблокировка, то после перезагрузки ее не будет.

2. Обнаружение и устранение взаимоблокировок

Система не пытается предотвратить взаимоблокировку, а пытается обнаружить ее и устранить.

Обнаружение взаимоблокировки при наличии одного ресурса каждого типа

Под одним ресурсом каждого типа, подразумевается один принтер, один сканер и один плоттер и т.д.

Рассмотрим систему из 7-ми процессов и 6-ти ресурсов.

Визуально хорошо видна взаимоблокировка, но нам нужно чтобы ОС сама определяла взаимоблокировку.

Для этого нужен алгоритм.

Рассмотрим один из алгоритмов.

Для каждого узла N в графе выполняется пять шагов.

1. Задаются начальные условия: L-пустой список, все ребра не маркированы.

2. Текущий узел добавляем вконец списка L и проверяем количество появления узла в списке. Если он встречается два раза, значит цикл и взаимоблокировка.

3. Для заданного узла смотрим, выходит ли из него хотя бы одно немаркированное ребро. Если да, то переходим к шагу 4, если нет, то переходим к шагу 5.

4. Выбираем новое немаркированное исходящее ребро и маркируем его. И переходим по нему к новому узлу и возвращаемся к шагу 3.

5. Зашли в тупик. Удаляем последний узел из списка и возвращаемся к предыдущему узлу. Возвращаемся к шагу 3. Если это первоначальный узел, значит циклов нет и алгоритм завершается.

Для нашего случая тупик обнаруживается в списке L=[B,T,E,V,G,U,D,T]

Обнаружение взаимоблокировки при наличии нескольких ресурсов каждого типа. Рассмотрим систему.

m - число классов ресурсов (например: принтеры это один класс)

n - количество процессов

P (n) - процессы

E - вектор существующих ресурсов

E (i) - количество ресурсов класса i

A - вектор доступных (свободных) ресурсов

A (i) - количество доступных ресурсов класса i

С - матрица текущего распределения (какому процессу, какие ресурсы принадлежат)

R - матрица запросов (какой процесс, какой ресурс запросил)

C (ij) - количество экземпляров ресурса j, которое занимает процесс i.

Общее количество ресурсов равно сумме занятых и свободных ресурсов

Рассмотрим алгоритм поиска тупиков.

Если остаются не маркированные процессы, значит есть тупик.

Рассмотрим работу алгоритма на реальном примере.

Используем алгоритм:

1. Третий процесс может получить желаемые ресурсы, т.к. R (2 1 0 0) = A (2 1 0 0)

2. Третий процесс освобождает ресурсы. Прибавляем их к A. А = (2 1 0 0) + (0 1 2 0) = (2 2 2 0). Маркируем процесс.

3. Может выполнятся процесс 2. По окончании А= (4 2 2 1).

4. Теперь может работать первый процесс.

Тупиков не обнаружено.

Если рассмотреть пример, когда второму процессу требуются ресурсы (1 0 3 0), то два процесса окажутся в тупике.

Когда можно искать тупики:

? Когда запрашивается очередной ресурс (очень загружает систему)

? Через какой то промежуток времени (в интерактивных системах пользователь это ощутит)

? Когда загрузка процессора слишком велика

Выход из взаимоблокировки:

Восстановление при помощи принудительной выгрузки ресурса

Как правило требует ручного вмешательства (например: принтер).

Восстановление через откат

Состояние процессов записывается в контрольных точках, и в случае тупика можно сделать откат процесса на более состояние, после чего он продолжит работу снова с этой точки.

С принтером опять будут проблемы.

Восстановление путем уничтожения процесса

Самый простой способ.

Но с принтером опять будут проблемы.

В реальных системах они не годятся.

3. Динамическое избежание взаимоблокировок

В этом способе ОС должна знать, является ли предоставление ресурса безопасным или нет.

Траектории ресурсов

Рассмотрим модель из двух процессов и двух ресурсов.

А1 - запрос принтера процессом А

А2 - запрос плоттера процессом А

А3 - освобождение принтера процессом А

А4 - освобождение плоттера процессом А

В1 - запрос плоттера процессом В

В2 - запрос принтера процессом В

В3 - освобождение плоттера процессом В

В4 - освобождение принтера процессом В

Т.к. процессор предоставляется поочередно, траектория может продолжатся только параллельно осям.

Чтобы избежать тупика, процессам надо обойти прямоугольник охватывающий всю заштрихованную область.

Безопасные и небезопасные состояния

В безопасном состоянии система может гарантировать, что все процессы закончат свою работу.

Рассмотрим систему:

· 10 экземпляров ресурса

· 3 процесса

Процесс А занял 3 экземпляра, но ему необходимо 9.

В этой ситуации можно спланировать так, сначала запустить процесс В, потом С и потом А.

Процессы заканчивают работу без тупиковой ситуации.

Рассмотрим другую ситуацию.

Процесс А занял 4 экземпляра.

Возникает небезопасное состояние.

В принципе процесс А может в какой то момент ресурс и тупика не возникнет.

Видно, что в этом случае не стоило давать ресурс процессу А.

Алгоритм "банкира" для одного вида ресурсов

"Банкира", потому что аналогия такая, клиенты-процессы, кредиты-ресурсы.

Рассмотрим систему:

Банкир может дать 10 кредитов (ресурсы).

К нему попеременно обращаются 4-ре клиента.

Алгоритм банкира:

· Банкиру поступает запрос от клиента на получение кредита

· Банкир проверяет, приводит ли этот запрос к небезопасному состоянию.

· Банкир в зависимости от этого дает или отказывает в кредите.

Алгоритм банкира для несколько видов ресурсов

Рассмотрим систему:

вектора:

E = (6 3 4 2) - существующие ресурсы

P = (5 3 2 2) - занятые ресурсы

A = (1 0 2 0) - доступные ресурсы

Алгоритм поиска безопасного или небезопасного состояния:

Если состояние безопасное то ресурс дать можно, если нет то нельзя.

На практике все эти алгоритмы тяжело реализовать.

Предотвращение четырех условий, необходимых для взаимоблокировок

Предотвращение условия взаимного исключения

Можно минимизировать количество процессов борющихся за ресурсы.

Например, с помощью спулинга для принтера, когда только демон принтера работает с принтером.

Предотвращение условия удержания и ожидания- один из способов достижения этой цели, это когда процесс должен запрашивать все необходимые ресурсы до начала работы. Если хоть один ресурс недоступен, то процессу вообще ничего не предоставляется.

Предотвращение условия отсутствия принудительной выгрузки ресурса: можно выгружать ресурсы, но могут быть проблемы с принтером.

Предотвращение условия циклического ожидания - способы предотвращения:

? Процесс сначала должен освободить занятый ресурс, прежде чем занять новый.

Можно пронумеровать все ресурсы (и упорядочить), и процессы должны запрашивать ресурсы только по порядку.


Подобные документы

  • Безопасное состояние информационной системы. Основные утверждения (факты). Алгоритм построения графа распределения ресурсов для стратегии избежания тупиков. Структуры данных для алгоритма банкира, пример его использования. Алгоритм обнаружения тупиков.

    презентация [1,3 M], добавлен 24.01.2014

  • Проблема разработки математической модели сложной задачи. Построение алгоритма составления расписания занятий. Вероятность обнаружения хорошего варианта за ограниченное время. Множество всех множеств допустимых пар, поиск элементов, прогноз тупика.

    реферат [42,1 K], добавлен 29.01.2010

  • Назначение и функции операционных систем компьютера. Аппаратные и программные ресурсы ЭВМ. Пакетные ОС. Системы с разделением времени: Multics, Unix. Многозадачные ОС для ПК с графическим интерфейсом: Windows, Linux, Macintosh. ОС для мобильных устройств.

    курсовая работа [53,4 K], добавлен 05.12.2014

  • Аппаратные и программные средства, на базе которых возможно построение локальной сети. Локальные и глобальные сети. Одноранговые и многоранговые сети. Топологии объединения группы компьютеров в локальную сеть. Используемые технологии локальных сетей.

    курсовая работа [587,7 K], добавлен 12.05.2008

  • Этапы нахождения хроматического числа произвольного графа. Анализ примеров раскраски графа. Характеристика трудоемкости алгоритма раскраски вершин графа Мейниеля. Особенности графов, удовлетворяющих структуру графов Мейниеля, основные классы графов.

    курсовая работа [1,1 M], добавлен 26.06.2012

  • Электронные ресурсы как новый вид информационной продукции, их классификация. Понятие электронного издания. Правовое регулирование аспектов, связанных с формированием и использованием в библиотеках электронной информации, проблема авторского права.

    реферат [25,2 K], добавлен 10.06.2010

  • Применение теории графов и алгоритмов на графах среди дисциплин и методов дискретной математики. Граф как совокупность двух множеств. Основные способы численного представления графа. Элементы и изоморфизмы графов. Требования к представлению графов в ЭВМ.

    курсовая работа [162,2 K], добавлен 04.02.2011

  • Построение модели системы массового обслуживания с помощью ЭВМ с использованием методов имитационного моделирования. Моделирование проводилось с помощью GPSS World Student version, позволяющего достоверно воссоздать систему массового обслуживания.

    курсовая работа [555,7 K], добавлен 29.06.2011

  • Алгоритмы, использующие решение дополнительных подзадач. Основные определения теории графов. Поиск пути между парой вершин невзвешенного графа. Пути минимальной длины во взвешенном графе. Понятие кратчайшего пути для графов с помощью алгоритма Флойда.

    реферат [39,6 K], добавлен 06.03.2010

  • Основные подходы при построении математических моделей процессов функционирования систем. Применение непрерывно-стохастического подхода для формализации процессов обслуживания. Функции моделирующего алгоритма. Использование языков программирования.

    контрольная работа [262,7 K], добавлен 04.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.