Передача мультимедийной информации в локальных и глобальных сетях

Методы пересылки мультимедийных данных. Средства для многоадресной групповой адресации, настройка многоадресного потокового вещания в реальном масштабе времени. Способы снижения стоимости, увеличения эффективности работы соединений с глобальными сетями.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 04.09.2010
Размер файла 20,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Передача мультимедийной информации в локальных и глобальных сетях

Мультимедийные коммуникации (т. е. передача речи и видеоизображений) обычно осуществляются между двумя устройствами (отправителем и получателем) в локальной или глобальной сети, а также в смешанных сетях. Существуют различные способы доставки мультимедийной информации в сети. При выборе некоторых способов сетевые ресурсы (например, маршрутизаторы) используются весьма эффективно, благодаря чему уменьшается нагрузка на сеть, вызванная наличием мультимедийных коммуникаций. Другие способы (особенно те, которые применяются в устаревших мультимедийных программах) создают довольно высокий сетевой трафик.

В том случае, когда в локальной или глобальной сети развернуты мультимедийные приложения, важно определить, является ли создаваемый ими трафик однонаправленным, широковещательным и/или многоадресным (групповым). Некоторые приложения могут использовать только один тип пересылки информации, а другие программы могут работать в нескольких режимах. Если вы знаете, какой тип трафика генерируется некоторым приложением, то вам будет легче планировать полосу пропускания, необходимую для развертывания этого приложения в сети.

В табл. 1 перечислены и описаны все три типа пересылки данных.

Таблица 1. Методы пересылки мультимедийных данных

Тип передачи

Описание

Ограничения

Однонаправленная передача (Unicast)

При однонаправленной передаче данных одна копия каждого фрейма или пакета передается в каждый целевой узел, обратившийся за информацией к мультимедийному приложению. Например, если к приложению обращаются четыре рабочих станции, посылаются четыре копии каждого фрейма или пакета: по одной копии для каждой станции. Приложения с однонаправленным вещанием не требуют реализации специальных сетевых протоколов, поэтому они относительно просты в разработке. Кроме того, однонаправленный трафик является двухточечным, поскольку отправитель передает один пакет каждой рабочей станции, принимающей данные от приложения.

Мультимедийные приложения, использующие однонаправленную передачу, трудно масштабировать при увеличении числа пользователей. Если пользователей много, создается высокий трафик, что требует увеличения полосы пропускания

Широковещание (Broadcast)

При широковещательных посылках одна копия каждого фрейма или пакета рассылается всем узлам сети вне зависимости от того, запрашивала или нет некоторая рабочая станция эту информацию. Например, если в сети 100 рабочих станций, компьютер-отправитель передает один фрейм или пакет, который размножается концентраторами, коммутаторами и мостами для всех станций, включая те, которые и не обращались к приложению. Если сеть содержит мосты или коммутаторы, широковещательный трафик можно контролировать, создавая фильтры, ограничивающие распространение широковещательных фреймов или пакетов. Широковещательные рассылки являются примером многоточечного трафика, поскольку отправитель генерирует один фрейм или пакет, передаваемый всем узлам

Широковещательный мультимедийный трафик (если он не фильтруется межсетевыми устройствами) может быть даже больше, чем однонаправленный, поскольку он может распространяться на большее количество целевых узлов

Многоадресное (групповое) вещание (мультивещание многоабонентская доставка-(Multicast)

Многоадресное вещание является еще одним примером многоточечного трафика, при котором отправитель генерирует один фрейм или пакет для передачи всем клиентам. При мультивещании создаются группы, в которые включаются те рабочие станции, которые запросили доступ к мультимедийному приложению, сообщений). Один пакет передается одной или нескольким группам, для чего совместно используется MAC- и IP-адресация, Группы идентифицируются и образуются с учетом MAC- и IP-адресов компьютеров. Многоадресный трафик распространяется только на те рабочие станции, которые входят в группы станций, запросивших информацию от приложения

Оценивая три перечисленных метода, труднее всего разработать приложения, использующие многоадресное вещание однако такие усилия в полной мере оправдываются за счет улучшенной управляемости сети и более оптимального распределения трафика

Сервер видеоизображений, передающий клиентам MPEG-файлы в протокольном режиме, требует полосы пропускания приблизительно 1,5 Мбит/с в расчете Н3 одного клиента. Если приложение рассчитано на однонаправленную передачу, сервер генерирует трафик, объем которого равен значению 1,5 Мбит/с, умноженному на число клиентов (например, для пяти клиентов трафик составит 7,5 Мбит/с). Если сервер подключен по 10-мегабитному каналу, шесть или семь клиентов полностью займут полосу пропускания сети. При широковещании степень использования полосы пропускания будет не меньше или даже выше.

Если это же приложение будет работать в режиме многоадресного вещания, степень использования полосы пропускания уменьшится до 1,5 Мбит/с вне зависимости от числа клиентов. Рассмотрим, к примеру, сеть, в которой имеются четыре маршрутизатора. Две станции, подключенные к одному маршрутизатору, входят в одну группу клиентов мультимедийного приложения, а пять станций, подключенных к одному из оставшихся маршрутизаторов, входят во вторую группу. При мультивещании один отправленный пакет достигает обоих маршрутизаторов, а они, в свою очередь, передают информацию так, что она будет получена только теми клиентами, которые входят в соответствующие группы, подключенные к конкретному маршрутизатору (т. е. двумя клиентами для первого маршрутизатора и пятью клиентами - для второго).

Наличие средств для многоадресной групповой адресации на уровнях 2 и 3 модели OSI означает, что вы можете использовать этот метод передачи данных для того, чтобы учесть топологию сети. Например, если топология представляет собой отдельную локальную сеть, то, скорее всего, будет достаточно МАС-адресации Уровня 2. Если в сети используются несколько сегментов, маршрутизация и подключения к глобальным сетям, то адресация Уровня 3 позволит задействовать все преимущества маршрутизации. Это особенно важно в развитых интрасетях, VPN-сетях и при наличии подключений к Интернету, при этом могут использоваться любые комбинации технологий Ethernet, Token Ring, FDDI и ATM.

Internet Group Management Protocol (IGMP) (Межсетевой протокол управления группами) представляет собой протокол Уровня 3, используемый для определения клиентов, которые входят в группы многоадресных рассылок, и для передачи этой информации сетевым маршрутизаторам.

Протокол IGMP устанавливается на сервере и клиентах мультимедиа, а также на маршрутизаторах и коммутаторах. Он позволяет клиентам посылать и отзывать заявки на обслуживание некоторым мультимедийным приложением, для этого используются запросы на подписку и на прекращение подписки (также называемые запросами на вступление в группу и на выход из группы). Для пересылки этих запросов служит сообщение о членстве хоста (HostMembership Report), отправляемое с помощью протокола IGMP. Согласно стандарту IPv4, это сообщение имеет IP-адрес Класса D в форма-1 те 244.0.ХХ. Клиент может отказаться от подписки в любой момент, это не влияет на текущие передачи информации другим клиентам, относящимся к этой же группе или к другим группам. Маршрутизаторы периодически посылают клиентам IGMP-запросы, чтобы удостовериться в том, что этот клиент по-прежнему подписан на обслуживание. Если клиент не отвечает, маршрутизатор обновляет свои таблицы, где указывается на то, что данный клиент более не входит в группу, принимающую информацию.

Помимо IGMP, для поддержки многоадресного вещания маршрутизаторы используют один из трех других протоколов маршрутизации:

· Distance Vector Multicast Routing Protocol (DVMRP);

· Multicast Open Shortest Path First Protocol (MOSPF);

· Protocol Independent Multicast (PIM).

Протокол Distance Vector Multicast Routing Protocol (DVMRP) (Протокол дистанционной маршрутизации сообщений с использованием векторной многоканальной трансляции) работает вместе с протоколами IGMP и RIP и служит для определения принадлежности рабочих станций к некоторой группе мультивещания. Сначала он предполагает, что все станции подписаны, а затем постепенно удаляет их из группы, если те не отвечают. Если оказывается, что целый сегмент не содержит членов группы, протокол останавливает пересылку многоадресных пакетов в этот сегмент.

Протокол DVMRP также выполняет следующие операции:

· каждые 60 секунд проверяет наличие новых подписчиков;

· с помощью алгоритма Бельмана-Форда (Bellman-Ford) позволяет маршрутизаторам определять количество ретрансляций (расстояние между конкретным маршрутизатором и другими маршрутизаторами) ко всем другим маршрутизаторам сети;

· позволяет маршрутизатору определить, в каком направлении (называемом вектором) посылать по сети пакет, чтобы тот мог достигнуть определенного маршрутизатора с минимальным количеством ретрансляций.

Протокол Multicast Open Shortest Path First Protocol (MOSPF) в работе напоминает протокол OSPF. Используя информацию, переданную по протоколу IGMP между сервером и подписанным клиентом, он определяет, какие рабочие станции являются членами группы многоадресной рассылки. Он постоянно следит за сетью и находит кратчайшие маршруты между сервером и членами каждой группы. MOSPF не совместим с RIP и должен применяться только в тех сетях, где в качестве основного протокола маршрутизации используется OSPF.

Протокол Protocol Independent Multicast (PIM) (Многоадресное вещание, не зависящее от протокола) существует в двух разновидностях: Dense-mode PIM и Sparse-mode PIM. Обе разновидности работают вместе с протоколом IGMP.

Протокол Dense-mode PIM (PIM в "плотном" режиме) совместим как с RIP, так и с OSPF. Подобно протоколу DVMRP, он собирает информацию о подписанных рабочих станциях, опрашивая все сетевые станции и постепенно удаляя те из них, которые не отвечают. Dense-mode PIM используется в тех случаях, когда в некоторой части сети располагается много членов группы и когда имеется широкая полоса пропускания.

Протокол Sparse-mode PIM (PIM в "разряженном" режиме) рассматривает маршрутизаторы как промежуточные точки для определения кратчайших маршрутов между сервером мультимедиа и членами группы. Затем он посылает многоадресные пакеты только тем маршрутизаторам, которые выбраны в качестве промежуточных точек, и с их помощью пересылает пакеты подписанным рабочим станциям. Sparse-mode PIM предназначен для использования в тех сетях, где члены группы разбросаны по удаленным подсетям (например, по Интернету).

В зависимости от возможностей конкретного коммутатора может оказаться так, что фильтры для многоадресных рассылок нужно будет строить вручную. Если в коммутаторе нет возможности фильтрации, то многоадресные пакеты будут обычным образом проходить в каждый порт.

Описанный в RFC 1889 протокол Real Time Protocol (RTP) (Протокол реального времени) был создан для лучшего управления многоадресным потоковым вещанием в реальном масштабе времени, которое применяется при проведении видеоконференций и в аналогичных приложениях. Для передачи потоковых данных заголовки пакета RTP пересылаются с помощью протокола UDP (а не при помощи протокола TCP, входящего в стек TCP/IP).

Работа поверх UDP означает, что UDP-пакет содержит заголовок RTP и полезную нагрузку. В заголовке находится информация о последовательных пакетах, данные для синхронизации видео- и аудиофреймов, а также указание на то, как данные закодированы или сжаты для передачи по сети полезной нагрузки).

Другой протокол, Real Time Transport Control Protocol (RTCP) (Протокол управления доставкой в реальном времени), был создан для того, чтобы позволить сетевым администраторам и разработчикам применять методы компенсации искажений в тех случаях, когда сетевые проблемы влияют на качество работы мультимедийных приложений реального времени. С помощью многоадресных пакетов протокол RTCP позволяет устанавливать качество обслуживания (QoS) для сеансов связи по протоколу RTP RTCP собирает сообщения о членстве от получателей и обеспечивает отправителя обратной связью, сообщающей о заданном качестве обслуживания и о состоянии сети (например, о перегрузке или джиггере). Рассмотрим, к примеру, приложение, которому для передачи цветного видеосигнала и стереофонического аудиосигнала требуется полоса пропускания глобальной сети, построенной на базе линий Т-1. Когда канал Т-1 недоступен и используется резервный канал со скоростью 56 Кбит/с, протокол RTCP может предоставить средства для передачи черно-белого видеосигнала и монофонического аудиосигнала. Также этот протокол позволяет сетевым администраторам использовать средства для анализа производительности сети с мультивещанием и для определения количества подписанных рабочих станций. В Интернете или в корпоративных сетях мультимедийные приложения должны передавать данные через разнообразные межсетевые устройства; настроенные по-разному для пересылки различного типа трафика. Неоднородность сетевых настроек создает проблемы для мультимедийных коммуникаций, которым требуется минимальный набор определенных ресурсов.

С этой задачей помогает справиться протокол Resource Reservation Protocol(RSVP) (Протокол резервирования ресурсов).

Протокол RSVP позволяет некоторому приложению зарезервировать нужные ему ресурсы (например, полосу пропускания, буферы и класс обслуживания). С помощью RSVP мультимедийные приложения с потоковым воспроизведением могут сосуществовать с приложениями, передающими данные в виде блоков, однако мультимедийным приложениям дается более высокий приоритет доставки, поскольку они в меньшей степени допускают задержку передачи. Также протокол RSVP удобен для динамического выделения ресурсов при добавлении рабочих станций в группу многоадресного вещания. В некоторых случаях он позволяет просто включить новых подписчиков в группу и использовать ресурсы, уже назначенные этой группе (т. е. не менять распределение ресурсов). Более того, отдельные клиентские рабочие станции, входящие в группу, могут запросить другие ресурсы. Например, клиент может пожелать отключить звук или изображение в передаваемом потоке.

Протокол RSVP динамически выделяет ресурсы по мере увеличения или уменьшения потребностей. Однако при этом он использует параметры, тщательно подобранные сетевым администратором и гарантирующие минимум полосы пропускания и других ресурсов.

При проектировании локальных и глобальных сетей для мультимедийных приложений следует учитывать множество факторов. Например, в некоторых случаях вам может встретиться сеть на базе устаревшего оборудований (с концентраторами и коаксиальным кабелем), которое нужно обновить перед тем как развертывать приложения. В других случаях для существующей сети могут понадобиться дополнительные устройства, такие как маршрута, заторы и коммутаторы, позволяющие повысить производительность сети.

Следующие разделы главы помогут вам понять, как модернизировать существующие сети для развертывания мультимедийных приложений, как реализовать высокоскоростные технологии Ethernet в мультимедийных локальных сетях и как спроектировать глобальную сеть, которая без проблем смогла бы поддерживать мультимедийные программы.

В некоторых существующих офисных и кампусных локальных сетях полоса: пропускания не отвечает требованиям мультимедийных приложений, таких как средства организации видеоконференций или интерактивные мультимедийные классы. Зачастую проблема заключается не в самой коммуникационной среде, а в неэффективной реализации и сегментации локальной сети. Например, в существующей локальной сети можно значительно расширить полосу пропускания, заменив концентраторы на коммутаторы и заменив старый "тонкий" коаксиал и повторители на витую пару Категории 5 и коммутаторы 100BaseTX. Маршрутизатор, помещенный между серверами мультимедиа и областью коллизий, где располагаются рабочие станции, также является эффективным средством сегментации трафика и повышения сетевой безопасности. Кроме того, он позволяет конфигурировать различные протоколы, используемые для многоадресного вещания.

При выборе коммутаторов для локальной сети следует обращать внимание на такие устройства, которые имеют возможность многоадресной фильтрации и буферизации, а также обеспечивающие малое время ожидания (например, такие, в которых используются специализированные интегральные схемы (ASIC) и коммутация без буферизации пакетов). Наличие многоадресной фильтрации особенно важно, т. к. без нее многоадресные пакеты могут заполнить сеть подобно широковещательным пакетам. Кроме того, коммутаторы должны иметь настройки для организации виртуальных локальных сетей (VLAN), что позволит контролировать размер и область охвата домена многоадресного вещания.

Для многих локальных сетей, в которых развернуты мультимедийные приложения, одним из самых эффективных (в плане рентабельности решений и надежности технологий) будет сочетание Fast Ethernet и Gigabit Ethernet. В такой архитектуре предполагается, что технология Fast Ethernet будет использоваться для подключения пользователей, а технология Gigabit Ethernet (или даже 10 Gigabit Ethernet в очень загруженных сетях) послужит для создания магистрали. Подобное решение позволит избежать перегрузки магистрали и обеспечить достаточную полосу пропускания для рабочих станций, получающих информацию от мультимедийных приложений.

Технология FDDI также обеспечивает передачу данных со скоростью 100 Мбит/с, используя архитектуру двойного кольца с избыточностью. Обычно эта технология обходится дороже, чем Fast Ethernet, однако ее вполне можно рассматривать как альтернативное решение (в некоторых случаях), особенно в тех организациях, где она уже применяется для создания магистрали, а серверы собраны в одном месте (в серверную группу).

Fast Ethernet обеспечивает полосу пропускания не ниже 100 Мбит/с по неэкранированной витой паре (UTP) или одно/многомодовому оптоволоконному кабелю. В зависимости от типа выбранного сетевого коммутатора эту полосу можно увеличить до 200 Мбит/с, для чего используется дуплексный режим.

Достоинством каналов Gigabit Ethernet является то, что их можно группировать (объединять в транки), т. е. между устройствами магистрали Gigabit Ethernet (например, маршрутизаторами или коммутаторами) можно проложить два или три кабеля. Например, если сгруппировать два кабеля между двумя коммутаторами Gigabit Ethernet, можно получить суммарную полосу пропускания в 2 Гбит/с. При группировке трех каналов полоса будет 3 Гбит/с. При этом достигается избыточность (резервирование), поскольку в случае отказа одного из каналов группы другой кабель сможет обеспечивать скорость 1 Гбит/с (в случае двух каналов). Еще одно достоинство сгруппированных каналов Gigabit Ethernet заключается в том, что для повышения производительности и во избежание конфликтов можно использовать дуплексные коммуникации.

Комбинированная архитектура Fast Ethernet и Gigabit Ethernet обеспечит полосу пропускания, которая позволит в полной мере использовать многие особенности структуры сети, включая высокоскоростную связь между клиентами и серверами (а также между коммутаторами) и дуплексные коммуникации (отсутствие конфликтов), что фактически удваивает полосу пропускания и, следовательно, значительно увеличивает производительность сети.

Другим способом расширения полосы пропускания является непосредственное подключение серверов мультимедиа к каналам Gigabit Ethernet (если используются быстродействующие серверы с быстрыми шинами, например, на базе процессоров RISC или Itanium). Такое решение особенно хорошо работает при осуществлении комбинированных аудио/видеокоммуникаций, когда сервер должен обеспечивать доставку множества мультимедийных потоков. Насколько полно сервер сможет использовать высокоскоростные подключения к Gigabit Ethernet - зависит от процессора этого сервера и архитектуры шины, а также от установленной операционной системы. Например, для подключения к Gigabit Ethernet вполне подойдет сервер с процессором RISC или Itanium, работающий под управлением UNIX или Windows 2000.

При использовании сетевой архитектуры, для реализации мультимедийных коммуникаций можно выбрать каналы Gigabit Ethernet между магистральными маршрутизаторами, а также между коммутаторами и подключенными к ним коммутаторами. Для подключения серверов также можно использовать каналы Gigabit Ethernet, а для подключения станций - каналы Fast Ethernet. При этом следует использовать коммутаторы и сетевые адаптеры, обеспечивающие дуплексные коммуникации.

Существуют и другие топологии, альтернативные комбинации Fast Ethernet и Gigabit Ethernet, такие как ATM, однако они дороже и сложнее в реализации. Например, можно вместо Gigabit Ethernet использовать ATM-сеть в качестве магистрали локальной сети. Более того, можно с помощью глобальной ATM-сети или сети на базе SONET соединить две локальных ATM-сети, в которых интенсивно передаются потоковые видеоизображения.

Если две локальные сети связываются с помощью глобальной сети для доставки речи, видео и данных на большие расстояния, то используемая глобальная сеть должна быть согласована со скоростью соединенных локальных сетей и требованиями приложений, в них работающих. При выборе поставщика услуг глобальной связи следуйте перечисленным рекомендациям:

· согласуйте полосу пропускания глобальной сети с той полосой, которая требуется локальными сетями и прикладными программами;

· выбирайте службу глобальной связи, пригодную для передачи речи, видео и данных, а также для проведения конференций и работы мультимедийных приложений;

· ищите поставщика услуг, который может предоставить вам соглашение об уровне сервиса (service level agreement, SLA), гарантирующее соответствие глобальной сети потребностям вашей организации;

· для ответственных глобальных коммуникаций используйте службу, которая может предложить качество обслуживания (QoS).

Для больших организаций, выходящих за рамки территориальной сети, службы глобальных коммуникаций, которые вероятнее всего будут соответствовать перечисленным критериям, включают сети ATM, SONET и В-ISDN. Для организаций, которые нужно связать в пределах города, чаще предлагаются региональные сети на базе Optical Ethernet (Gigabit Ethernet и 10 Gigabit Ethernet). Для небольших организаций и индивидуальных пользователей можно использовать линии DSL и кабельные модемы.

Все перечисленные службы глобальных коммуникаций могут обеспечить скорость свыше 100 Мбит/с и совместимы с мультимедиа. ATM-сети также предоставляют качество обслуживания (QoS), т. е. они выделяют свою полосу пропускания для каждой прикладной задачи, такой как передача мультимедиа. Физические линии глобальных сетей, которые могут обеспечить высокоскоростные коммуникации, реализованы с использованием технологий коммутации каналов (коммутируемые каналы 56 Кбит/с, коммутируемые линии Т-1, Т-3, а также B-ISDN). Другая альтернатива - сеть frame relay, подключенная к каналам Т-3. Она обеспечивает скорость 45 Мбит/с.

Одним из способов уменьшения стоимости и увеличения эффективности использования соединений с глобальными сетями является планирование глобальных коммуникаций и времени работы приложений.

Ответственные приложения (например, проведение видеоконференций) обычно используются в дневные часы (когда издержки велики), однако работа других приложений (например, передача видеоклипов для тренинга и обучения) может быть запланирована на нерабочее время.

Другим решением является размещение нескольких серверов видеоинформации в разных точках локальной или глобальной сети. В течение дня пользователи будут обращаться к локальным серверам за мультимедийной информацией, а по ночам (когда трафик в глобальной сети меньше) серверы смогут обновлять видеоинформацию, т. е. если новый курс или!; учебный модуль будет установлен на одном сервере, он будет копироваться; по глобальной сети на другие серверы. Система Windows 2000 Server, например, имеет программно реализуемую распределенную файловую систему, (Distributed File System, DPS), которая может автоматически копировать (реплицировать) файлы и каталоги с одного сервера на другой.

Литература

1. Работа с видео и аудио в Интернете - М. 2005 г.

2. Информатика мультимедиа - Звонарь И.Г. - М. 2008 г.


Подобные документы

  • Исследование особенностей организации мультимедийной информации. Абстрактные представления. Языки запросов для мультимедийных данных. Индексирование в структурированных мультимедийных базах данных. Анализ мультимедиа-интерфейса для описания содержимого.

    презентация [174,6 K], добавлен 11.10.2013

  • Потоковое мультимедиа - мультимедиа, которое непрерывно получается пользователем от провайдера потокового вещания. Попытки отображения мультимедиа информации на компьютерах. Разработка сетевых протоколов потокового вещания и развитие интернет технологий.

    курсовая работа [386,3 K], добавлен 21.12.2010

  • Способы коммутации компьютеров. Классификация, структура, типы и принцип построения локальных компьютерных сетей. Выбор кабельной системы. Особенности интернета и других глобальных сетей. Описание основных протоколов обмена данными и их характеристика.

    дипломная работа [417,7 K], добавлен 16.06.2015

  • Изучение базовых команд ПК на базе МП i286 и их форматов. Изучение прямых способов адресации данных. Наработка практических навыков работы с командами. Разработка регистровой модели выполнения операций передачи данных. Программа реализации команд.

    контрольная работа [42,2 K], добавлен 12.03.2011

  • Виды протоколов - стандартов, определяющих формы представления и способы пересылки сообщений, процедуры их интерпретации, правила совместной работы оборудования в сетях. Корневые серверы DNS, обеспечивающие работу системы доменных имен Интернета.

    презентация [1,4 M], добавлен 14.05.2017

  • Сущность проблемы и задачи защиты информации в информационных и телекоммуникационных сетях. Угрозы информации, способы их воздействия на объекты. Концепция информационной безопасности предприятия. Криптографические методы и средства защиты информации.

    курсовая работа [350,4 K], добавлен 10.06.2014

  • Назначение и классификация компьютерных сетей. Распределенная обработка данных. Классификация и структура вычислительных сетей. Характеристика процесса передачи данных. Способы передачи цифровой информации. Основные формы взаимодействия абонентских ЭВМ.

    контрольная работа [36,8 K], добавлен 21.09.2011

  • Понятие защиты умышленных угроз целостности информации в компьютерных сетях. Характеристика угроз безопасности информации: компрометация, нарушение обслуживания. Характеристика ООО НПО "Мехинструмент", основные способы и методы защиты информации.

    дипломная работа [135,3 K], добавлен 16.06.2012

  • Технологии беспроводного высокоскоростного распределения мультимедийной информации MMDS и MVDS. Преимущества применения таких систем перед кабельными сетями. Функциональная схема Axity. План строительства мультимедийных систем MVDS в Москве и Петербурге.

    курсовая работа [1,9 M], добавлен 18.05.2015

  • История создания и развития сети Internet. Структура и система адресации. Понятие глобальных, региональных и локальных сетей. Способы организации передачи информации. Стек протоколов Интернета по сравнению с OSI. Понятие об интерфейсах и протоколах.

    курсовая работа [1,3 M], добавлен 25.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.