Цифро-аналоговые преобразователи

Общие сведения о цифро-аналоговых преобразователях (ЦАП), их классификация по схемотехническим признакам. Интерфейсы ЦАП, обеспечивающие связь управляющих входов ключей с источниками цифровых сигналов. Расчет статических и динамических параметров.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 15.08.2010
Размер файла 213,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

12

ХЕРСОНСКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Факультет кибернетики

Контрольная работа

по дисциплине:

«Компьютерная схемотехника»

На тему:

Цифро-аналоговые преобразователи

Выполнил:

студент группы 2зКСС2

Преподаватель: Петрушенко А.Н.

Херсон

2007

Общие сведения

Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода. Схемотехника цифро-аналоговых преобразователей весьма разнообразна. На рис. 1 представлена классификационная схема ЦАП по схемотехническим признакам. Кроме этого, ИМС цифро-аналоговых преобразователей классифицируются по следующим признакам:

- По виду выходного сигнала: с токовым выходом и выходом в виде напряжения

- По типу цифрового интерфейса: с последовательным вводом и с параллельным вводом входного кода

- По числу ЦАП на кристалле: одноканальные и многоканальные

- По быстродействию: умеренного и высокого быстродействия

Интерфейсы цифро-аналоговых преобразователей

Важную часть цифро-аналогового преобразователя составляет цифровой интерфейс, т.е. схемы, обеспечивающие связь управляющих входов ключей с источниками цифровых сигналов. Структура цифрового интерфейса определяет способ подключения ЦАП к источнику входного кода, например, микропроцессору или микроконтроллеру. Свойства цифрового интерфейса непосредственно влияют и на форму кривой сигнала на выходе ЦАП. Так, неодновременность поступления битов входного слова на управляющие входы ключей преобразователя приводит к появлению узких выбросов, "иголок", в выходном сигнале при смене кода.

При управлении ЦАП от цифровых устройств с жесткой логикой управляющие входы ключей ЦАП могут быть непосредственно подключены к выходам цифровых устройств, поэтому во многих моделях ИМС ЦАП, особенно ранних (572ПА1, 594ПА1, 1108ПА1, AD565А и др.), сколь-нибудь существенная цифровая часть отсутствует. Если же ЦАП входит в состав микропроцессорной системы и получает входной код от шины данных, то он должен быть снабжен устройствами, позволяющими принимать входное слово от шины данных, коммутировать в соответствии с этим словом ключи ЦАП и хранить его до получения другого слова. Для управления процессом загрузки входного слова ЦАП должен иметь соответствующие управляющие входы и схему управления. В зависимости от способа загрузки входного слова в ЦАП различают преобразователи с последовательным и параллельным интерфейсами входных данных.

ЦАП с последовательным интерфейсом входных данных

Такой преобразователь содержит на кристалле помимо собственно ЦАП дополнительно также последовательный регистр загрузки, параллельный регистр хранения и управляющую логику (рис. 13а). Чаще всего используется трехпроводный интерфейс, который обеспечивает управление ЦА-преобразователем от SPI, QSPI, MICROWIRE интерфейсов процессоров. При активном уровне сигнала CS (в данном случае - нулевом) входное слово длины N (равной разрядности ЦАП) загружается по линии DI в регистр сдвига под управлением тактовой последовательности CLK. После окончания загрузки, выставив активный уровень на линию LD, входное слово записывают в регистр хранения, выходы которого непосредственно управляют ключами ЦАП. Для того, чтобы иметь возможность передавать по одной линии данных входные коды в несколько ЦАП, последний разряд регистра сдвига у многих моделей ЦАП с последовательным интерфейсом соединяется с выводом ИМС DO. Этот вывод подключается ко входу DI следующего ЦАП и т.д. Коды входных слов передаются, начиная с кода самого последнего преобразователя в этой цепочке.

В качестве примера на рис. 13б представлена временнaя диаграмма, отражающая процесс загрузки входного слова в ЦАП AD7233. Минимально допустимые значения интервалов времени (порядка 50 нс), обозначенных на временных диаграммах, указываются в технической документации на ИМС.

На рис. 14 приведен вариант схемы подключения преобразователя с последовательным интерфейсом к микроконтроллеру (МК). На время загрузки входного слова в ЦАП через последовательный порт микроконтроллера, к которому могут быть также подключены и другие приемники, на вход CS (выбор кристалла) подается активный уровень с одной из линий ввода-вывода МК.

После окончания загрузки МК меняет уровень на входе CS, как это показано на рис. 8.13б, и, выставив активный уровень на входе LD ЦАП, обеспечивает пересылку входного кода из регистра сдвига ЦАП в регистр хранения. Время загрузки зависит от тактовой частоты МК и обычно составляет единицы микросекунд. В случае, если колебания выходного сигнала ЦАП во время загрузки допустимы, вход LD можно соединить с общей точкой схемы.

Минимальное количество линий связи с ЦАП обеспечивается двухпроводным интерфейсом I2C. Этим интерфейсом оснащаются некоторые последние модели ЦАП, например, AD5301. Адресация конкретного устройства осуществляется по линии данных.

ЦАП с параллельным интерфейсом входных данных

Чаще используются два варианта. В первом варианте на N входов данных N-разрядного ЦАП подается все входное слово целиком. Интерфейс такого ЦАП включает два регистра хранения и схему управления (рис. 15а). Два регистра хранения нужны, если пересылка входного кода в ЦАП и установка выходного аналогового сигнала, соответствующего этому коду, должны быть разделены во времени. Подача на вход асинхронного сброса CLR сигнал низкого уровня приводит к обнулению первого регистра и, соответственно выходного напряжения ЦАП.

Пример блок-схемы подключения 12-ти разрядного ЦАП МАХ507 к 16-ти разрядному микропроцессору (МП) приведен на рис. 16. процессор посылает входной код в ЦАП как в ячейку памяти данных. Вначале с шины адрес/данные поступает адрес ЦАП, который фиксируется регистром по команде с выхода ALE микропроцессора и, после дешифрации, активизирует вход CS ЦАП. Вслед за этим МП подает на шину адрес/данные входной код ЦАП и затем сигнал записи на вход WR (см. рис. 15б).

Для подключения многоразрядных ЦАП к восьмиразрядным микропроцессорам и микроконтроллерам используется второй вариант параллельного интерфейса. Он предусматривает наличие двух параллельных загрузочных регистров для приема младшего байта входного слова МБ и старшего байта - СБ (рис. 17). Пересылка байтов входного слова в загрузочные регистры может происходить в любой последовательности.

Параметры ЦАП

При последовательном возрастании значений входного цифрового сигнала D(t) от 0 до 2N-1 через единицу младшего разряда (ЕМР) выходной сигнал Uвых(t) образует ступенчатую кривую. Такую зависимость называют обычно характеристикой преобразования ЦАП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 (рис. 22), которой соответствует идеальная характеристика преобразования. Реальная характеристика преобразования может существенно отличаться от идеальной размерами и формой ступенек, а также расположением на плоскости координат. Для количественного описания этих различий существует целый ряд параметров.

Статические параметры

Разрешающая способность - приращение Uвых при преобразовании смежных значений Dj, т.е. отличающихся на ЕМР. Это приращение является шагом квантования. Для двоичных кодов преобразования номинальное значение шага квантования h=Uпш/(2N-1), где Uпш - номинальное максимальное выходное напряжение ЦАП (напряжение полной шкалы), N - разрядность ЦАП. Чем больше разрядность преобразователя, тем выше его разрешающая способность.

Погрешность полной шкалы - относительная разность между реальным и идеальным значениями предела шкалы преобразования при отсутствии смещения нуля.

Является мультипликативной составляющей полной погрешности. Иногда указывается соответствующим числом ЕМР.

Погрешность смещения нуля - значение Uвых, когда входной код ЦАП равен нулю. Является аддитивной составляющей полной погрешности. Обычно указывается в милливольтах или в процентах от полной шкалы:

Нелинейность - максимальное отклонение реальной характеристики преобразования Uвых(D) от оптимальной (линия 2 на рис. 22). Оптимальная характеристика находится эмпирически так, чтобы минимизировать значение погрешности нелинейности.

Нелинейность обычно определяется в относительных единицах, но в справочных данных приводится также и в ЕМР. Для характеристики, приведенной на рис. 22.

Дифференциальная нелинейность - максимальное изменение (с учетом знака) отклонения реальной характеристики преобразования Uвых(D) от оптимальной при переходе от одного значения входного кода к другому смежному значению. Обычно определяется в относительных единицах или в ЕМР. Для характеристики, приведенной на рис. 22,

Монотонность характеристики преобразования - возрастание (уменьшение) выходного напряжения ЦАП Uвых при возрастании (уменьшении) входного кода D. Если дифференциальная нелинейность больше относительного шага квантования h/Uпш, то характеристика преобразователя немонотонна.

Температурная нестабильность ЦА-преобразователя характеризуется температурными коэффициентами погрешности полной шкалы и погрешности смещения нуля.

Погрешности полной шкалы и смещения нуля могут быть устранены калибровкой (подстройкой). Погрешности нелинейности простыми средствами устранить нельзя.

Динамические параметры

Динамические параметры ЦАП определяются по изменению выходного сигнала при скачкообразном изменении входного кода, обычно от величины "все нули" до "все единицы" (рис. 23).

Время установления - интервал времени от момента изменения входного кода (на рис. 23 t=0) до момента, когда в последний раз выполняется равенство

|Uвых-Uпш|=d/2,

Скорость нарастания - максимальная скорость изменения Uвых(t) во время переходного процесса. Определяется как отношение приращения DUвых ко времени t, за которое произошло это приращение. Обычно указывается в технических характеристиках ЦАП с выходным сигналом в виде напряжения. У ЦАП с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ.

Для перемножающих ЦАП с выходом в виде напряжения часто указываются частота единичного усиления и мощностная полоса пропускания, которые в основном определяются свойствами выходного усилителя.

Шумы ЦАП

Шум на выходе ЦАП может появляться по различным причинам, вызываемым физическими процессами, происходящими в полупроводниковых устройствах. Для оценки качества ЦАП с высокой разрешающей способностью принято использовать понятие среднеквадратического значения шума. Измеряются обычно в нВ/(Гц)1/2 в заданной полосе частот.

Выбросы (импульсные помехи) - крутые короткие всплески или провалы в выходном напряжении, возникающие во время смены значений выходного кода за счет несинхронности размыкания и замыкания аналоговых ключей в разных разрядах ЦАП. Например, если при переходе от значения кода 011...111 к значению 100...000 ключ самого старшего разряда ЦА-преобразователя с суммированием весовых токов откроется позже, чем закроются ключи младших разрядов, то на выходе ЦАП некоторое время будет существовать сигнал, соответствующий коду 000...000.

Выбросы характерны для быстродействующих ЦАП, где сведены к минимуму емкости, которые могли бы их сгладить. Радикальным способом подавления выбросов является использование устройств выборки-хранения. Выбросы оцениваются по их площади (в пВ*с).


Подобные документы

  • Преобразование аналоговой формы первичных сигналов для их обработки с помощью ЭВМ в цифровой n-разрядный код, и обратное преобразование цифровой информации в аналоговую. Практическая реализация схем аналого-цифровых и цифро-аналоговых преобразователей.

    реферат [89,2 K], добавлен 02.08.2009

  • Проектирование модуля ввода/вывода аналоговых, дискретных и цифровых сигналов, предназначенного для сбора данных со встроенных дискретных и аналоговых входов с последующей их передачей в сеть. Расчет временных задержек. Выбор резисторов на генераторе.

    курсовая работа [307,1 K], добавлен 25.03.2012

  • Производства аналоговых и цифро-аналоговых интегральных микросхем. Факторы, требующие учета при проектировании. Маршрут проектирования аналоговых интегральных систем. Средства проектирования пакета Cadence. Влияние цифрового шума на аналоговые блоки.

    реферат [147,6 K], добавлен 13.02.2014

  • Способы оцифровки звука. Процесс дискретизации и квантования. Аналогово-цифровые и цифро-аналоговые преобразователи. Классификация и характеристика компьютерных вирусов, механизмы и каналы их распространения. Противодействие обнаружению вирусов.

    контрольная работа [178,7 K], добавлен 15.12.2014

  • Цифро-аналоговое и аналогово-цифровое преобразование звуковой информации. Разработка дистанционного курса "Использование аудиоинформации при создании цифровых образовательных ресурсов": анализ предметной области, проект структуры и содержания ресурса.

    курсовая работа [3,8 M], добавлен 15.05.2013

  • Классификация и важнейшие принципы организации запоминающих устройств и систем памяти. Микросхемы оперативных (статических и динамических) и постоянных носителей информации. Их внутренняя структура, основы функционирования и тактовая диаграмма.

    реферат [706,5 K], добавлен 09.08.2011

  • Методика и основные этапы исследования физических процессов и сложных динамических систем, которые описываются системами дифференциальных уравнений высшего порядка с большим количеством нелинейностей с помощью специальных аналоговых вычислительных машин.

    курсовая работа [121,5 K], добавлен 12.05.2009

  • Оценка риска статического сбоя по всем выходным переменным. Анализ цифровых схем по методу простой итерации и событийному методу. Моделирование аналоговых схем: метод узловых потенциалов и переменных состояния. Анализ цифровых схем по методам Зейделя.

    контрольная работа [382,1 K], добавлен 10.11.2010

  • Определение статических электромеханических (естественных и искусственных) характеристик двигателя постоянного тока с независимым возбуждением. Показатели его свойств. Расчет и построение динамических, временных и частотных характеристик в среде Matlab.

    лабораторная работа [513,6 K], добавлен 02.12.2014

  • Язык программирования Java, история и предпосылки его создания. Переменные, именованные константы, массивы, перечисления. Интерфейсы и обратные вызовы в Java. Удаленный вызов процедуры: общие сведения. Передача параметров при удаленном вызове процедур.

    курс лекций [526,7 K], добавлен 24.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.