Системы счисления. Кодирование информации в ЭВМ

Позиционные системы счисления. Двоичная система счисления: основные сведения. Взаимный перевод двоичных и десятичных чисел и элементарные двоичные арифметические действия. Способы кодирования текстовой, числовой, графической и звуковой информации.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 29.06.2010
Размер файла 88,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

25

Федеральное агентство по образованию

ГОУ "Санкт-Петербургский государственный политехнический

университет"

Чебоксарский институт экономики и менеджмента (филиал)

Кафедра высшей математики и информационных технологий

Контрольная работа

По курсу: "Информатика"

На тему: "Системы счисления. Кодирование информации в ЭВМ".

Выполнила студентка

Й курса заочного отделения

Специальности ЭиМ

№080502-51/09-109

Ананьева Ольга Валерьевна

Проверил Фифунов Павел Анатольевич

Чебоксары 2010

Содержание

  • Введение
    • 1. Двоичная система счисления: основные сведения
    • 2. Взаимный перевод двоичных и десятичных чисел и элементарные двоичные арифметические действия
    • 2.1 Представление двоичных чисел и перевод их в десятичные
    • 2.2 Преобразование десятичных чисел в двоичные
    • 2.2.1 Метод вычитания
    • 2.2.2 Метод деления
    • 2.2.3 Метод умножения
    • 2.3 Арифметические действия над двоичными числами
    • 2.3.1 Двоичное сложение
    • 2.3.2 Двоичное вычитание
    • 2.3.3 Двоичное умножение
    • 2.3.4 Двоичное деление
    • 3. Кодирование информации
    • 4. Способы кодирования информации
    • 4.1 Кодирование числовой информации
    • 4.2 Кодирование текстовой информации
    • 4.3 Кодирование графической информации
    • 4.4 Кодирование звуковой информации
    • Заключение
    • Список использованной литературы

Введение

Системой счисления называют систему приемов и правил, позволяющих устанавливать взаимно-однозначное соответствие между любым числом и его представлением в виде совокупности конечного числа символов. Множество символов, используемых для такого представления, называют цифрами.

В зависимости от способа изображения чисел с помощью цифр системы счисления делятся на позиционные и непозиционные.

В непозиционных системах любое число определяется как некоторая функция от численных значений совокупности цифр, представляющих это число.

Цифры в непозиционных системах счисления соответствуют некоторым фиксированным числам. Пример непозиционной системы - рассмотренная ранее римская система счисления.

Дpевние египтяне пpименяли систему счисления, состоящую из набоpа символов, изобpажавших pаспpостpаненные пpедметы быта. Совокупность этих символов обозначала число. Расположение их в числе не имело значения, отсюда и появилось название.

Исторически первыми системами счисления были именно непозиционные системы. Одним из основных недостатков является трудность записи больших чисел. Запись больших чисел в таких системах либо очень громоздка, либо алфавит системы чрезвычайно велик.

В вычислительной технике непозиционные системы не применяются.

Систему счисления называют позиционной, если одна и та же цифра может принимать различные численные значения в зависимости от номера разряда этой цифры в совокупности цифр, представляющих заданное число. Пример такой системы - арабская десятичная система счисления.

Количества и количественные составляющие, существующие реально могут отображаться различными способами. В общем случае в позиционной системе счисления число N может быть представлено как:

, где:

- основание системы счисления (целое положительное число, равное числу цифр в данной системе);

- любые цифры из интервала от нуля до .

Основание позиционной системы счисления определяет ее название. В вычислительной технике применяются двоичная, восьмеричная, десятичная и шестнадцатеричная системы. В дальнейшем, чтобы явно указать используемую систему счисления, будем заключать число в скобки и в нижнем индексе указывать основание системы счисления.

Каждой позиции в числе соответствует позиционный (разрядный) коэффициент или вес.

Пример: Способ образования десятичного числа

Для десятичной системы соответствия между позицией и весом следующее:

в общем случае:

В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем - это простота и легкость выполнения арифметических операций над числами, записанными в этих системах.

Вычислительные машины в принципе могут быть построены в любой системе счисления. Но столь привычная для нас десятичная система окажется крайне неудобной. Если в механических вычислительных устройствах, использующих десятичную систему, достаточно просто применить элемент со множеством состояний (колесо с десятью зубьями), то в электронных машинах надо было бы иметь 10 различных потенциалов в цепях.

1. Двоичная система счисления: основные сведения

В двоичной системе счисления используются только два символа, что хорошо согласуется с техническими характеристиками цифровых схем. Действительно очень удобно представлять отдельные составляющие информации с помощью двух состояний:

Отверстие есть или отсутствует (перфолента или перфокарта);

Материал намагничен или размагничен (магнитные ленты, диски);

Уровень сигнала большой или маленький.

Существуют специальные термины, широко используемые в вычислительной технике: бит, байт и слово.

Битом называют один двоичный разряд. Крайний слева бит числа называют старшим разрядом (он имеет наибольший вес), крайний справа - младшим разрядом (он имеет наименьший вес).

Восьмибитовая единица носит название байта.

Многие типы ЭВМ и дискретных систем управления перерабатывают информацию порциями (словами) по 8, 16 или 32 бита (1, 2 и 4 байта). Двоичное слово, состоящее из двух байт, показано на рисунке 1.

Рис. 1 Бит, байт и слово

2. Взаимный перевод двоичных и десятичных чисел и элементарные двоичные арифметические действия

2.1 Представление двоичных чисел и перевод их в десятичные

Совершенно очевидно, что двоичное число представляется последовательностью нулей и единиц - разрядов. Как и в любой позиционной системе, каждому разряду присвоен определенный вес - показатель степени основания системы. Веса первых 10 позиций представлены в таблице 1.

Таблица 1. Веса первых десяти позиций двоичной системы счисления

Позиция

9

8

7

6

5

4

3

2

1

0

Вес

512

256

128

64

32

16

8

4

2

1

Образование

В двоичной системе счисления даже сравнительно небольшие числа занимают много позиций.

Как и в десятичной системе, в двоичной системе счисления для отделения дробной части используется точка (двоичная точка). Каждая позиция слева от этой точки также имеет свой вес - вес разряда дробной части числа. Значение веса в этом случае равно основанию системы счисления (т.е. двойке), возведенному в отрицательную степень.

Получить десятичное число из двоичного чрезвычайно просто. Согласно формуле 2.3 для двоичной системы счисления получаем:

Пример. Перевод двоичного числа в десятичное

2.2 Преобразование десятичных чисел в двоичные

Перевод из двоичной системы в десятичную несколько сложнее. Рассмотрим несколько алгоритмов.

2.2.1 Метод вычитания

Из десятичного числа вычитаются наибольшая возможная степень двойки, в соответствующий разряд двоичного числа записывается единица, если разность меньше следующей степени двойки, то далее записывается нуль, а если больше записывается единица и опять производится вычитание, и так до тех пор, пока исходное число не уменьшится до нуля.

Пример. Перевод десятичного числа в двоичное методом вычитания

2.2.2 Метод деления

Другим методом является так называемый метод деления. Он применяется для преобразования целых чисел. Ниже приведен его алгоритм.

Разделим нацело десятичное число на двойку. Если есть остаток, запишем в младший разряд единицу, а если нет - нуль и снова разделим результат от первого деления. Повторим процедуру так до тех пор, пока окончательный результат не обнулиться.

Пример. Перевод десятичного числа в двоичное методом деления

2

148

-74

2

1

74

-37

2

0

36

-18

2

1

18

-9

2

0

8

-4

2

1

4

-2

2

0

2

-1

2

0

0

0

1

старший разряд

(10010101) 2= (149) 10

ответ

2.2.3 Метод умножения

И, наконец, метод умножения. Метод применяется для преобразования десятичных дробей (чисел меньших единицы).

Число умножается на 2, если результат 1, то в старший разряд записывается единица, если нет, то нуль. Умножаем на 2 дробную часть результата и повторяем процедуру. И так далее до получения нужной степени точности или до обнуления результата.

Пример. Перевод десятичного числа в двоичное методом умножения

2.3 Арифметические действия над двоичными числами

Арифметика двоичной системы счисления основана на использовании таблиц сложения, вычитания и умножения. Эти таблицы чрезвычайно просты:

Таблица

сложения

0

+

0

=

0

0

+

1

=

1

1

+

0

=

1

1

+

1

=

10

Таблица

умножения

0

*

0

=

0

0

*

1

=

0

1

*

0

=

0

1

*

1

=

1

Таблица

вычитания

0

-

0

=

0

1

-

0

=

1

1

-

1

=

1

10

-

1

=

1

2.3.1 Двоичное сложение

Двоичное сложение выполняется по тем же правилам, что и десятичное, с той лишь разницей, что перенос в следующий разряд производиться после того, как сумма достигнет не десяти, а двух.

Пример. Сложение двоичных чисел и

+

101101

111110

010011

- поразрядная сумма без учета переносов

+

1011000

- переносы

0010011

1001011

- поразрядная сумма без учета повторных переносов

+

0100000

- повторные переносы

1001011

1101011

- окончательный результат

Легко произвести проверку:

,

,

,

.

Пример. Сложение двоичных чисел и

+

110,

1011

10111,

10101

10001,

00011

- поразрядная сумма без учета переносов

+

11 1,

1

- переносы

10001,

00011

11100,

01011

- поразрядная сумма без учета повторных переносов

+

1,

- повторные переносы

11100,

01011

11110,

01011

- окончательный результат

Сложение нескольких чисел вызывает некоторые трудности, так как в результате поразрядного сложения могут получится переносы, превышающие единицу.

2.3.2 Двоичное вычитание

Вычитание в двоичной системе выполняется аналогично вычитанию в десятичной системе счисления. При необходимости, когда в некотором разряде приходится вычитать единицу из нуля, занимается единица из следующего старшего разряда. Если в следующем разряде нуль, то заем делается в ближайшем старшем разряде, в котором стоит единица. При этом следует понимать, что занимаемая единица равна двум единицам данного разряда, т.е. вычитание выполняется по следующему правилу:

Пример. Вычитание двоичных чисел и

-

11010,

1011

1101,

01111

1101,

00111

Конечно, математически вычитание выполнить несложно. Однако, если поступать таким образом, то к примеру в ЭВМ придется для выполнения сложения и вычитания иметь два блока: сумматор и вычитатель. Поэтому поступают следующим образом: вычитание можно представить как сложение положительного и отрицательного чисел, необходимо только подходящее представление для отрицательного числа.

Рассмотрим четырехразрядный десятичный счетчик, какие в автомобиле отсчитывают пройденный путь.

Пусть он показывает число 2, если вращать его в обратном направлении, то сначала появится 1, затем 0, после 0 появится число 9999. Сложим, к примеру, 6 с этим числом:

+

6

9999

10005

Если пренебречь единицей переноса и считать 9999 аналогом -1, то получим верный результат: .

Число 9999 называется десятичным дополнением числа 1.

Таким образом, в десятичной системе счисления отрицательные числа могут быть представлены в форме десятичного дополнения, а знак минус можно опустить.

Двоичное дополнение числа определяется как то число, которое будучи прибавлено к первоначальному числу, даст только единицу переноса в старшем разряде.

Пример. Двоичное дополнение числа

+

010101111

- число

101010001

- двоичное дополнение

1000000000

- сумма

- единица переноса

Для получения двоичного дополнения необходимо:

получить обратный код, который образуется инвертированием каждого бита:

010101111

- число

101010000

- обратный код

прибавить к обратному коду единицу, образовав таким образом дополнительный код:

+

101010000

- обратный код

1

101010001

- дополнительный код

Пример. Вычитание в дополнительном коде

- обратный код,

- дополнительный код.

1001012=510 (верно).

2.3.3 Двоичное умножение

Умножение двух двоичных чисел выполняется так же, как и умножение десятичных. Сначала получаются частичные произведения и затем их суммируют с учетом веса соответствующего разряда множителя.

Отличительной особенностью умножения в двоичной системе счисления является его простота, обусловленная простотой таблицы умножения. В соответствии с ней, каждое частичное произведение или равно нулю, если в соответствующем разряде множителя стоит нуль, или равно множимому, сдвинутому на соответствующее число разрядов, если в соответствующем разряде множителя стоит единица. Таким образом, операция умножения в двоичной системе сводится к операциям сдвига и сложения.

Умножение производится, начиная с младшего или старшего разряда множителя, что и определяет направление сдвига. Если сомножители имеют дробные части, то положение запятой в произведении определяется по тем же правилам, что и для десятичных чисел.

Пример: Умножение двоичных чисел и

2.3.4 Двоичное деление

Деление чисел в двоичной системе производится аналогично делению десятичных чисел. Рассмотрим деление двух целых чисел, так как делимое и делитель всегда могут быть приведены к такому виду путем перениесения запятой в делимом и делителе на одиноаковое число разрядов и дописывания необходимых нулей. Деление начинается с того, что от делимого слева отделяется минимальная группа разрядов, которая, рассматриваемая как число, превышает или равна делителю. Дальнейшие действия выполняются по обычным правилам, причем последняя целая цифра частного получается тогда, когда все цифры делимого исчерпаны.

Пример. Деление двоичных чисел

1) 18: 2

2) 14: 4

10010

10

1110

100

10

1001= (9) 10

100

11,1= (3,5) 10

00

110

00

100

001

100

000

100

10

0

10

00

Таким образом, выполнение арифметических операций в двоичной системе счисления достаточно просто. Особенно просто выполнять операции сложения, вычитания и умножения. Благодоря этому, применение двоичной системы в вычислительных машинах позволяет упростить схемы устройств, в которых осуществляются операции над числами.

3. Кодирование информации

Код - это набор условных обозначений (или сигналов) для записи (или передачи) некоторых заранее определенных понятий.

Кодирование информации - это процесс формирования определенного представления информации. В более узком смысле под термином "кодирование" часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Обычно каждый образ при кодировании (иногда говорят - шифровке) представлении отдельным знаком.

Знак - это элемент конечного множества отличных друг от друга элементов.

В более узком смысле под термином "кодирование" часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т.д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью программ для компьютера можно выполнить преобразования полученной информации, например "наложить" друг на друга звуки от разных источников.

Аналогичным образом на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми. Ввод чисел в компьютер и вывод их для чтения человеком может осуществляться в привычной десятичной форме, а все необходимые преобразования выполняют программы, работающие на компьютере.

4. Способы кодирования информации

Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Двоичное кодирование - один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.

Кодирование символьной (текстовой) информации.

Основная операция, производимая над отдельными символами текста - сравнение символов.

При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.

Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при кодировании и декодировании одного и того же текста использовалась одна и та же таблица.

Таблица перекодировки - таблица, содержащая упорядоченный некоторым образом перечень кодируемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и обратно.

Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII, CP1251, Unicode.

Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.

4.1 Кодирование числовой информации

Сходство в кодировании числовой и текстовой информации состоит в следующем: чтобы можно было сравнивать данные этого типа, у разных чисел (как и у разных символов) должен быть различный код. Основное отличие числовых данных от символьных заключается в том, что над числами кроме операции сравнения производятся разнообразные математические операции: сложение, умножение, извлечение корня, вычисление логарифма и пр. Правила выполнения этих операций в математике подробно разработаны для чисел, представленных в позиционной системе счисления.

Основной системой счисления для представления чисел в компьютере является двоичная позиционная система счисления.

4.2 Кодирование текстовой информации

В настоящее время, большая часть пользователей, при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Подсчитаем, сколько всего символов и какое количество бит нам нужно.

10 цифр, 12 знаков препинания, 15 знаков арифметических действий, буквы русского и латинского алфавита, ВСЕГО: 155 символов, что соответствует 8 бит информации.

Единицы измерения информации.

1 байт = 8 бит

1 Кбайт = 1024 байтам

1 Мбайт = 1024 Кбайтам

1 Гбайт = 1024 Мбайтам

1 Тбайт = 1024 Гбайтам

Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой

Основным отображением кодирования символов является код ASCII - American Standard Code for Information Interchange - американский стандартный код обмена информацией, который представляет из себя таблицу 16 на 16, где символы закодированы в шестнадцатеричной системе счисления.

4.3 Кодирование графической информации

Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).

Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения

Векторное изображение представляет собой графический объект, состоящий из элементарных геометрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется координатами точек и величиной радиуса. Для каждой линии указывается двоичные коды типа линии (сплошная, пунктирная, штрихпунктирная), толщины и цвета.

Растровое изображение представляет собой совокупность точек (пикселей), полученных в результате дискретизации изображения в соответствии с матричным принципом.

Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.

Pixel (picture element - элемент рисунка) - минимальная единица изображения, цвет и яркость которой можно задать независимо от остального изображения.

В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображаемые на экране дисплея, получаемые с помощью сканера.

Качество изображения будет тем выше, чем "плотнее" расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.

Для черно-белого изображения код цвета каждого пикселя задается одним битом.

Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.

Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возможность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета - так называемый режим “истинного цвета" (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров.

4.4 Кодирование звуковой информации

Из курса физики вам известно, что звук - это колебания воздуха. По своей природе звук является непрерывным сигналом. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение.

Для компьютерной обработки аналоговый сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел, а для этого его необходимо дискретизировать и оцифровать.

Можно поступить следующим образом: измерять амплитуду сигнала через равные промежутки времени и записывать полученные числовые значения в память компьютера.

Заключение

Наиболее удобной для построения ЭВМ оказалась двоичная система счисления, т.е. система счисления, в которой используются только две цифры: 0 и 1, т.к с технической точки зрения создать устройство с двумя состояниями проще, также упрощается различение этих состояний.

Для представления этих состояний в цифровых системах достаточно иметь электронные схемы, которые могут принимать два состояния, четко различающиеся значением какой-либо электрической величины - потенциала или тока. Одному из значений этой величины соответствует цифра 0, другому - 1. Относительная простота создания электронных схем с двумя электрическими состояниями и привела к тому, что двоичное представление чисел доминирует в современной цифровой технике. При этом 0 обычно представляется низким уровнем потенциала, а 1 - высоким уровнем. Такой способ представления называется положительной логикой.

Кодирование информации - это процесс формирования определенного представления информации. В более узком смысле под термином "кодирование" часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (звуки, изображения, показания приборов и т.д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью компьютерных программ можно преобразовывать полученную информацию, например "наложить" друг на друга звуки от разных источников.

Аналогично на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

Задание. Вариант 3

Ведомость расхода продуктов за январь месяц 2010 г.

№ п/п

Наименование продукта

Цена

Расход по норме

Расход фактический

Сумма отклонений (гр.7-гр.5)

Кол-во

упаковок

Сумма

гр.3*гр.4

Кол-во

Сумма гр.3*гр.6

Плюс +

Минус -

1

2

3

4

5

6

7

8

9

1

Картофель

35

6

210

5

175

35

0

2

Яйца

36,5

4

146

4

146

0

0

3

Огурцы

65

3

195

7

455

0

260

4

Помидоры

86

5

430

6

516

0

86

5

Колбаса

132

8

1056

8

1056

0

0

ИТОГО:

2037

2348

35

346

Ведомость расхода продуктов за январь месяц 2010 г.

Наименование продукта

Цена

Расход по норме

Расход фактический

Сумма отклонений (гр.7-гр.5)

Кол-во упаковок

Сумма гр.3*гр.4

Кол-во

Сумма гр.3*гр.6

+

-

1

2

3

4

5

6

7

8

9

1

Картофель

35

6

=C5*D5

5

=C5*F5

=ЕСЛИ (E5>G5; E5-G5; 0)

=ЕСЛИ (E5<G5; G5-E5; 0)

2

Яйца

36,5

4

=C6*D6

4

=C6*F6

=ЕСЛИ (E6>G6; E6-G6; 0)

=ЕСЛИ (E6<G6; G6-E6; 0)

3

Огурцы

65

3

=C7*D7

7

=C7*F7

=ЕСЛИ (E7>G7; E7-G7; 0)

=ЕСЛИ (E7<G7; G7-E7; 0)

4

Помидоры

86

5

=C8*D8

6

=C8*F8

=ЕСЛИ (E8>G8; E8-G8; 0)

=ЕСЛИ (E8<G8; G8-E8; 0)

5

Колбаса

132

8

=C9*D9

8

=C9*F9

=ЕСЛИ (E9>G9; E9-G9; 0)

=ЕСЛИ (E9<G9; G9-E9; 0)

ИТОГО:

=СУММ (E5: E9)

=СУММ (G5: G9)

=СУММ (H5: H9)

=СУММ (I5: I9)

№ п/п

Наименование

продукта

Цена

Расход по норме

Расход фактический

Сумма отклонений (гр.7-гр.5)

Кол-во упаковок

Сумма

гр.3*гр.4

Кол-во

Сумма гр.3*гр.6

Плюс +

Минус -

1

2

3

4

5

6

7

8

9

1

Картофель

35

6

210

5

175

35

0

2

Яйца

36,5

4

146

4

146

0

0

3

Огурцы

65

3

195

7

455

0

260

4

Помидоры

86

5

430

6

516

0

86

5

Колбаса

132

8

1056

8

1056

0

0

ИТОГО:

2037

2348

35

346

Список использованной литературы

1. Выгодский М.Я. Справочник по элементарной математике, М.: Государственное издательство технико-теоретической литературы, 1956.

2. Каган Б.М. Электронные вычислительные машины и системы, М.: Энергоатомиздат, 1985.

3. Майоров С.А., Кириллов В.В., Приблуда А.А., Введение в микроЭВМ, Л.: Машиностроение, 1988.

4. Фомин С.В. Системы счисления, М.: Наука, 1987.


Подобные документы

  • Определение понятия и видов систем счисления - символического метода записи чисел, представления чисел с помощью письменных знаков. Двоичные, смешанные системы счисления. Перевод из одной системы счисления в другую и простейшие арифметические операции.

    курсовая работа [232,6 K], добавлен 16.01.2012

  • История систем счисления, позиционные и непозиционные системы счисления. Двоичное кодирование в компьютере. Перевод чисел из одной системы счисления в другую. Запись цифр в римской нумерации. Славянская нумерация, сохранившаяся в богослужебных книгах.

    презентация [516,8 K], добавлен 23.10.2015

  • Система счисления как способ записи информации с помощью заданного набора цифр. История развития различных систем счисления. Позиционные и непозиционные системы. Вавилонская, иероглифическая, римская система счисления. Система счисления майя и ацтеков.

    презентация [3,2 M], добавлен 05.05.2012

  • Обработка информации и вычислений в вычислительной машине. Непозиционные и позиционные системы счисления. Примеры перевода десятичного целого и дробного числа в двоичную систему счисления. Десятично-шестнадцатеричное и обратное преобразование чисел.

    контрольная работа [41,2 K], добавлен 21.08.2010

  • Понятие и классификация систем счисления. Перевод чисел из одной системы счисления в другую. Перевод правильных и неправильных дробей. Выбор системы счисления для применения в ЭВМ. Навыки обращения с двоичными числами. Точность представления чисел в ЭВМ.

    реферат [62,0 K], добавлен 13.01.2011

  • Система счисления как способ записи (изображения) чисел. История появления и развития различных систем счисления: двоичная, восьмеричная, десятичная и шестнадцатеричная. Основные принципы и правила алгоритма перевода из одной системы счисления в другую.

    курсовая работа [343,1 K], добавлен 11.11.2014

  • Кодирование символьной и числовой информации. Основные системы счисления. Двоичная система счисления. Устройства вывода информации. Правила выполнения арифметических операций. Логические основы построения, функциональные узлы ЭВМ. Синтез логических схем.

    презентация [1,2 M], добавлен 08.11.2016

  • Примеры правила перевода чисел с одной системы в другую, правила и особенности выполнения арифметических операций в двоичной системе счисления. Перевод числа с десятичной системы в двоичную систему счисления. Умножение целых чисел в двоичной системе.

    контрольная работа [37,3 K], добавлен 13.02.2009

  • Двоичный код, особенности кодирования и декодирования информации. Система счисления как совокупность правил записи чисел с помощью определенного набора символов. Классификация систем счисления, специфика перевода чисел в позиционной системе счисления.

    презентация [16,3 K], добавлен 07.06.2011

  • Роль и практическое значение автоматизации вычислений и обработки данных. Представление информации в компьютере, сущность системы счисления. Перевод числа из одной системы счисления в другую. Арифметические операции в позиционных системах счисления.

    контрольная работа [1,2 M], добавлен 23.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.