Накопители и их устройство
Сущность, принцип устройства и применения накопителей на жестких и гибких магнитных дисках. Их основные характеристики, параметры, влияющие на работу и взаимосвязь с другими составляющими компьютера. Анализ типичных неисправностей различных карт памяти.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 29.03.2010 |
Размер файла | 33,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Накопители на жестких магнитных дисках (НЖМД)
НЖМД - это основное устройство для долговременного хранения больших объемов данных и программ. Другие названия: жесткий диск, винчестер, HDD (Hard Disk Drive). Внешне, винчестер представляет собой плоскую, герметически закрытую коробку, внутри которой находятся на общей оси находятся несколько жестких алюминиевых или стеклянных пластинок круглой формы. Поверхность любого из дисков покрыта тонким ферромагнитным слоем (вещество, которое реагирует на внешнее магнитное поле), собственно на нем хранятся записанные данные. При этом запись проводится на обе поверхности каждой пластины (кроме крайних) с помощью блока специальных магнитных головок. Каждая головка находится над рабочей поверхностью диска на расстоянии 0,5-0,13 мкм. Пакет дисков вращается непрерывно и с большой частотой (4500-10000 об/мин), поэтому механический контакт головок и дисков недопустим.
Запись данных в жестком диске осуществляется следующим образом. При изменении силы тока, проходящего через головку, происходит изменение напряженности динамического магнитного поля в щели между поверхностью и головкой, что приводит к изменению стационарного магнитного поля ферромагнитных частей покрытия диска. Операция считывания происходит в обратном порядке. Намагниченные частички ферромагнитного покрытия являются причиной электродвижущей силы самоиндукции магнитной головки. Электромагнитные сигналы, которые возникают при этом, усиливаются и передаются на обработку.
Работой винчестера руководит специальное аппаратно-логическое устройство - контроллер жесткого диска. В прошлом это была отдельная дочерняя плата, которую подсоединяли через слоты к материнской плате. В современных компьютерах функции контроллера жесткого диска выполняют специальные микросхемы, расположенные в чипсете.
В накопителе может быть до десяти дисков. Их поверхность разбивается на круги, которые называются дорожками (track). Каждая дорожка имеет свой номер. Дорожки с одинаковыми номерами, расположенные одна над другой на разных дисках образуют цилиндр. Дорожки на диске разбиты на секторы (нумерация начинается с единицы). Сектор занимает 571 байт: 512 отведено для записи нужной информации, остальные под заголовок (префикс), определяющий начало и номер секции и окончание (суффикс), где записана контрольная сумма, нужная для проверки целостности хранимых данных.
Секторы и дорожки образуются во время форматирования диска. Форматирование выполняет пользователь с помощью специальных программ. На неформатированный диск не может быть записана никакая информация. Жесткий диск можно разбить на логические диски. Это удобно, поскольку наличие нескольких логических дисков упрощает структуризацию данных, хранящихся на жестком диске.
Существует огромное количество разных моделей жестких дисков многих фирм, таких как Seagate, Maxtor, Quantum, Fujitsu и т.д. Для обеспечения совместимости винчестеров, разработаны стандарты на их характеристики, определяющие номенклатуру соединительных проводников, их размещение в переходных разъемах, электрические параметры сигналов. Распространенными являются стандарты интерфейсов IDE (Integrated Drive Electronics) или ATA и более продуктивные EIDE (Enhanced IDE) и SCSI (Small Computer System Interface).
Характеристики интерфейсов, с помощью которых винчестеры связаны с материнской платой, в значительной степени определяют производительность современных жестких дисков.
Жесткие диски (винчестеры), физическое устройство
Накопители на жестких дисках объединяют в одном корпусе носитель (носители) и устройство чтения/записи, а также, нередко, и интерфейсную часть, называемую собственно контроллером жесткого диска. Типичной конструкцией жесткого диска является исполнение в виде одного устройства - камеры, внутри которой находится один или более дисковых носителей насаженных на один шпиндель и блок головок чтения/записи с их общим приводящим механизмом. Обычно, рядом с камерой носителей и головок располагаются схемы управления головками, дисками и, часто, интерфейсная часть и/или контроллер. На интерфейсной карте устройства располагается собственно интерфейс дискового устройства, а контроллер с его интерфейсом располагается на самом устройстве. С интерфейсным адаптером схемы накопителя соединяются при помощи комплекта шлейфов.
Информация заносится на концентрические дорожки, равномерно распределенные по всему носителю. В случае большего, чем один диск, числа носителей все дорожки, находящиеся одна под другой, называются цилиндром.
Операции чтения/записи производятся подряд над всеми дорожками цилиндра, после чего головки перемещаются на новую позицию.
Герметичная камера предохраняет носители не только от проникновения механических частиц пыли, но и от воздействия электромагнитных полей. Необходимо заметить, что камера не является абсолютно герметичной т.к. соединяется с окружающей атмосферой при помощи специального фильтра, уравнивающего давление внутри и снаружи камеры. Однако, воздух внутри камеры максимально очищен от пыли, т.к. малейшие частички могут привести к порче магнитного покрытия дисков и потере данных и работоспособности устройства.
Диски вращаются постоянно, а скорость вращения носителей довольно высокая (от 4500 до 10000 об/мин), что обеспечивает высокую скорость чтения/записи. По величине диаметра носителя чаще других производятся 5.25, 3.14, 2.3 дюймовые диски. На диаметр носителей несменных жестких дисков не накладывается никакого ограничения со стороны совместимости и переносимости носителя, за исключением форм-факторов корпуса ПК, поэтому, производители выбирают его согласно собственным соображениям.
В настоящее время, для позиционирования головок чтения/записи, наиболее часто, применяются шаговые и линейные двигатели механизмов позиционирования и механизмы перемещения головок в целом.
В системах с шаговым механизмом и двигателем головки перемещаются на определенную величину, соответствующую расстоянию между дорожками. Дискретность шагов зависит либо от характеристик шагового двигателя, либо задается серво-метками на диске, которые могут иметь магнитную или оптическую природу. Для считывания магнитных меток используется дополнительная серво-головка, а для считывания оптических - специальные оптические датчики.
В системах с линейным приводом головки перемещаются электромагнитом, а для определения необходимого положения служат специальные сервисные сигналы, записанные на носитель при его производстве и считываемые при позиционировании головок. Во многих устройствах для серво-сигналов используется целая поверхность и специальная головка или оптический датчик.
Такой способ организации серво-данных носит название выделенная запись серво-сигналов. Если серво-сигналы записываются на те же дорожки, что и данные и для них выделяется специальный серво-сектор, а чтение производится теми же головками, что и чтение данных, то такой механизм называется встроенная запись серво-сигналов. Выделенная запись обеспечивает более высокое быстродействие, а встроенная - повышает емкость устройства.
Линейные приводы перемещают головки значительно быстрее, чем шаговые, кроме того, они позволяют производить небольшие радиальные перемещения "внутри" дорожки, давая возможность отследить центр окружности серводорожки.
Этим достигается положение головки, наилучшее для считывания с каждой дорожки, что значительно повышает достоверность считываемых данных и исключает необходимость временных затрат на процедуры коррекции. Как правило, все устройства с линейным приводом имеют автоматический механизм парковки головок чтения/записи при отключении питания устройства.
Парковкой головок называют процесс их перемещения в безопасное положение. Это - так называемое "парковочное" положение головок в той области дисков, где ложатся головки.
Там, обычно, не записано никакой информации, кроме серво-данных, это специальная "посадочная зона" (Landing Zone). Для фиксации привода головок в этом положении в большинстве ЖД используется маленький постоянный магнит, когда головки принимают парковочное положение - этот магнит соприкасается с основанием корпуса и удерживает позиционер головок от ненужных колебаний.
При запуске накопителя схема управления линейным двигателем "отрывает" фиксатор, подавая на двигатель, позиционирующий головки, усиленный импульс тока. В ряде накопителей используются и другие способы фиксации - основанные, например, на воздушном потоке, создаваемом вращением дисков.
В запаркованном состоянии накопитель можно транспортировать при достаточно плохих физических условиях (вибрация, удары, сотрясения), т.к. нет опасности повреждения поверхности носителя головками.
В настоящее время на всех современных устройствах парковка головок накопителей производится автоматически внутренними схемами контроллера при отключении питания и не требует для этого никаких дополнительных программных операций, как это было с первыми моделями.
Во время работы все механические части накопителя подвергаются тепловому расширению, и расстояния между дорожками, осями шпинделя и позиционером головок чтения/записи меняется.
В общем случае это никак не влияет на работу накопителя, поскольку для стабилизации используются обратные связи, однако некоторые модели время от времени выполняют рекалибровку привода головок, сопровождаемую характерным звуком, напоминающим звук при первичном старте, подстраивая систему к изменившимся расстояниям.
Плата электроники современного накопителя на жестких магнитных дисках представляет собой самостоятельный микрокомпьютер с собственным процессором, памятью, устройствами ввода/вывода и прочими традиционными атрибутами присущими компьютеру.
На плате могут располагаться множество переключателей и перемычек, однако не все из них предназначены для использования пользователем.
Как правило, руководства пользователя описывают назначение только перемычек, связанных с выбором логического адреса устройства и режима его работы, а для накопителей с интерфейсом SCSI - и перемычки, отвечающие за управление резисторной сборкой (стабилизирующей нагрузкой в цепи).
Среди других параметров, которые влияют на быстродействие HDD следует отметить следующие:
· скорость обращения дисков - в наше время выпускаются накопители EIDE с частотой обращения 4500-7200 об/мин, и накопители SCSI - 7500-10000 об/мин;
· емкость кэш-памяти - во всех современных дисковых накопителях устанавливается кэш-буфер, ускоряющий обмен данными; чем больше его емкость, тем выше вероятность того, что в кэш-памяти будет необходимая информация, которую не надо считывать с диска (этот процесс в тысячи раз медленней); емкость кэш-буфера в разных устройствах может изменяться в границах от 64 Кбайт до 2Мбайт;
· среднее время доступа - время (в миллисекундах), на протяжении которого блок головок смещается с одного цилиндра на другой. Зависит от конструкции привода головок и составляет приблизительно 10-13 миллисекунд;
· время задержки - это время от момента позиционирования блока головок на нужный цилиндр до позицирования конкретной головки на конкретный сектор, другими словами, это время поиска нужного сектора;
· скорость обмена - определяет объемы данных, которые могут быть переданы из накопителя к микропроцессору и в обратном направлении за определенные промежутки времени; максимальное значение этого параметра равно пропускной способности дискового интерфейса и зависит от того, какой режим используется: PIO или DMA; в режиме PIO обмен данными между диском и контроллером происходит при непосредственном участии центрального процессора, чем больше номер режима PIO, тем выше скорость обмена; работа в режиме DMA (Direct Memory Access) разрешает передавать данные непосредственно в оперативную память без участия процессора; скорость передачи данных в современных жестких дисках колеблется в диапазоне 30-60 Мбайт/с.
Накопители на гибких магнитных дисках (НГМД)
НГМД или дисковод вмонтирован в системный блок. Гибкие носители для НГМД выпускают в виде дискет (другое название флоппи-диск). Собственно, носитель - это плоский диск со специальной, достаточно плотной пленкой, покрытой ферромагнитным слоем и помещенной в защитный конверт с подвижной задвижкой в верхней части. Дискеты используются, в основном, для оперативного переноса небольших объемов информации с одного компьютера на другой. Данные, записанные на дискете можно защитить от стирания или перезаписи. Для этого нужно передвинуть маленькую защитную задвижку в нижней части дискеты таким образом, чтобы образовалось открытое окошко. Для того, чтобы разрешить запись, эту задвижку следует переместить назад и закрыть окошко.
Лицевая панель дисковода выведена на переднюю панель системного блока, на ней расположены карман, закрытый шторкой, куда вставляют дискету, кнопка для вынимания дискеты и лампочка-индикатор. Дискета вставляется в дисковод верхней задвижкой вперед, ее нужно вставить в карман накопителя и плавно продвинуть вперед до щелчка. Правильное направление вставления дискеты помечено стрелкой на пластиковом корпусе. Чтобы вынуть дискету из накопителя, нужно нажать на его кнопку. Световой индикатор на дисководе показывает, что устройство занято (если лампочка горит, вынимать дискету не рекомендуется). В отличие от жесткого диска, диск в НГМД приводится во вращение только при команде чтения или записи, в другое время он находится в покое. Головка чтения-записи во время работы механически контактирует с поверхностью дискеты, что приводит к быстрому изнашиванию дискет.
Как и в случае жесткого диска, поверхность гибкого диска разбивается на дорожки, которые в свою очередь разбиваются на секторы. Секторы и дорожки получаются во время форматирования дискеты. Сейчас дискеты поставляются отформатироваными.
Основными параметрами дискеты является технологический размер (в дюймах), плотность записи и полная емкость. По размерам различают 3,5-дюймовые дискеты и 5,25-дюймовые дискеты (сейчас уже не используются). Плотность записи может быть простой SD (Single Density), двойной DD (Double Density) и высокой HD (High Density). Стандартная емкость 3,5-дюймовой дискеты - 1,44 Мбайт, возможно использование дискет емкостью 720 Кбайт. В настоящее время стандартом являются дискеты размером 3,5 дюйма, высокой плотности HD, имеющие емкость 1,44 Мбайта.
1. До чего дошёл прогресс!
Запоминающие устройства на основе микросхем флэш-памяти завоевали в наше время огромную популярность. Всем знакомы компьютерные флэш-диски - миниатюрные брелки с разъёмом USB. Без карты памяти одного из многочисленных форматов нельзя представить цифровой фотоаппарат или карманный компьютер. Слотами для сменных флэш-карт оснащается всё больше мобильных телефонов, плееров и других портативных и даже стационарных устройств, таких как DVD проигрыватели или фотопринтеры - это расширяет их функции и даёт пользователям гибкость и удобства неограниченной внешней памяти.
По существу, флэш-накопители превратились в универсальное средство хранения и переноса цифровой информации. И это не случайно: по практичности им просто нет равных. Большой и постоянно растущий объём, измеряющийся уже многими гигабайтами; высокое быстродействие и надёжность хранения данных; непревзойденная компактность; неприхотливость к внешней среде и отсутствие подвижных деталей; низкое энергопотребление и, наконец, удобство подключения и использования - вот секреты оглушительного успеха флэшек на рынке. Отсюда и массовый выпуск и повсеместная доступность этих высокотехнологичных изделий. Потребителей не могут не радовать постоянно снижающиеся цены, которые в ряде случаев уже меньше 1 руб. за Мбайт.
2. Оборотная сторона медали
Увы, ничего идеального в этом мире не бывает, за всё надо платить. В случае с флэш-накопителями, платить приходится надёжностью в эксплуатации. Этот важнейший показатель в последнее время оставляет желать лучшего, чему способствуют как технические обстоятельства, так и ситуация на рынке.
Во-первых, современная архитектура включает скоростные многофункциональные контроллеры и чипы памяти NAND с высокой плотностью упаковки данных. Это объективно повышает уязвимость флэшек к внешним воздействиям. С выпуском новых моделей, обостряется и проблема совместимости оборудования. Так, многие картридеры не поддерживают карты SD и CF большого объёма (карта может не опознаваться или даже портиться при форматировании). Избыточное количество форматов, форм-факторов и модификаций карт, сужает область применения каждого вида и затрудняет стандартизацию.
Во-вторых, жёсткая конкуренция вынуждает производителей всячески снижать себестоимость продукции, в том числе, за счет упрощения конструкции, перехода на более дешёвые комплектующие, смягчения контроля и т.п. Всё это закономерно отражается на надёжности. Что касается фирм категории «no name» , то о надёжности их изделий можно даже не вспоминать.
3. Всё может сломаться…
Жизнь показывает, что множество флэш-дисков и карт памяти выходят из строя по самым различным причинам. Гарантийный сервис не всегда доступен, учитывая разнообразие мест покупки. А уж о восстановлении информации, зачастую более ценной для владельца, чем сам носитель, речи вообще не идет. За этими услугами следует обращаться в специализированные организации.
В этой статье мы попытались систематизировать типичные для флэшек неисправности. Помимо симптомов сбоев, приводятся их причины, методы ремонта и восстановления данных, а также меры профилактики. Рекомендации нацелены на то, чтобы снизить риск поломки накопителей, и тем продлить им жизнь.
Вероятно, самой частой проблемой, связанной с флэшками, является их потеря. Технического решения эта проблема, похоже, не имеет :) , здесь всё зависит от аккуратности и внимательности владельца. Прикиньте стоимость информации, хранящейся на вашем накопителе, и впредь обращайтесь с ним как с денежным эквивалентом. Обязательно защитите конфиденциальные данные от посторонних глаз. Имеется ряд решений, пригодных в случае утери или хищения носителя: программное шифрование файлов и архивов, парольная защита раздела (с аппаратным шифрованием уровня AES-128 или без него), биометрическая защита (встроенный сенсор отпечатков пальцев) и т.п. По надёжности методы защиты весьма неоднородны, однако сравнительный анализ выходит за рамки данной статьи.
Перечень именно технических неисправностей флэш-накопителей, в порядке убывания их распространенности, выглядит так:
· логические неисправности
· механические поломки
· электрические и тепловые повреждения
· сбои контроллера
· сбои и износ флэш-памяти
Нередко в «больном» устройстве выявляется сразу несколько проблем, так что классификация отчасти условна. Тем не менее, будем ей следовать и рассмотрим подробнее каждую из категорий.
Логические неисправности: Накопитель физически исправен, но опознаётся как пустой или неформатированный, а ранее записанные данные не видны. В данном случае повреждена файловая система, точнее, её служебные таблицы. Данные обычно остаются на месте, и их можно пытаться восстановить с помощью различных эвристических программ (в просторечии называемых рекаверилками). Можно рекомендовать известные пакеты R-Studio, EasyRecovery и т.п. (методику их использования см. в статье «Простое восстановление данных»)
Разумеется, для проведения восстановления, накопитель должен быть подключен к порту USB компьютера: флэш-диск непосредственно, а карта памяти - через картридер (его роль может исполнять фотоаппарат, или другое устройство с подходящим карточным слотом, если они имеют стандартную эмуляцию USB Drive). Восстанавливаемые файлы всегда записываются на другой накопитель с достаточным объёмом свободного места.
Любая эвристика основана на определённых допущениях, выросших из практики работы с жёсткими дисками. У флэш-накопителей нет большого разнообразия файловых систем (обычно FAT16, реже FAT32), но отличается схема работы, дисциплина адресации и записи и т.п., поэтому указанные допущения могут быть неверны. В подобных случаях «рекаверилки» грубо ошибаются или вообще не видят данные, и требуется кропотливая ручная работа.
Приведём пример. При сбое флэш-диска, сегмент, размером 128 Кб, был заполнен случайным кодом с преобладанием «единиц» и повторяемостью 2 Кб. Этот сегмент частично пришёлся на FAT, отчего R-Studio выдала недостоверные результаты. В дисковом редакторе были вычислены границы испорченного сегмента, он был обнулён, после чего R-Studio была запущена повторно. Результаты улучшились, хотя несколько файлов было потеряно.
Часто требуется восстановить цифровые фотографии с карты памяти. Здесь есть свои особенности. С одной стороны, однотипные файлы (чаще всего форматов JPG, TIFF и MOV) записываются последовательно без фрагментации, так что даже при сильном разрушении файловой системы их границы легко определить по характерным заголовкам. Фактически, нужно лишь просканировать накопитель. На этом принципе основаны многочисленные коммерческие программы наподобие PhotoRescue. C другой стороны, сложности представляет восстановление RAW-снимков. Этот формат не стандартизирован, и имеет много разновидностей, зависящих от производителя фотоаппарата, и даже прошивки той или иной модели. Здесь порой помогает только фирменный специализированный софт.
Основная причина неисправности - преждевременное извлечение устройства из разъема или внезапное отключение питания, когда операционная система не успевает обновить файловую систему на накопителе. Конечно, нередки и ошибки пользователя, когда он по неосторожности стирает файлы или запускает форматирование.
Профилактика: корректно завершайте работу перед отключением флэшки. В компьютерах и ноутбуках с Windows всегда используйте функцию "безопасное извлечение устройства". В цифровых фотоаппаратах и другой портативной технике следите за зарядом аккумулятора, чтобы он не "сел" неожиданно в процессе работы. Выключайте питание не раньше, чем закончатся текущие операции с картой.
Механические поломки: Миниатюрные флэшки хотя и рождены для «кочевой жизни», нередко страдают от грубого обращения. Флэш-диски зачастую имеют непрочный корпус, тонкую плату, слабое крепление разъема USB. Карты памяти бывают слабы на изгиб, у них может расслаиваться корпус, выпадать задвижка разрешения записи, смещаться разделители контактов и истираться сами контакты. Замечено, что чаще ломается продукция эконом-класса и «no name».
Изгибные нагрузки повреждают корпус, вызывают микротрещины на плате, приводят к нарушению контактов и растрескиванию деталей. От ударов и падений страдает кварцевый резонатор. У большинства устройств негерметичный корпус, пропускающий воду.
Ремонт: восстановление контактов, замена деталей, укрепление разъема USB, склейка или замена корпуса. При подобных манипуляциях данные сохраняются. Если треснул чип памяти, то данные потеряны, ремонт не оправдан. К счастью, такое случается редко.
Профилактика: аккуратно обращайтесь со своими устройствами, не роняйте и не наступайте. Карты памяти храните в жёстких футлярах. При подключении флэш-диска к порту USB, не прилагайте больших усилий, а во время работы старайтесь не задевать устройство: есть риск выломать разъём, заодно получив замыкание.
Если ваш накопитель побывал в воде, особенно морской, его лучше сразу отдать специалисту. Некачественная промывка и просушка, преждевременное включение, могут непоправимо испортить устройство и уничтожить данные.
При покупке выбирайте флэш-диски с прочным, не слишком тонким корпусом. Чем больше металла, тем лучше. Разъём USB должен сидеть «как влитой», колпачок - надёжно фиксироваться. Удобно, когда колпачок застрахован от потери, а на корпусе имеется отверстие для шнурка или кольца, чтобы брелок можно было подцепить к ключам или повесить на шею. Неплохи конструкции, где вилка выдвигается или поворачивается, хотя в подвижном дизайне есть свои слабые места. Обрезиненный корпус сочетает влаго- и ударостойкость, это удачный вариант для путешествий.
Среди карт памяти прочнее те, чей корпус не склеен из двух тонких половинок, а представляет собой как бы монолитный кусок пластика. В дорогих моделях внутренний объём залит силиконом, что дает дополнительную герметизацию.
Электрические и тепловые повреждения: Нестабильное электропитание, а также разряды статики - частая причина неисправности флэш-дисков. Многие нынешние модели имеют слабую защиту от перепадов напряжения, и случайные броски выводят их из строя. Вероятно, сказывается политика удешевления продукции, когда из схемотехники выводились «лишние» элементы защиты. Свою долю вины несут и некачественные «китайские» блоки питания с их пульсациями в линиях 5В.
Нередко к поломке флэш-дисков приводит устаревшая электропроводка: многие компьютеры до сих пор не заземлены. На их корпусе может блуждать потенциал в десятки вольт, а статический заряд стекает куда придется. Все это, при совпадении неблагоприятных условий, приводит к выгоранию контроллера и элементов обвязки. С учётом заряда на теле человека, наиболее опасен бывает момент подключения.
Еще одна причина неисправностей - "человеческий фактор" при сборке системных блоков. Небрежные, или просто неопытные работники умудряются неправильно подключить к материнской плате шлейф порта USB на передней панели. Это приводит к переполюсовке линий питания, и флэш-диск тихо сгорает при первом же подключении :( Шлейф чаще всего не экранирован, и даже правильная сборка не избавляет от наводок внутри корпуса, вносящих искажения в работу порта. Подключенный к нему накопитель может работать медленно, сбоить или вообще не определяться в системе, что служит предпосылкой для ложных выводов о неисправности.
Проблема нагрева, для флэш-дисков, разумеется, не так актуальна, как для жестких дисков с их механикой. Но и здесь кроется причина поломок. Многие пластиковые корпуса не обеспечивают хорошего теплоотвода, и при активной работе нагруженные детали могут перегреться, выйти из строя и даже проплавить корпус. Чаще всего страдает стабилизатор питания. Справедливости ради, скажем, что в новых моделях улучшена элементная база, уделено внимание теплоотводу и проблема встречается реже.
Повышенная температура эксплуатации вредна и для чипов флэш-памяти. Хотя по спецификациям они выдерживают до 125є, на практике, уже начиная с 70є, их ресурс резко падает, а вероятность сбоев растёт. Достичь такого нагрева проще, чем кажется: «помогает» соседство с силовыми деталями в тесном корпусе.
Что касается карт памяти, то реальна опасность их повреждения статическим разрядом в процессе вставки или извлечения из слота. Особенно уязвимы карты с открытыми контактами, наподобие MMC ; «пробить» статикой CF или MS труднее по очевидным причинам.
Ремонт: замена неисправных деталей. Переставлять контроллер или чип памяти не всегда рентабельно, поэтому ремонт обычно сводится к замене сгоревших элементов обвязки.
Профилактика: обеспечьте компьютерам заземление и стабильное электропитание. Используйте качественные блоки питания достаточной мощности. Прежде чем вставить флэш-диск в порт USB, коснитесь рукой системного блока, чтобы уравнять потенциалы. От статики и перегрева, лучше других защищены флэш-диски в металлических корпусах.
В свете проблем со сборкой, а также для уменьшения наводок, рекомендуется использовать порты USB, распаянные на материнской плате. Для удобства доступа к задней панели поставьте удлинитель USB. Качественный продукт отличают витые пары проводов с обязательной экранировкой и внешний диаметр не менее 5мм. Кабель не должен быть слишком длинным (оптимально 0.8-1.5 м ) и не должен соседствовать с силовыми проводами.
С картами памяти следует обращаться с осторожностью, не дотрагиваться до открытых контактов и по возможности не вынимать из слотов в неблагоприятной окружающей среде.
Следует упомянуть о влиянии внешних электромагнитных полей. Неоднократно наблюдались сбои в работе флэш-дисков, когда рядом находился мобильный телефон. Имеются также сообщения о порче информации после досмотра багажа в аэропортах. Пока не накоплена достоверная статистика по данному вопросу, стоит подстраховаться: держать флэшки подальше от включённых мобильников, а перед полетом брать в ручную кладь.
Сбои контроллера
Контроллер имеется во всех флэш-дисках и многих картах памяти, он отвечает за передачу данных между внешним интерфейсом и флэш-памятью, и выполняет множество других функций.
Как показывает практика, прошивка (микропрограмма) контроллера подвержена внешним воздействиям - сбои питания, разряды статики, ошибки интерфейса и т.п. могут ее повреждать. В таких случаях контроллер блокируется и не отвечает на запросы операционной системы. Внешне это проявляется в том, что накопитель опознается в компьютере как «Неизвестное устройство», либо как съёмный диск с нулевой ёмкостью. При обращениях к нему могут выводиться сообщения «Вставьте диск в дисковод» или «Нет доступа к диску».
Естественно, данные обычным путём не доступны, однако во флэш-памяти они сохраняются, и их можно считать непосредственно с чипа на специальном оборудовании. Описание подобных технологий выходит за рамки данной статьи.
Иногда накопитель становится доступен только на чтение, причем положение переключателя записи, если он есть, ни на что не влияет. Данные видны и читаются, но при попытках создания файла, стирания или форматирования выводится сообщение «Диск защищен от записи». Контроллер переходит в такой режим при выявлении аппаратных ошибок флэш-памяти, чтобы предотвратить её дальнейшее разрушение (память NAND повреждается главным образом при записи). Понятно, что в этом случае можно говорить только о ремонте накопителя.
Многие контроллеры поддерживают защиту данных, когда с помощью прилагаемой программы, на флэш-диске, создается скрытый раздел, открывающийся после ввода пароля. Данная функция пока не стандартизирована, а главное, недостаточно надёжна: скрытый раздел становится недоступным даже при лёгких сбоях. Причиной могут служить как упомянутые внешние воздействия на контроллер, так и некорректные действия пользователя (например, попытка форматирования раздела с помощью «чужой» утилиты). Восстановление данных в таких случаях - прерогатива специалистов.
Ремонт: восстановление прошивки контроллера с помощью технологических утилит. Утилиты строго специализированы, и надо иметь версию именно для своей модели контроллера. Знать только модель накопителя недостаточно, поскольку в различных экземплярах одной и той же модели могут стоять совершенно разные контроллеры: таковы реалии нынешнего производства.
Требуемые программы иногда можно скачать с сайта производителя флэшки или найти на прилагаемом компакт-диске. Если в этих источниках утилиты отсутствуют, можно провести в Интернете поиск по маркировке контроллера. Для этого следует разобрать флэш-диск или, что безопаснее, определить контроллер по кодам VID/PID (их можно узнать в Диспетчере устройств, с помощью программ MSINFO32 или UsbIDCheck ), и таблице (содержит расшифровку кодов более 7000 USB-устройств).
Во многих случаях, однако, фирма-разработчик контроллера предоставляет свой инструментарий лишь производителям и авторизованным сервисам, по достаточно строгому лицензионному соглашению. Разумеется, в открытый доступ такой софт не попадает, поэтому самостоятельный ремонт затруднителен.
В последнее время, ограничительная практика расширяется. Этому способствует неспокойная ситуация на рынке, а именно - поток подделок из Китая. Так, в большом количестве, продавались флэш-диски, «перешитые» на больший номинальный объём (например, 2 Гб при реальных 128 Мб). Покупатель раскрывал обман не сразу, а лишь когда записанные данные превышали реальный объём чипа памяти (флэшка попросту переставала определяться). Встречались также «урезанные» вдвое или вчетверо экземпляры, на чипах с дефектными участками.
В описанных случаях, мошенникам помог именно мощный сервисный софт, имевшийся в открытом доступе. Подделки строились на тех контроллерах, утилиты для прошивки которых можно было найти в Интернете.
Заметим, что при прошивке контроллера флэш-память обычно стирается, поэтому ремонт накопителя и восстановление данных - задачи технологически несовместимые.
Профилактика: Оберегайте флэшки от статики, это особенно актуально зимой с её сухим воздухом и шерстяной одеждой. Избегайте сбоев электропитания во время активной работы с накопителями (лучше всего подключить компьютер к ИБП). Не забывайте про безопасное извлечение. Запароленные флэш-диски требуют особо аккуратного обращения.
Сбои и износ памяти
Накопитель опознается и работает, но данные читаются с ошибками. Искажаются файлы, портятся архивы, может выводиться сообщение «Ошибка CRC ».
Причина - дефекты флэш-памяти на физическом уровне, чаще всего вследствие заводского брака или износа. Память NAND, по своей природе, выдерживает ограниченное число перезаписей, причем по мере роста ёмкости чипов, заявленный ресурс снижается: от 1 млн. циклов несколько лет назад до 100 тыс. в новых моделях и даже 10 тыс. в дешёвой памяти MLC ( Multi - Level Cell ).
Реальный ресурс по записи, каждого конкретного чипа, зависит от качества его изготовления и условий эксплуатации, и на практике может быть значительно ниже заявленного. В то же время, число считываний ничем не ограничено, более того, гарантируется хранение однажды записанных данных в течение 10 лет.
Как бы то ни было, по сравнению с другими сменными носителями ( FDD, ZIP, CD-RW, DVD-RW, Tape ) ресурс флэш-памяти весьма велик. Износ не имел бы серьёзного значения, производись запись равномерно по всем адресам. К сожалению, это не так, и вся проблема в файловой системе FAT. Ряд её служебных таблиц переписывается при каждом обновлении любого из файлов, именно эти ячейки памяти первыми выходят из строя.
Для борьбы с этим явлением применяется технология «выравнивания износа» (wear leveling): часто изменяемые данные перемещаются по адресному пространству флэш-памяти, так что запись производится по разным физическим адресам. В каждый контроллер заложен свой алгоритм выравнивания; сравнивать их эффективность у тех или иных моделей затруднительно, поскольку детали реализации не разглашаются. Считается, что выравнивание износа повышает ресурс флэш-памяти в 3-5 раз.
Ремонт: низкоуровневое форматирование с сокрытием дефектов. Процедура сходна с «ремапом» у жестких дисков: последовательно тестируются все адреса, обнаруженные сбойные блоки переназначаются в резервную область чипа памяти, и, в дальнейшем, не используются. При нарастании числа дефектов, полезный объем флэшки может незначительно уменьшиться, но она остается полностью рабочей.
Флэш-диск форматируется при помощи специальной утилиты, которую можно найти в комплекте поставки (часто под именем Recovery или Format) или скачать с сайта производителя. Все данные при этой операции необратимо теряются. Для карт памяти аналогичных утилит имеется гораздо меньше. Вероятно, производители считают, что типовые применения карт не связаны с быстрым износом.
Профилактика: конечный ресурс по записи принципиально ограничивает срок службы флэш-накопителей (в этом их важное отличие от жестких дисков). Разумеется, долговечность каждого конкретного устройства сильно зависит от характера эксплуатации. Так, если держать на флэш-диске базу данных 1С, при работе с которой многие файлы обновляются автоматически, то проблемы начнутся через считанные месяцы. С другой стороны, владелец цифрового фотоаппарата в этом смысле ничем не рискует - последовательная запись снимков на карту памяти, а затем копирование на компьютер и полное форматирование, расходуют ресурс карты крайне экономно.
В среднем, современные флэш-диски можно эксплуатировать 1.5-2 года до первых проявлений износа. Для профилактики сбоев, при активной работе, время от времени выполняйте низкоуровневое форматирование (разумеется, сохранив перед этим нужные данные). Сокрытие неустойчиво читающихся блоков предотвратит потерю информации. Сильно «потрёпанные» экземпляры выводите из эксплуатации или используйте для хранения менее важных данных.
Заключение
Многие из вышеописанных проблем - это «детские болезни» флэш-накопителей, они вызваны молодостью технологий, быстрым развитием стандартов и взрывным ростом рынка. Можно ожидать, что взросление отрасли повлияет на надёжность изделий в лучшую сторону. Как бы то ни было, на сегодня флэшки - незаменимые средства хранения и переноса информации. Смело пользуйтесь ими в своё удовольствие.
Аккуратность и несложные меры профилактики помогут вам продлить жизнь своим устройствам и избежать большей части неприятностей. А если сбой всё же случился - обращайтесь в специализированные организации. Современные технологии позволяют в 95% случаев восстановить данные, а в 70% ещё и отремонтировать накопитель.
Подобные документы
Характеристика внешней памяти компьютера. Виды памяти компьютера и накопителей. Классификация запоминающих устройств. Обзор внешних магнитных носителей: накопители прямого доступа, на жестких магнитных дисках, на оптических дисках и карты памяти.
курсовая работа [88,6 K], добавлен 27.02.2015Конструкция, общее устройство и принцип действия накопителей на жестких магнитных дисках. Основные характеристики винчестеров: емкость, среднее время поиска, скорость передачи данных. Наиболее распространенные интерфейсы жестких дисков (SATA, SCSI, IDE).
презентация [324,3 K], добавлен 20.12.2015Технические характеристики накопителей на жестких магнитных дисках и их устройство. Питание и охлаждение накопителей. Неисправности аппаратной и программной частей. Программы для проведения диагностики поверхности накопителя, его головок и электроники.
курсовая работа [483,6 K], добавлен 19.05.2013Сравнительный анализ и оценка характеристик накопителей на гибких и жестких магнитных дисках. Физическое устройство, организация записи информации. Физическая и логическая организация данных, адаптеры и интерфейсы. Перспективные технологии производства.
дипломная работа [2,4 M], добавлен 16.04.2014Запоминающие устройства на жестких магнитных дисках. Устройство жестких дисков. Интерфейсы жестких дисков. Интерфейс ATA, Serial ATA. Тестирование производительности накопителей на жестких магнитных дисках. Сравнительный анализ Serial ATA и IDE-дисков.
презентация [1,2 M], добавлен 11.12.2013Накопители на гибких магнитных дисках позволяют переносить документы и программы с одного компьютера на другой, хранить информацию, не используемую постоянно на компьютере, делать архивные копии программных продуктов, содержащихся на жестком диске.
реферат [24,4 K], добавлен 18.07.2008Накопитель на гибких магнитных дисках. Сменные носители информации. Устройство накопителя для гибких магнитных дисков. Доступ к информации, записанной в одном цилиндре. Технические характеристики дискеты. Накопители на жестком диске и их устройство.
презентация [229,4 K], добавлен 13.08.2013Анализ принципа действия накопителей на жестких магнитных дисках персональных компьютеров. Перфокарта как носитель информации в виде карточки из бумаги, картона. Основные функции файловой системы. Способы восстановления информации с RAID-массивов.
дипломная работа [354,2 K], добавлен 15.12.2012Структура персонального компьютера. Общие сведения о периферийных устройствах компьютера. Работа с дисковыми накопителями для хранения информации на гибких и жестких магнитных дисках. Устройства для чтения компакт-дисков. Варианты конструкции мыши.
реферат [496,4 K], добавлен 10.01.2016Устройства ввода информации: клавиатура, мышь, манипуляторы. Накопитель на жестких магнитных дисках. Видеоподсистема компьютера. Видео мониторы, их классификация. Современные ЖК мониторы. Принцип работы, основные параметры и характеристики сканеров.
курсовая работа [431,9 K], добавлен 24.09.2010