Сетевой уровень - средство построения больших сетей
Принципы объединения сетей на основе протоколов сетевого уровня, ограничения мостов и коммутаторов, протоколы маршрутизации. Адресация в IP-сетях, порядок распределения адресов, система доменных имен. Внутренний и внешний протокол маршрутизации Internet.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | книга |
Язык | русский |
Дата добавления | 28.01.2010 |
Размер файла | 5,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Магистральные маршрутизаторы обычно поддерживают максимальный набор протоколов и интерфейсов и обладают высокой общей производительностью в один-два миллиона пакетов в секунду. Маршрутизаторы удаленных офисов поддерживают один-два протокола локальных сетей и низкоскоростные глобальные протоколы, общая производительность таких маршрутизаторов обычно составляет от 5 до 20-30 тысяч пакетов в секунду.
Маршрутизаторы региональных отделений занимают промежуточное положение, поэтому их иногда не выделяют в отдельный класс устройств.
Наиболее высокой производительностью обладают коммутаторы 3-го уровня, особенности которых рассмотрены ниже.
Дополнительные функциональные возможности маршрутизаторов
Наряду с функцией маршрутизации многие маршрутизаторы обладают следующими важными дополнительными функциональными возможностями, которые значительно расширяют сферу применения этих устройств.
Поддержка одновременно нескольких протоколов маршрутизации. В протоколах маршрутизации обычно предполагается, что маршрутизатор строит свою таблицу на основе работы только этого одного протокола. Деление Internet на автономные системы также направлено на исключение использования в одной автономной системе нескольких протоколов маршрутизации. Тем не менее иногда в большой корпоративной сети приходится поддерживать одновременно несколько таких протоколов, чаще всего это складывается исторически. При этом таблица маршрутизации может получаться противоречивой - разные протоколы маршрутизации могут выбрать разные следующие маршрутизаторы для какой-либо сети назначения. Большинство маршрутизаторов решает эту проблему за счет придания приоритетов решениям разных протоколов маршрутизации. Высший приоритет отдается статическим маршрутам (администратор всегда прав), следующий приоритет имеют маршруты, выбранные протоколами состояния связей, такими как OSPF или NLSP, а низшим приоритетов обладают маршруты дистанционно-векторных протоколов, как самых несовершенных.
Приоритеты сетевых протоколов. Можно установить приоритет одного протокола сетевого уровня над другими. На выбор маршрутов эти приоритеты не оказывают никакого влияния, они влияют только на порядок, в котором многопротокольный маршрутизатор обслуживает пакеты разных сетевых протоколов. Это свойство бывает полезно в случае недостаточной полосы пропускания кабельной системы и существования трафика, чувствительного к временным задержкам, напримертрафика SNA или голосового трафика, передаваемого одним из сетевых протоколов.
Поддержка политики маршрутных объявлений. В большинстве протоколов обмена маршрутной информации (RIP, OSPF, NLSP) предполагается, что маршрутизатор объявляет в своих сообщениях обо всех сетях, которые ему известны. Аналогично предполагается, что маршрутизатор при построении своей таблицы учитывает все адреса сетей, которые поступают ему от других маршрутизаторов сети. Однако существуют ситуации, когда администратор хотел бы скрыть существование некоторых сетей в определенной части своей сети от других администраторов, например, по соображениям безопасности. Или же администратор хотел бы запретить некоторые маршруты, которые могли бы существовать в сети. При статическом построении таблиц маршрутизации решение таких проблем не составляет труда. Динамические же протоколы маршрутизации не позволяют стандартным способом реализовывать подобные ограничения. Существует только один широко используемый протокол динамической маршрутизации, в котором описана возможность существования правил (policy), ограничивающих распространение некоторых адресов в объявлениях, - это протокол BGP. Необходимость поддержки таких правил в протоколе BGP понятна, так как это протокол обмена маршрутной информацией между автономными системами, где велика потребность в административном регулировании маршрутов (например, некоторый поставщик услуг Internet может не захотеть, чтобы через него транзитом проходил трафик другого поставщика услуг). Разработчики маршрутизаторов исправляют этот недостаток стандартов протоколов, вводя в маршрутизаторы поддержку правил передачи и использования маршрутной информации, подобных тем, которые рекомендует BGP.
Защита от широковещательных штормов (broadcast storm). Одна из характерных неисправностей сетевого программного обеспечения - самопроизвольная генерация с высокой интенсивностью широковещательных пакетов. Широковещательным штормом считается ситуация, в которой процент широковещательных пакетов превышает 20 % от общего количества пакетов в сети. Обычный коммутатор или мост слепо передает такие пакеты на все свои порты, как того требует его логика работы, засоряя, таким образом, сеть. Борьба с широковещательным штормом в сети, соединенной коммутаторами, требует от администратора отключения портов, генерирующих широковещательные пакеты. Маршрутизатор не распространяет такие поврежденные пакеты, поскольку в круг его задач не входит копирование широковещательных пакетов во все объединяемые им сети. Поэтому маршрутизатор является прекрасным средством борьбы с широковещательным штормом, правда, если сеть разделена на достаточное количество подсетей.
Поддержка немаршрутизируемых протоколов, таких как NetBIOS, NetBEUI или DEC LAT, которые не оперируют с таким понятием, как сеть. Маршрутизаторы могут обрабатывать пакеты таких протоколов двумя способами.
· В первом случае они могут работать с пакетами этих протоколов как мосты, то есть передавать их на основании изучения МАС - адресов. Маршрутизатор необходимо сконфигурировать особым способом, чтобы по отношению к некоторым немаршрутизируемым протоколам на некоторых портах он выполнял функции моста, а по отношению к маршрутизируемым протоколам - функции маршрутизатора. Такой мост/маршрутизатор иногда называют brouter (bridge плюс router).
· Другим способом передачи пакетов немаршрутизируемых протоколов является инкапсуляция этих пакетов в пакеты какого-либо сетевого протокола. Некоторые производители маршрутизаторов разработали собственные протоколы, специально предназначенные для инкапсуляции немаршрутизируемых пакетов. Кроме того, существуют стандарты для инкапсуляции некоторых протоколов в другие, в основном в IP. Примером такого стандарта является протокол DLSw, определяющий методы инкапсуляции пакетов SDLC и NetBIOS в IP-пакеты, а также протоколы РРТР и L2TP, инкапсулирующие кадры протокола РРР в IP-пакеты. Более подробно технология инкапсуляции рассматривается в главе, посвященной межсетевому взаимодействию.
Разделение функций построения и использования таблицы маршрутизации. Основная вычислительная работа проводится маршрутизатором при составлении таблицы маршрутизации с маршрутами ко всем известным ему сетям. Эта работа состоит в обмене пакетами протоколов маршрутизации, такими как RIP или OSPF, и вычислении оптимального пути к каждой целевой сети по некоторому критерию. Для вычисления оптимального пути на графе, как того требуют протоколы состояния связей, необходимы значительные вычислительные мощности. После того как таблица маршрутизации составлена, функция продвижения пакетов происходит весьма просто - осуществляется просмотр таблицы и поиск совпадения полученного адреса с адресом целевой сети. Если совпадение есть, то пакет передается на соответствующий порт маршрутизатора. Некоторые маршрутизаторы поддерживают только функции продвижения пакетов по готовой таблице маршрутизации. Такие маршрутизаторы являются усеченными маршрутизаторами, так как для их полноценной работы требуется наличие полнофункционального маршрутизатора, у которого можно взять готовую таблицу маршрутизации. Этот маршрутизатор часто называется сервером маршрутов. Отказ от самостоятельного выполнения функций построения таблицы маршрутизации резко удешевляет маршрутизатор и повышает его производительность. Примерами такого подхода являются маршрутизаторы NetBuilder компании 3Com, поддерживающие фирменную технологию Boundary Routing, маршрутизирующие коммутаторы Catalyst 5000 компании Cisco Systems.
6.2 Корпоративные модульные концентраторы
Большинство крупных фирм-производителей сетевого оборудования предлагает модульные концентраторы в качестве коммутационного центра корпоративной сети. Такие концентраторы отражают тенденцию перехода от полностью распределенных локальных сетей 70-х годов на коаксиальном кабеле к централизованным коммуникационным решениям, активно воздействующим на передачу пакетов между сегментами и сетями. Модульные корпоративные концентраторы представляют собой многофункциональные устройства, которые могут включать несколько десятков модулей различного назначения: повторителей разных технологий, коммутаторов, удаленных мостов, маршрутизаторов и т. п., которые объединены в одном устройстве с модулями-агентами протокола SNMP, и, следовательно, позволяют централизованно объединять, управлять и обслуживать большое количество устройств и сегментов, что очень удобно в сетях большого размера.
Модульный концентратор масштаба предприятия обычно обладает внутренней шиной или набором шин очень высокой производительности - до нескольких десятков гигабит в секунду, что позволяет реализовать одновременные соединения между модулями с высокой скоростью, гораздо большей, чем скорость внешних интерфейсов модулей. Основная идея разработчиков таких устройств заключается в создании программно настраиваемой конфигурации связей в сети, причем сами связи между устройствами и сегментами могут также поддерживаться с помощью различных методов: побитовой передачи данных повторителями, передачи кадров коммутаторами и передачи пакетов сетевых протоколов маршрутизаторами.
Пример структуры корпоративного концентратора приведен на рис. 30. Он имеет несколько шин для образования независимых разделяемых сегментов Ethernet 10 Мбит/с, Token Ring и FDDI, а также высокоскоростную шину в 10 Гбит/с для передач кадров и пакетов между модулями коммутации и маршрутизации. Каждый из модулей имеет внешние интерфейсы для подключения конечных узлов и внешних коммуникационных устройств - повторителей, коммутаторов, а также несколько интерфейсов с внутренними шинами концентратора. Концентратор рассчитан на подключение конечных узлов в основном к внешним интерфейсам повторителей (для образования разделяемых сегментов) и коммутаторов (для поддержки микросегментации). Уже готовые сегменты, то есть образованные внешними повторителями и коммутаторами, могут подключаться к внешним интерфейсам коммутаторов и маршрутизаторов корпоративного концентратора. Дальнейшее соединение разделяемых сегментов и коммутируемых узлов и сегментов происходит модулями коммутации и маршрутизации концентратора по внутренним связям с помощью высокоскоростной шины. Конечно, модули могут связываться между собой и через внешние интерфейсы, но такой способ нерационален, так как скорость обмена ограничивается при этом скоростью протокола интерфейса, например 10 Мбит/с или 100 Мбит/с. Внутренняя же шина соединяет модули на гораздо более высокой скорости, примерно 10/N Гбит/с, где N - количество портов, одновременно требующих обмена. Внешние связи между модулями превращают корпоративный концентратор просто в стойку с установленными модулями, а внутренний обмен делает эту стойку единым устройством с общей системой программного управления трафиком. Обычно для конфигурирования модулей и связей между ними производители корпоративных концентраторов сопровождают их удобным программным обеспечением с графическим интерфейсом. Отдельный модуль управления выполняет общие для всего концентратора функции: управления по протоколу SNMP, согласование таблиц коммутации и маршрутизации в разных модулях, возможно использование этого модуля как межмодульной коммутационной фабрики вместо общей шины.
Рис. 30. Структура корпоративного модульного концентратора
Примерами корпоративных многофункциональных концентраторов могут служить устройства System 5000 компании Nortel Networks, MMAC-Plus компании Cabletron Systems, CoreBuilder 6012 компании 3Com.
Ввиду того, что отказ корпоративного модульного концентратора приводит к очень тяжелым последствиям, в их конструкцию вносится большое количество средств обеспечения отказоустойчивости.
6.3 Стирание граней между коммутаторами и маршрутизаторами
В классическом понимании терминов коммутатор - это устройство, принимающее решение о продвижении пакетов на основании заголовков протоколов 2-го уровня, то есть протоколов типа Ethernet или FDDI, а маршрутизатор - устройство, принимающее аналогичное решение на основании заголовков протоколов 3-го уровня, то есть уровня протоколов IP или IPX. В настоящее время наблюдается отчетливая тенденция по совмещению в одном устройстве функций коммутатора и маршрутизатора.
Соотношение коммутации и маршрутизации в корпоративных сетях
До недавнего времени сложившимся информационным потокам корпоративной сети наилучшим образом соответствовала следующая иерархическая структура. На нижнем уровне (уровне отделов) располагались сегменты сети, построенные на быстро работающих повторителях и коммутаторах. Сегменты включали в себя как рабочие станции так и серверы. В большинстве случаев было справедливо эмпирическое соотношение 80/20, в соответствии с которым основная часть трафика (80 %) циркулировала внутри сегмента, то есть порождалась запросами пользователей рабочих станций к серверам своего же сегмента.
На более высоком уровне располагался маршрутизатор, к которому подключалось сравнительно небольшое количество внутренних сетей, построенные на коммутаторах. Через порты маршрутизатора проходил трафик обращений рабочих станций одних сетей к серверам других сетей. Известно, что маршрутизатор затрачивает больше времени на обработку каждого пакета, чем коммутатор, поскольку он выполняет более сложную обработку трафика, включая интеллектуальные алгоритмы фильтрации, выбор маршрута при наличии нескольких возможных путей и т. п. С другой стороны, трафик, проходящий через порты маршрутизатора был менее интенсивный, чем внутрисегментный, поэтому сравнительно низкая производительность маршрутизатора не делала его узким местом.
Сегодня ситуация в корпоративных сетях быстро меняется. Количество пользователей стремительно растет. Пользователи избавляются от устаревающих текстовых приложений, отдавая предпочтение Web-интерфейсу. А завтра эти же пользователи будут работать с аудио, видео, push и другими, абсолютно новыми приложениями, основанными на новых технологиях распространения пакетов, таких как IP Multicast и RSVP. Не работает и старое правило 80/20, сегодня большое количество информации берется из публичных серверов Internet, а также из Web-серверов других подразделений предприятия, создавая большой межсетевой трафик. Существующие сети не оптимизировались для таких непредсказуемых потоков тра-фика, когда каждый может общаться почти с каждым. А с проникновением в корпоративные сети технологии Gigabit Ethernet эта проблема обострится еще больше.
Таким образом, сегодня образовался большой разрыв между производительностью типичного маршрутизатора и типичного коммутатора. В этой ситуации возможны два решения: либо отказаться вообще от маршрутизации, либо увеличить ее производительность.
Отказ от маршрутизации
За последние годы основные усилия были сосредоточены в первом направлении: применять маршрутизацию как можно реже, только там, где от нее никак нельзя отказаться. Например, на границе между локальной и глобальной сетью. Отказ от маршрутизаторов означает переход к так называемой плоской сети, то есть сети, построенной только на коммутаторах, а значит, и отказ от всех интеллектуальных возможностей обработки трафика, присущих маршрутизаторам. Такой подход повышает производительность, но приводит к потере всех преимуществ, которые давали маршрутизаторы, а именно:
· маршрутизаторы более надежно, чем коммутаторы, изолируют части большой составной сети друг от друга, защищая их от ошибочных кадров, порождаемых неисправным программным или аппаратным обеспечением других сетей (например, от широковещательных штормов);
· маршрутизаторы обладают более развитыми возможностями защиты от несанкционированного доступа за счет функций анализа и фильтрации трафика на более высоких уровнях: сетевом и транспортном;
· сеть, не разделенная маршрутизаторами, имеет ограничения на число узлов (для популярного протокола IP это ограничение составляет 255 узлов для сетей самого доступного класса С).
Из этого следует, что в сети необходимо сохранять функции маршрутизации в привычном смысле этого слова.
Что касается второго направления - повышение производительности маршрутизаторов, - сложилось так, что самые активные действия в этом направлении были предприняты производителями коммутаторов, наделявшими свои продукты некоторыми возможностями маршрутизаторов. Именно в модифицированных коммутаторах были впервые достигнуты скорости маршрутизации в 5-7 миллионов пакетов в секунду, а также опробованы многие важные концепции ускорения функций маршрутизации.
Коммутаторы 3-го уровня с классической маршрутизацией
Термин коммутатор 3-го уровня употребляется для обозначения целого спектра коммутаторов различного типа, в которые встроены функции маршрутизации пакетов. Функции коммутации и маршрутизации могут быть совмещены двумя способами.
· Классическим, когда маршрутизация выполняется по каждому пакету, требующему передачи из сети в сеть, а коммутация выполняется для пакетов, принадлежащих одной сети.
· Нестандартным способом ускоренной маршрутизации, когда маршрутизируется несколько первых пакетов устойчивого потока, а все остальные пакеты этого потока коммутируются.
Рассмотрим первый способ.
Классический коммутатор 3-го уровня подобно обычному коммутатору захватывает все кадры своими портами независимо от их МАС - адресов, а затем прини-. мает решение о коммутации или маршрутизации каждого кадра. Если кадр имеетМАС - адрес назначения, отличный от МАС - адреса порта маршрутизатора, то этот кадр коммутируется. Если устройство поддерживает технику VLAN, то перед передачей кадра проверяется принадлежность адресов назначения и источника одной виртуальной сети.
Если же кадр направлен непосредственно МАС - адресу какого-либо порта маршрутизатора, то он маршрутизируется стандартным образом. Коммутатор 3-го уровня может поддерживать динамические протоколы маршрутизации, такие как RIP или OSPF, а может полагаться на статическое задание маршрутов или на получение таблицы маршрутизации от другого маршрутизатора.
Такие комбинированные устройства появились сразу после разработки коммутаторов, поддерживающих виртуальные локальные сети (VLAN). Для Связи VLAN требовался маршрутизатор. Размещение маршрутизатора в одном корпусе с коммутатором позволяло получить некоторый выигрыш в производительности, например, за счет исключения одного этапа буферизации пакета, когда он передается из коммутатора в маршрутизатор. Хотя такие устройства с равным успехом можно называть маршрутизирующими коммутаторами или коммутирующими маршрутизаторами, за ними закрепилось название коммутаторов 3-го уровня.
Примерами таких коммутаторов могут служить хорошо известные коммутаторы LANplex (теперь CoreBuilder) 6000 и 2500 компании 3Com. В этих устройствах совместно используются специализированные большие интегральные микросхемы (ASIC), RISC- и CISC-процессоры. Микросхемы ASIC обеспечивают коммутацию пакетов и их первичный анализ при маршрутизации, RISC-процессоры выполняют основную работу по маршрутизации, а CISC-процессоры реализуют функции управления. За счет такого распараллеливания процесса функционирования подсистем коммутации и маршрутизации достигается достаточно высокий уровень производительности. Так, система CoreBuilder 2500, имеющая один блок коммутации/маршрутизации, способна маршрутизировать 98 тысяч IP-пакетов в секунду (без их потери) на полной скорости каналов связи. Более мощная система CoreBuilder 6000 по данным компании 3Com в конфигурации с 88 портами Fast Ethernet маршрутизирует до 3 миллионов пакетов в секунду.
Более быстродействующей реализацией данного подхода являются устройства, в которых функции маршрутизации перенесены из универсального центрального процессора в специализированные заказные микросхемы портов. При этом ускорение процесса маршрутизации происходит не только за счет распараллеливания работы между несколькими процессорами, но и за счет использования специализированных процессоров вместо универсальных процессоров типа Motorola или Intel. Примеры этого подхода - коммутатор CoreBuilder 3500 компании 3Com, маршрутизирующий коммутатор Accelar 1200 компании Nortel Networks.
По данным фирм-производителей, коммутаторы 3-го уровня CoreBuilder 3500 и Accelar 1200 способны маршрутизировать соответственно до 4 и 7 миллионов пакетов в секунду. С такой же скоростью они коммутируют поступающие кадры, что говорит о высокой эффективности реализованных в ASIC алгоритмах маршрутизации.
Подход, связанный с переносом процедур маршрутизации из программируемых процессоров, пусть и специализированных, в работающие по жестким алгоритмам БИС, имеет один принципиальный недостаток - ему недостает гибкости. При необходимости изменения протокола или набора протоколов требуется перепроектировать БИС, что очевидно подразумевает очень большие затраты времени и средств по сравнению с изменением программного обеспечения маршрутизатора. Поэтому быстродействующие маршрутизаторы переносят в БИС только несколько базовых протоколов сетевого уровня, чаще всего IP и IPX, делая такие маршрутизаторы узко специализированными.
Маршрутизация потоков
Еще один тип коммутаторов 3-го уровня - это коммутаторы, которые ускоряют процесс маршрутизации за счет выявления устойчивых потоков в сети и обработки по схеме маршрутизации только нескольких первых пакетов потока. Многие фирмы разработали подобные схемы, однако до сих пор они являются нестандартными, хотя работа над стандартизацией этого подхода идет в рамках одной из рабочих групп IETF. Существуют компании, которые считают эти попытки ошибочными, вносящими ненужную путаницу в и так непростую картину работы стека протоколов в сети. Наиболее известной компанией, занявшей такую позицию, является компания Nortel Networks, маршрутизаторы которой Accelar 1200 работают по классической схеме. Тем не менее количество компаний, разработавших протоколы ускоренной маршрутизации, в основном ускоренной IP-маршрутизации, довольно велико, туда входят такие известные компании, как 3Com, Cisco, Cabletron, Digital, Ipsilon.
Поток - это последовательность пакетов, имеющих некоторые общие свойства, по меньшей мере у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Желательно, чтобы пакеты потока имели одно и то же требование к качеству обслуживания.
Ввиду разнообразия предложенных схем опишем только основную идею, лежащую в их основе.
Если бы все коммутаторы/маршрутизаторы, изображенные на рис. 31, работали по классической схеме, то каждый пакет, отправляемый из рабочей станции, принадлежащей одной IP-сети, серверу, принадлежащему другой IP-сети, проходил бы через блоки маршрутизации всех трех устройств.
Рис. 31. Ускоренная маршрутизация потока пакетов
В схеме ускоренной маршрутизации такую обработку проходит только несколько первых пакетов долговременного потока, то есть классическая схема работает до тех пор, пока долговременный поток не будет выявлен.
После этого первый коммутатор на пути следования потока выполняет нестандартную обработку пакета - он помещает в кадр канального протокола, например Ethernet, не МАС - адрес порта следующего маршрутизатора, а МАС - адрес узла назначения, который на рисунке обозначен как МАСк. Как только эта замена произведена, кадр с таким МАС - адресом перестает поступать на блоки маршрутизации второго и третьего коммутатора/маршрутизатора, а проходит только через блоки коммутации этих устройств. Процесс передачи пакетов действительно ускоряется, так как они не проходят многократно повторяющиеся этапы маршрутизации. В то же время защитные свойства маршрутизаторы сохраняют, так как первые пакеты проверяются на допустимость передачи в сеть назначения, поэтому сохраняются фильтрация широковещательного шторма, защита от несанкционированного доступа и другие преимущества сети, разделенной на подсети.
Для реализации описанной схемы нужно решить несколько проблем. Первая - на основании каких признаков определяется долговременный поток. Это достаточно легкая проблема, и основные подходы к ее решению очевидны - совпадение адресов и портов соединения, общие признаки качества обслуживания, некоторый порог одинаковых пакетов для фиксации долговременное. Вторая проблема более серьезная. На основании какой информации первый маршрутизатор узнает МАС - адрес узла назначения. Этот узел находится за пределами непосредственно подключенных к первому маршрутизатору сетей, поэтому использование протокола ARP здесь не поможет. Именно здесь расходятся пути большинства фирменных технологий ускоренной маршрутизации. Многие компании разработали собственные служебные протоколы, с помощью которых маршрутизаторы запрашивают этот МАС - адрес друг у друга, пока последний на пути маршрутизатор не выяснит его с помощью протокола ARP.
Фирменные протоколы используют как распределенный подход, когда все маршрутизаторы равны в решении проблемы нахождения МАС - адреса, так и централизованный, когда в сети существует выделенный маршрутизатор, который помогает ее решить для всех.
Примерами коммутаторов 3-го уровня, работающими по схеме ускоренной IP-маршрутизации, являются коммутаторы Smart-Switch компании Cabletron, а также коммутатор Catalyst 5000 компании Cisco, выполняющий свои функции совместно с маршрутизаторами Cisco 7500 по технологии Cisco NetFlow для распознавания потоков и определения их адресной информации, и ряд других.
Выводы
· Типичный маршрутизатор представляет собой сложный специализированный компьютер, который работает под управлением специализированной операционной системы, оптимизированной для выполнения операций построения таблиц маршрутизации и продвижения пакетов на их основе.
· Маршрутизатор часто строится по мультипроцессорной схеме, причем используется симметричное мультипроцессирование, асимметричное мультипроцессирование и их сочетание. Наиболее рутинные операции обработки пакетов выполняются программно специализированными процессорами или аппаратно большими интегральными схемами (БИС/ASIC). Более высокоуровневые действия выполняют программно универсальные процессоры.
· По областям применения маршрутизаторы делятся на: магистральные маршрутизаторы, маршрутизаторы региональных подразделений, маршрутизаторы удаленных офисов и маршрутизаторы локальных сетей - коммутаторы 3-го уровня.
· Основными характеристиками маршрутизаторов являются: общая производительность в пакетах в секунду, набор поддерживаемых сетевых протоколов и протоколов маршрутизации, набор поддерживаемых сетевых интерфейсов глобальных и локальных сетей.
· · К числу дополнительных функций маршрутизатора относится одновременная поддержка сразу нескольких сетевых протоколов и нескольких протоколов маршрутизации, возможность приоритетной обработки трафика, разделение функций построения таблиц маршрутизации и продвижения пакетов между маршрутизаторами разного класса на основе готовых таблиц маршрутизации.
· Основной особенностью коммутаторов 3-го уровня является высокая скорость выполнения операций маршрутизации за счет их перенесения на аппаратный уровень - уровень БИС/ASIC.
· Многие фирмы разработали собственные протоколы ускоренной маршрутизации долговременных потоков в локальных сетях, которые маршрутизируют только несколько первых пакетов потока, а остальные пакеты коммутируют на основе МАС - адресов.
· Корпоративные многофункциональные концентраторы представляют собой устройства, в которых на общей внутренней шине объединяются модули разного типа - повторители, мосты, коммутаторы и маршрутизаторы. Такое объединение дает возможность программного конфигурирования сети с определением состава подсетей и сегментов вне зависимости от из физического подключения к тому или иному порту устройства.
Подобные документы
Стандартные сети коммуникационных протоколов. Стек OSI. Стек TCP/IP. Принципы объединения сетей на основе протоколов сетевого уровня. Ограничения мостов и коммутаторов. Модем как средство связи между компьютерами. Международные стандарты модемов.
курсовая работа [29,3 K], добавлен 06.07.2008Принципы построения составных сетей. Согласование протоколов канального уровня. Маршрутизация в сетях с произвольной топологией. Сетевой уровень и модель OSI. Система MFG/PRO, языки QAD. Обзор, архитектура системы. Некоторые возможности интерфейса.
курсовая работа [1,6 M], добавлен 29.09.2013Отображение физических адресов на IP-адреса: протоколы ARP и RARP. Примеры организации доменов и доменных имен. Автоматизация процесса порядка назначения IP-адресов узлами сети. Маска подсети переменной длины. Протокол межсетевого взаимодействия IP.
контрольная работа [145,7 K], добавлен 23.01.2015Официальные международные организации, выполняющие работы по стандартизации информационных сетей, протоколы IP, ARP, RARP, семиуровневая модель OSI. TCP/IP, распределение протоколов по уровням ISO в локальных и в глобальных сетях, разделение IP-сетей.
шпаргалка [50,0 K], добавлен 24.06.2010Работы по созданию сети ARPANET, протоколы сетевого взаимодействия TCP/IP. Характеристика программного обеспечения для TCP/IP. Краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур. Архитектура, уровни сетей и протоколы TCP/IP.
реферат [15,7 K], добавлен 03.05.2010Задача и особенности составления таблиц маршрутизации. Принципы процесса определения маршрута следования информации в сетях связи в TCP/IP. Процесс обмена пакетами информации путем использования протоколов Routing Information, Open Shortest Path First.
презентация [494,8 K], добавлен 23.01.2014Методы проектирования LAN для обеспечения обмена данными, доступа к общим ресурсам, принтерам и Internet. Автоматическая адресация в IP-сетях при помощи протокола DHCP. Алгоритмы маршрутизации, базирующиеся на информации о топологии и состоянии сети.
дипломная работа [2,7 M], добавлен 01.07.2014Общие сведения о глобальных сетях с коммутацией пакетов, построение и возможности сетей, принцип коммутации пакетов с использованием техники виртуальных каналов. Характеристики и возможности коммутаторов сетей, протоколы канального и сетевого уровней.
курсовая работа [2,0 M], добавлен 26.08.2010Разработка и использование протокола маршрутизации RIP в небольших и сравнительно однородных сетях. Причины неустойчивой работы по протоколу, их устранение. Применения протокола Hello для обнаружения соседей и установления с ними отношений смежности.
курсовая работа [264,0 K], добавлен 06.06.2009Протокол динамического распределения адресов DHCP (Dynamic Host Configuration Protocol). Конфигурационные параметры, взаимодействие клиента и сервера при выделении сетевого адреса. Internet/intranet - технологический базис новых методов управления.
контрольная работа [825,5 K], добавлен 09.06.2010