Сетевой уровень - средство построения больших сетей
Принципы объединения сетей на основе протоколов сетевого уровня, ограничения мостов и коммутаторов, протоколы маршрутизации. Адресация в IP-сетях, порядок распределения адресов, система доменных имен. Внутренний и внешний протокол маршрутизации Internet.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | книга |
Язык | русский |
Дата добавления | 28.01.2010 |
Размер файла | 5,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Пусть маршрутизатор Ml обнаружил, что его связь с непосредственно подключенной сетью 201.36.14.0 потеряна (например, по причине отказа интерфейса 201.36.14.3). Ml отметил в своей таблице маршрутизации, что сеть 201.36.14.0 недоступна. В худшем случае он обнаружил это сразу же после отправки очередных RIP-сообщений, так что до начала нового цикла его объявлений, в котором он должен сообщить соседям, что расстояние до сети 201.36.14.0 стало равным 16, остается почти 30 секунд.
Каждый маршрутизатор работает на основании своего внутреннего таймера, не синхронизируя работу по рассылке объявлений с другими маршрутизаторами. Поэтому весьма вероятно, маршрутизатор М2 опередил маршрутизатор Ml и передал ему свое сообщение раньше, чем Ml успел передать новость о недостижимости сети 201.36.14.0. А в этом сообщении имеются данные, порожденные следующей записью в таблице маршрутизации М2 (табл. 18).
Таблица 18. Таблица маршрутизации маршрутизатора М2
Эта запись была получена от маршрутизатора Ml и корректна до отказа интерфейса 201.36.14.3, а теперь она устарела, но маршрутизатор М2 об этом не узнал.
Теперь маршрутизатор Ml получил новую информацию о сети 201.36.14.0 - эта сеть достижима через маршрутизатор М2 с метрикой 2. Раньше Ml также получал эту информацию от М2. Но игнорировал ее, так как его собственная метрика для 201.36.14.0 была лучше. Теперь Ml должен принять данные о сети 201.36.14.0, полученные от М2, и заменить запись в таблице маршрутизации о недостижимости этой сети (табл. 19).
Таблица 19. Таблица маршрутизации маршрутизатора М1
В результате в сети образовалась маршрутная петля: пакеты, направляемые узлам сети 201.36.14.0, будут передаваться маршрутизатором М2 маршрутизатору Ml, а маршрутизатор Ml будет возвращать их маршрутизатору М2. IP-пакеты будут циркулировать по этой петле до тех пор, пока не истечет время жизни каждого пакета.
Маршрутная петля будет существовать в сети достаточно долго. Рассмотрим периоды времени, кратные времени жизни записей в таблицах маршрутизаторов.
· Время 0-180 с. После отказа интерфейса в маршрутизаторах Ml и М2 будут сохраняться некорректные записи, приведенные выше. Маршрутизатор М2 по-прежнему снабжает маршрутизатор Ml своей записью о сети 201.36.14.0 с метрикой 2, так как ее время жизни не истекло. Пакеты зацикливаются.
· Время 180-360 с. В начале этого периода у маршрутизатора М2 истекает время жизни записи о сети 201.36.14.0 с метрикой 2, так как маршрутизатор Ml в предыдущий период посылал ему сообщения о сети 201.36.14.0 с худшей метрикой, чем у М2, и они не могли подтверждать эту запись. Теперь маршрутизатор М2 принимает от маршрутизатора Ml запись о сети 201.36.14.0 с метрикой 3 и трансформирует ее в запись с метрикой 4. Маршрутизатор Ml не получает новых сообщений от маршрутизатора М2 о сети 201.36.14.0 с метрикой 2, поэтому время жизни его записи начинает уменьшаться. Пакеты продолжают зацикливаться.
· Время 360-540 с. Теперь у маршрутизатора Ml истекает время жизни записи о сети 201.36.14.0 с метрикой 3. Маршрутизаторы Ml и М2 опять меняются ролями - М2 снабжает Ml устаревшей информацией о пути к сети 201.36.14.0, уже с метрикой 4, которую Ml преобразует в метрику Пакеты продолжают зацикливаться.
Если бы в протоколе RIP не было выбрано расстояние 16 в качестве недостижимого, то описанный процесс длился бы до бесконечности (вернее, пока не была бы исчерпана разрядная сетка поля расстояния и не было бы зафиксировано переполнения при очередном наращивании расстояния).
В результате маршрутизатор М2 на очередном этапе описанного процесса получает от маршрутизатора Ml метрику 15, которая после наращивания, превращаясь в метрику 16, фиксирует недостижимость сети. Период нестабильной работы сети длился 36 минут!
Ограничение в 15 хопов сужает область применения протокола RIP до сетей, в которых число промежуточных маршрутизаторов не может быть больше 1 Для более масштабных сетей нужно применять другие протоколы маршрутизации, например OSPF, или разбивать сеть на автономные области.
Приведенный пример хорошо иллюстрирует главную причину нестабильной работы маршрутизаторов, работающих по протоколу RIP. Эта причина коренится в самом принципе работы дистанционно-векторных протоколов - пользовании информацией, полученной из вторых рук. Действительно, маршрутизатор М2 передал маршрутизатору Ml информацию о достижимости сети 201.36.14.0, за достоверность которой он сам не отвечает. Искоренить эту причину полностью нельзя, ведь сам способ построения таблиц маршрутизации связан с передачей чужой информации без указания источника ее происхождения.
Не следует думать, что при любых отказах интерфейсов и маршрутизаторов в сетях возникают маршрутные петли. Если бы маршрутизатор Ml успел передать сообщение о недостижимости сети 201.36.14.0 раньше ложной информации маршрутизатора М2, то маршрутная петля не образовалась бы. Так что маршрутные петли даже без дополнительных методов борьбы с ними, описанными в следующем разделе, возникают в среднем не более чем в половине потенциально возможных случаев.
Методы борьбы с ложными маршрутами в протоколе RIP
Несмотря на то что протокол RIP не в состоянии полностью исключить переходные состояния в сети, когда некоторые маршрутизаторы пользуются устаревшей информацией об уже несуществующих маршрутах, имеется несколько методов, которые во многих случаях решают подобные проблемы.
Ситуация с петлей, образующейся между соседними маршрутизаторами, описанная в предыдущем разделе, надежно решается с помощью метода, получившем название расщепления горизонта (split horizon). Метод заключается в том, что маршрутная информация о некоторой сети, хранящаяся в таблице маршрутизации, никогда не передается тому маршрутизатору, от которого она получена (это следующий маршрутизатор в данном маршруте). Если маршрутизатор М2 в рассмотренном выше примере поддерживает технику расщепления горизонта, то он не передаст маршрутизатору Ml устаревшую информацию о сети 201.36.14.0, так как получил ее именно от маршрутизатора Ml.
Практически все сегодняшние маршрутизаторы, работающие по протоколу RIP, используют технику расщепления горизонта.
Однако расщепление горизонта не помогает в тех случаях, когда петли образуются не двумя, а несколькими маршрутизаторами. Рассмотрим более детально ситуацию, которая возникнет в сети, приведенной на рис. 26, в случае потери связи маршрутизатора 2 с сетью А. Пусть все маршрутизаторы этой сети поддерживают технику расщепления горизонта. Маршрутизаторы М2 и МЗ не будут возвращать маршрутизатору в этой ситуации данные о сети 201.36.14.0 с метрикой 2, так как они получили эту информацию от маршрутизатора Ml. Однако они будут передавать маршрутизатору информацию о достижимости сети 201.36.14.0 с метрикой 4 через себя, так как получили эту информацию по сложному маршруту, а не от маршрутизатора Ml непосредственно. Например, маршрутизатор М2 получил эту информацию по цепочке М4-МЗ-М1. Поэтому маршрутизатор Ml снова может быть обманут, пока каждый из маршрутизаторов в цепочке МЗ-М4-М2 не вычеркнет запись о достижимости сети 1 (а это произойдет через период 3 х 180 секунд).
Для предотвращения зацикливания пакетов по составным петлям при отказах связей применяются два других приема, называемые триггерными обновлениями (tтриггерными обновлениями (triggered updates) и замораживанием изменений (hold down).
Способ триггерных обновлений состоит в том, что маршрутизатор, получив данные об изменении метрики до какой-либо сети, не ждет истечения периода передачи таблицы маршрутизации, а передает данные об изменившемся маршруте немедленно. Этот прием может во многих случаях предотвратить передачу устаревших сведений об отказавшем маршруте, но он перегружает сеть служебными сообщениями, поэтому триггерные объявления также делаются с некоторой задержкой. Поэтому возможна ситуация, когда регулярное обновление в каком-либо маршрутизаторе чуть опередит по времени приход триггерного обновления от предыдущего в цепочке маршрутизатора и данный маршрутизатор успеет передать по сети устаревшую информацию о несуществующем маршруте.
Второй прием позволяет исключить подобные ситуации. Он связан с введением тайм-аута на принятие новых данных о сети, которая только что стала недоступной. Этот тайм-аут предотвращает принятие устаревших сведений о некотором маршруте от тех маршрутизаторов, которые находятся на некотором расстоянии от отказавшей связи и передают устаревшие сведения о ее работоспособности. Предполагается, что в течение тайм-аута замораживания изменений эти маршрутизаторы вычеркнут данный маршрут из своих таблиц, так как не получат о нем новых записей и не будут распространять устаревшие сведения по сети.
4.3 Протокол состояния связей OSPF
Протокол OSPF (Open Shortest Path First, открытый протокол кратчайший путь первыми) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.
В OSPF процесс построения таблицы маршрутизации разбивается на два крупных этапа. На первом этапе каждый маршрутизатор строит граф связей сети, в котором вершинами графа являются маршрутизаторы и IP-сети, а ребрами - интерфейсы маршрутизаторов. Все маршрутизаторы для этого обмениваются со своими соседями той информацией о графе сети, которой они располагают к данному моменту времени. Этот процесс похож на процесс распространения векторов расстояний до сетей в протоколе RIP, однако сама информация качественно другая - это информация о топологии сети. Эти сообщения называются router links advertisement - объявление о связях маршрутизатора. Кроме того, при передаче топологической информации маршрутизаторы ее не модифицируют, как это делают RIP-маршрутизаторы, а передают в неизменном виде. В результате распространения топологической информации все маршрутизаторы сети располагают идентичными сведениями о графе сети, которые хранятся в топологической базе данных маршрутизатора.
Второй этап состоит в нахождении оптимальных маршрутов с помощью полученного графа. Каждый маршрутизатор считает себя центром сети и ищет оптимальный маршрут до каждой известной ему сети. В каждом найденном таким образом маршруте запоминается только один шаг - до следующего маршрутизатора, в соответствии с принципом одношаговой маршрутизации. Данные об этом шаге и попадают в таблицу маршрутизации. Задача нахождения оптимального пути на графе является достаточно сложной и трудоемкой. В протоколе OSPF для ее решения используется итеративный алгоритм Дийкстры. Если несколько маршрутов имеют одинаковую метрику до сети назначения, то в таблице маршрутизации запоминаются первые шаги всех этих маршрутов.
После первоначального построения таблицы маршрутизации необходимо отслеживать изменения состояния сети и вносить коррективы в таблицу маршрутизации. Для контроля состояния связей и соседних маршрутизаторов OSPF-маршрутиза-торы не используют обмен полной таблицей маршрутизации, как это не очень рационально делают МР-маршрутизаторы. Вместо этого они передают специальные короткие сообщения HELLO. Если состояние сети не меняется, то OSPF-мар-шрутизаторы корректировкой своих таблиц маршрутизации не занимаются и не посылают соседям объявления о связях. Если же состояние связи изменилось, то ближайшим соседям посылается новое объявление, касающееся только данной связи, что, конечно, экономит пропускную способность сети. Получив новое объявление об изменении состояния связи, маршрутизатор перестраивает граф сети, заново ищет оптимальные маршруты (не обязательно все, а только те, на которых отразилось данное изменение) и корректирует свою таблицу маршрутизации. Одновременно маршрутизатор ретранслирует объявление каждому из своих ближайших соседей (кроме того, от которого он получил это объявление).
При появлении новой связи или нового соседа маршрутизатор узнает об этом из новых сообщений HELLO. В сообщениях HELLO указывается достаточно детальная информация о том маршрутизаторе, который послал это сообщение, а также о его ближайших соседях, чтобы данный маршрутизатор можно было однозначно идентифицировать. Сообщения HELLO отправляются через каждые 10 секунд, чтобы повысить скорость адаптации маршрутизаторов к изменениям, происходящим в сети. Небольшой объем этих сообщений делает возможной такое частое тестирование состояния соседей и связей с ними.
Так как маршрутизаторы являются одними из вершин графа, то они обязательно должны иметь идентификаторы.
Протокол OSPF обычно использует метрику, учитывающую пропускную способность сетей. Кроме того, возможно использование двух других метрик, учитывающих требования к качеству обслуживания в IP-пакете, - задержки передачи пакетов и надежности передачи пакетов сетью. Для каждой из метрик протокол OSPF строит отдельную таблицу маршрутизации. Выбор нужной таблицы происходит в зависимости от требований к качеству обслуживания пришедшего пакета (см. рис. 27).
Рис. 27. Построение таблицы маршрутизации по протоколу OSPF
Маршрутизаторы соединены как с локальными сетями, так и непосредственно между собой глобальными каналами типа точка-точка.
Данной сети соответствует граф, приведенный на рис. 28.
Рис. 28. Граф сети, построенный протоколом OSPF
Протокол OSPF в своих объявлениях распространяет информацию о связях двух типов: маршрутизатор - маршрутизатор и маршрутизатор - сеть. Примером связи первого типа служит связь R3 - R4, а второго - связь R4 - 19 46.17.0. Если каналам точка-точка дать IP-адреса, то они станут дополнительными вершинами графа, как и локальные сети. Вместе с IP-адресом сети передается также информация о маске сети.
После инициализации OSPF-маршрутизаторы знают только о связях с непосредственно подключенными сетями, как и RIP-маршрутизаторы. Они начинают распространять эту информацию своим соседям. Одновременно они посылают сообщения HELLO по всем своим интерфейсам, так что почти сразу же маршрутизатор узнает идентификаторы своих ближайших соседей, что пополняет его топологическую базу новой информацией, которую он узнал непосредственно. Далее топологическая информация начинает распространяться по сети от соседа к соседу и через некоторое время достигает самых удаленных маршрутизаторов.
Каждая связь характеризуется метрикой. Протокол OSPF поддерживает стандартные для многих протоколов (например, для протокола Spanning Tree) значения расстояний для метрики, отражающей производительность сетей: Ethernet - 10 единиц, Fast Ethernet - 1 единица, канал Т1 - 65 единиц, канал 56 Кбит/с - 1785 единиц и т. д.
При выборе оптимального пути на графе с каждым ребром графа связана метрика, которая добавляется к пути, если данное ребро в него входит. Пусть на приведенном примере маршрутизатор R5 связан с.R6 и R7 каналами Tl, a R6 и R7 связаны между собой каналом 56 Кбит/с. Тогда R7 определит оптимальный маршрут до сети 201.106.14.0 как составной, проходящий сначала через маршрутизатор R5, а затем через R6, поскольку у этого маршрута метрика будет равна 65+65 = 130 единиц. Непосредственный маршрут через R6 не будет оптимальным, так как его метрика равна 178 При использовании хопов был бы выбран маршрут через R6, что не было бы оптимальным.
Протокол OSPF разрешает хранить в таблице маршрутизации несколько маршрутов к одной сети, если они обладают равными метриками. Если такие записи образуются в таблице маршрутизации, то маршрутизатор реализует режим баланса загрузки маршрутов (load balancing), отправляя пакеты попеременно по каждому из маршрутов.
У каждой записи в топологической базе данных имеется срок жизни, как и у маршрутных записей протокола RIP. С каждой записью о связях связан таймер, который используется для контроля времени жизни записи. Если какая-либо запись топологической базы маршрутизатора, полученная от другого маршрутизатора, устаревает, то он может запросить ее новую копию с помощью специального сообщения Link-State Request протокола OSPF, на которое должен поступить ответ Link-State Update от маршрутизатора, непосредственно тестирующего запрошенную связь.
При инициализации маршрутизаторов, а также для более надежной синхронизации топологических баз маршрутизаторы периодически обмениваются всеми записями базы, но этот период существенно больше, чем у RIP-маршрутизаторов.
Так как информация о некоторой связи изначально генерируется только тем маршрутизатором, который выяснил фактическое состояние этой связи путем тестирования с помощью сообщений HELLO, а остальные маршрутизаторы только ретранслируют эту информацию без преобразования, то недостоверная информация о достижимости сетей, которая может появляться в RIP-маршрутиэаторах, в OSPF-маршрутизаторах появиться не может, а устаревшая информация быстро заменяется новой, так как при изменении состояния связи новое сообщение генерируется сразу же.
Периоды нестабильной работы в OSPF-сетях могут возникать. Например, при отказе связи, когда информация об этом не дошла до какого-либо маршрутизатора и он отправляет пакеты сети назначения, считая эту связь работоспособной. Однако эти периоды продолжаются недолго, причем пакеты не зацикливаются в маршрутных петлях, а просто отбрасываются при невозможности их передать через неработоспособную связь.
К недостаткам протокола OSPF следует отнести его вычислительную сложность, которая быстро растет с увеличением размерности сети, то есть количества сетей, маршрутизаторов и связей между ними. Для преодоления этого недостатка в протоколе OSPF вводится понятие области сети (area) (не нужно путать с автономной системой Internet). Маршрутизаторы, принадлежащие некоторой области, строят граф связей только для этой области, что сокращает размерность сети. Между областями информация о связях не передается, а пограничные для областей маршрутизаторы обмениваются только информацией об адресах сетей, имеющихся в каждой из областей, и расстоянием от пограничного маршрутизатора до каждой сети. При передаче пакетов между областями выбирается один из пограничных маршрутизаторов области, а именно тот, у которого расстояние до нужной сети меньше. Этот стиль напоминает стиль работы протокола RIP, но нестабильность здесь устраняется тем, что петлевидные связи между областями запрещены. При передаче адресов в другую область OSPF-маршрутизаторы агрегируют несколько адресов в один, если обнаруживают у них общий префикс.
OSPF-маршрутизаторы могут принимать адресную информацию от других протоколов маршрутизации, например от протокола RIP, что полезно для работы в гетерогенных сетях. Такая адресная информация обрабатывается так же, как и внешняя информация между разными областями.
Выводы
· Крупные сети разбивают на автономные системы, в которых проводится общая политика маршрутизации IP-пакетов. Если сеть подключена к Internet, то идентификатор автономной системы назначается в InterNIC.
· Протоколы маршрутизации делятся на внешние и внутренние. Внешние протоколы (EGP, BGP) переносят маршрутную информацию между автономными системами, а внутренние (RIP, OSPF) применяются только в пределах определенной автономной системы.
· Протокол RIP является наиболее заслуженным и распространенным протоколом маршрутизации сетей TCP/IP. Несмотря на его простоту, определенную использованием дистанционно-векторного алгоритма, RIP успешно работает в.небольших сетях с количеством промежуточных маршрутизаторов не более 1
· RIP-маршрутизаторы при выборе маршрута обычно используют самую простую метрику - количество промежуточных маршрутизаторов между сетями, то есть хопов.
· Версия RIPvl не распространяет маски подсетей, что вынуждает администраторов использовать маски фиксированной длины во всей составной сети. В версии RIPv2 это ограничение снято.
· В сетях, использующих RIP и имеющих петлевидные маршруты, могут наблюдаться достаточно длительные периоды нестабильной работы, когда пакеты зацикливаются в маршрутных петлях и не доходят до адресатов. Для борьбы с этими явлениями в RIP-маршрутизаторах предусмотрено несколько приемов (Split Horizon, Hold Down, Triggered Updates), которые сокращают в некоторых случаях периоды нестабильности.
· Протокол OSPF был разработан для эффективной маршрутизации IP-пакетов в больших сетях со сложной топологией, включающей петли. Он основан на алгоритме состояния связей, который обладает высокой устойчивостью к изменениям топологии сети.
· При выборе маршрута OSPF-маршрутизаторы используют метрику, учитывающую пропускную способность составных сетей.
· Протокол OSPF является первым протоколом маршрутизации для IP-сетей, который учитывает биты качества обслуживания (пропускная способность, задержка и надежность) в заголовке IP-пакета. Для каждого типа качества обслуживания строится отдельная таблица маршрутизации.
· Протокол OSPF обладает высокой вычислительной сложностью, поэтому чаще всего работает на мощных аппаратных маршрутизаторах.
Средства построения составных сетей стека Novell
1. Общая характеристика протокола IPX
Протокол Internetwork Packet Exchange (IPX) является оригинальным протоколом сетевого уровня стека Novell, разработанным в начале 80-х годов на основе протокола Internetwork Datagram Protocol (IDP) компании Xerox.
Протокол IPX соответствует сетевому уровню модели ISO/OSI (рис. 29) и поддерживает, как и протокол IP, только дейтаграммный (без установления соединений) способ обмена сообщениями. В сети NetWare наиболее быстрая передача данных при наиболее экономном использовании памяти реализуется именно протоколом IPX.
Рис. 29. Соответствие протоколов IPX/SPX семиуровневой модели OSI
Надежную передачу пакетов может осуществлять транспортный протокол SPX (Sequenced Packet Exchange Protocol), который работает с установлением соединения и восстанавливает пакеты при их потере или повреждении. Как видно из рис. 29, использование протокола SPX не является обязательным при выполнении операций передачи сообщений протоколами прикладного уровня.
Прикладной уровень стека IPX/SPX составляют два протокола: NCP и SAP. Протокол NCP (NetWare Core Protocol) поддерживает все основные службы операционной системы Novell NetWare - файловую службу, службу печати и т. д. Протокол SAP (Service Advertising Protocol) выполняет вспомогательную роль. С помощью протокола SAP каждый компьютер, который готов предоставить какую-либо службу для клиентов сети, объявляет об этом широковещательно по сети, указывая в SAP-пакетах тип службы (например, файловая), а также свой сетевой адрес. Наличие протокола SAP позволяет резко уменьшить административные работы по конфигурированию клиентского программного обеспечения, так как всю необходимую информацию для работы клиенты узнают из объявлений SAP (кроме маршрутизаторов по умолчанию, о которых можно узнать с помощью протокола IPX).
В отличие от протокола IP, который изначально разрабатывался для глобальных сетей, протокол IPX создавался для применения в локальных сетях. Именно поэтому он является одним из самых экономичных протоколов в отношении требований к вычислительным ресурсам и хорошо работает в сравнительно небольших локальных сетях.
Специфика адресации в протоколе IPX является источником как достоинств, так и недостатков этого протокола. Протокол IPX работает с сетевыми адресами, включающими три компонента:
· номер сети (4 байта);
· номер узла (6 байт);
· номер сокета (2 байта).
Номер сети в отличие от протокола IP имеет всегда фиксированную длину - 4 байта. В принципе для корпоративных сетей эта длина является избыточной, так как вряд ли у предприятия возникнет потребность разделить свою сеть на 4 миллиарда подсетей. В период доминирования сетей IPX/SPX компания Novell рассматривала возможность создания единого всемирного центра по распределению IPX-адресов, аналогичного центру InterNIC. Однако стремительный рост популярности сети Internet лишил это начинание смысла. Хотя протоколы IPX/SPX по-прежнему работают в огромном количестве корпоративных сетей, заменить IP во всемирной сети они уже не смогут. Надо отметить, что специалисты компании Novell приложили немало усилий, чтобы в новой версии 6 протокол IP приобрел некоторые черты, свойственные протоколу IPX, и тем самым облегчил переход пользователей IPX на IPv6 (когда это станет практически необходимым). Обычно все три составляющие IPX-адреса, в том числе и номер сети, записываются в шест-надцатеричной форме.
Под номером узла в протоколе IPX понимается аппаратный адрес узла. В локальных сетях это МАС - адрес узла - сетевого адаптера или порта маршрутизатора. Размер адреса узла в 6 байт отражает происхождение этого поля, но в него можно поместить любой аппаратный адрес, если он укладывается в размер этого поля.
Номер сокета (socket) идентифицирует приложение, которое передает свои сообщения по протоколу IPX. Сокет выполняет в стеке IPX/SPX ту же роль, что порт в протоколах TCP/UDP стека TCP/IP. Наличие этого поля в протоколе сетевого уровня, которым является IPX, объясняется тем, что в стеке Novell прикладные протоколы NCP и SAP взаимодействует с сетевым уровнем непосредственно, минуя транспортный протокол SPX. Поэтому роль мультиплексора-демультиплексора прикладных протоколов приходится выполнять протоколу IPX, для чего в его пакете необходимо передавать номер сокета прикладного протокола. Протоколы NCP и SAP не пользуются услугами SPX для ускорения работы стека, а скорость работы на маломощных персональных компьютерах начала 80-х годов была одной из основных целей компании Novell. Каждый дополнительный уровень в стеке, хотя бы и такой простой, как UDP, замедляет работу стека. За отказ от транспортного уровня компании Novell пришлось реализовывать средства восстановления утерянных пакетов в протоколе NCP. Тем не менее прикладные программисты, разрабатывающие свои собственные сетевые приложения для стека IPX/ SPX, могут пользоваться протоколом SPX, если не захотят встраивать достаточно сложные алгоритмы скользящего окна в свои программы.
Протокол IPX является одним из наиболее легко настраиваемых протоколов сетевого уровня. Номер сети задается администратором только на серверах, а номер узла автоматически считывается из сетевого адаптера компьютера. На клиентском компьютере номер сети не задается - клиент узнает эту информацию из серверных объявлений SAP или локального маршрутизатора.
Адрес маршрутизатора по умолчанию также не нужно задавать вручную на каждом клиентском компьютере. В протоколе IPX есть специальный запрос, который передается на заранее определенный номер сокета. Если в сети клиента есть маршрутизатор или сервер, выполняющий роль программного маршрутизатора, то клиент при старте системы выдает такой запрос широковещательно, и все маршрутизаторы сообщают ему свои МАС - адреса, которые используются в качестве адреса следующего маршрутизатора.
Как видно из описания, административные издержки при конфигурировании сети IPX/SPX сводятся к минимуму. При этом отпадает необходимость в протоколе типа ARP, выясняющего соответствие между сетевыми адресами узлов и их МАС - адресами. Однако при смене сетевого адаптера нужно скорректировать адрес узла, если для его выяснения используются не широковещательные запросы-ответы, а справочная служба типа Novell NDS, в которой фиксируются сетевые адреса серверов. Отсутствие протокола ARP повышает производительность сети, так как позволяет не тратить время на выполнение ARP-запросов и ARP-ответов.
2. Формат пакета протокола IPX
Пакет протокола IPX имеет гораздо более простую структуру по сравнению с пакетом IP, что, собственно, и отражает меньшие функциональные возможности протокола IPX.
IPX-пакет имеет следующие поля.
· Контрольная сумма (Checksum) - это 2-байтовое поле, являющееся пережитком прошлого, которое протокол IPX ведет от протокола IDP стека Xerox. Так как низкоуровневые протоколы (например, Ethernet) всегда выполняют проверку контрольных сумм, то IPX не использует это поле и всегда устанавливает его в единицы.
· Длина (Length) занимает 2 байта и задает размер всего пакета, включая IPX-заголовок и поле данных. Самый короткий пакет - 30 байт - включает только IPX-заголовок, а рекомендуемый максимально большой - 576 байт - включает IPX-заголовок плюс 546 байт данных. Максимальный размер пакета в 576 байт соответствует рекомендациям стандартов Internet для составных сетей. Протокол IPX вычисляет значение этого поля, основываясь на информации, предоставляемой прикладной программой при вызове функции IPX. IPX-пакет может превосходить рекомендуемый максимум в 576 байт, что и происходит в локальных сетях Ethernet, где используются IPX-пакеты в 1500 байт с полем данных в 1470 байт.
· Управление транспортом (Transport control) имеет длину 8 бит. Это поле определяет время жизни пакета в хопах. IPX-пакет может пересечь до 15 маршрутизаторов. Протокол IPX устанавливает это однобайтовое поле в 0 до начала передачи, а затем увеличивает его на 1 каждый раз, когда пакет проходит через маршрутизатор. Если счетчик превысит 15, то пакет аннулируется.
· Тип пакета (Packet type) имеет длину 8 бит. Фирма Xerox определила в свое время определенные значения для различных типов пакетов: прикладные программы, посылающие IPX-пакеты, должны устанавливать это поле в значение, равное 4. Значение 5 соответствует служебным IPX-пакетам, используемым протоколом SPX в качестве служебных сообщений. Значение 17 указывает на то, что в поле данных IPX-пакета находится сообщение протокола NetWare Core Protocol (NCP) - основного протокола файловой службы NetWare.
· Адрес назначения (Destination address) - состоит из трех полей: номера сети назначения, номера узла назначения, номера сокета назначения. Эти поля занимают соответственно 4, 6 и 2 байта.
· Адрес отправителя (Source address) - номер исходной сети, номер исходного узла, номер исходного сокета. Аналогичны адресным полям назначения.
· Поле данных (Data). Может занимать от 0 до 546 байт. Поле данных нулевой длины может использоваться в служебных пакетах, например, для подтверждения получения предыдущего пакета. Из анализа формата пакета можно сделать некоторые выводы об ограничениях протокола IPX.
· Отсутствует возможность динамической фрагментации на сетевом уровне. В IPX-пакете нет полей, с помощью которых маршрутизатор может разбить слишком большой пакет на части. При передаче пакета в сеть с меньшим значением MTU IPX-маршрутизатор отбрасывает пакет. Протокол верхнего уровня, например NCP, должен последовательно уменьшать размер пакета до тех пор, пока не получит на него положительную квитанцию.
· Большие накладные расходы на служебную информацию. Сравнительно небольшая максимальная длина поля данных IPX-пакета (546 байт при длине заголовка 30 байт) приводит к тому, что как минимум 5 % данных являются служебными.
· Время жизни пакета ограничено числом 15, что может оказаться недостаточным для большой сети (для сравнения, в IP-сетях пакет может пройти до 255 промежуточных маршрутизаторов).
· Отсутствует поле качества сервиса, что не позволяет маршрутизаторам автоматически подстраиваться к требованиям приложения к качеству передачи трафика.
Кроме того, некоторые недостатки сетей Novell связаны не с протоколом IPX, a со свойствами других протоколов стека IPX/SPX. Многие недостатки проявляются при работе стека IPX/SPX на медленных глобальных линиях связи, и это закономерно, так как ОС NetWare оптимизировалась для работы в локальной сети.
Например, неэффективная работа по восстановлению потерянных и искаженных пакетов на низкоскоростных глобальных каналах обусловлена тем, что протокол NCP, который выполняет эту работу, использует метод получения квитанций с простоями. В локальных сетях со скоростью 10 Мбит/с такой метод работал вполне эффективно, а на медленных каналах время ожидания квитанции заметно тормозит работу передающего узла.
В версиях ОС NetWare до 4.0 соответствие символьных имен серверов их сетевым адресам устанавливалось только с помощью широковещательного протокола Service Advertising Protocol (SAP). Однако широковещательные рассылки заметно засоряют медленные глобальные каналы. Модернизируя свой стек для применения в крупных корпоративных сетях, компания Novell использует теперь справочную службу NDS (NetWare Directory Services) для нахождения разнообразной информации об имеющихся в сети ресурсах и службах, в том числе и о соответствии имени сервера его сетевому адресу. Так как служба NDS поддерживается только серверами с версией NetWare 4.x и выше, то для работы с версиями NetWare 3.x маршрутизаторы распознают SAP-пакеты по номеру их сокета и передают их на все порты, имитируя широковещательные рассылки локальной сети, на что тратится значительная часть пропускной способности медленных глобальных линий. Кроме того, такая псевдошироковещательность сводит на нет изоляцию сетей от некорректных SAP-пакетов.
В последних версиях своей операционной системы NetWare компания Novell значительно модифицировала свой стек для того, чтобы он мог более эффективно использоваться в крупных составных сетях.
· Служба NDS позволяет отказаться от широковещательного протокола SAP. Служба NDS основана на иерархической распределенной базе данных, хранящей информацию о пользователях и разделяемых ресурсах сети. Приложения обращаются к этой службе по протоколу прикладного уровня NDS.
· Добавлен модуль для реализации метода скользящего окна - так называемый Burst Mode Protocol NLM.
· Добавлен модуль для поддержки длинных IPX-пакетов в глобальных сетях - Large Internet Packet NLM.
Кроме того, постоянное повышение быстродействия глобальных служб уменьшает недостатки оригинальных протоколов стека IPX/SPX, что позволяет некоторым обозревателям говорить об успешной работе операционной системы NetWare в глобальных сетях и без указанных нововведений.
3. Маршрутизация протокола IPX
В целом маршрутизация протокола IPX выполняется аналогично маршрутизации протокола IP. Каждый IPX-маршрутизатор поддерживает таблицу маршрутизации, на основании которой принимается решение о продвижении пакета. IPX-маршрутизаторы поддерживает одношаговую маршрутизацию, при которой каждый маршрутизатор принимает решение только о выборе следующего на пути маршрутизатора. Возможности маршрутизации от источника в протоколе IPX отсутствуют. Рассмотрим типичную таблицу маршрутизации (табл. 20) для протокола IPX.
Таблица 20. Таблица маршрутизации протокола IPX
В поле Номер сети указывается шестнадцатеричный адрес сети назначения, а в поле Следующий маршрутизатор - полный сетевой адрес следующего маршрутизатора, то есть пара номер сети-МАС - адрес. МАС - адрес из этой записи переносится в поле адреса назначения кадра канального уровня, например Ethernet, который и переносит IPX-пакет следующему маршрутизатору. IPX-пакет при передаче между промежуточными маршрутизаторами изменений не претерпевает.
Если IPX-маршрутизатор обнаруживает, что сеть назначения - это его непосредственно подключенная сеть, то из заголовка IPX-пакета извлекается номер узла назначения, который является МАС - адресом узла назначения. Этот МАС - адрес переносится в адрес назначения кадра канального уровня, например FDDI. Кадр непосредственно отправляется в сеть, и протокол FDDI доставляет его по этому адресу узлу назначения.
IPX-маршрутизаторы обычно используют два типа метрики при выборе маршрута: расстояние в хопах и задержку в некоторых условных единицах - тиках (ticks). Расстояние в хопах имеет обычный смысл - это количество промежуточных маршрутизаторов, которые нужно пересечь IPX-пакету для достижения сети назначения. Задержка также часто используется в маршрутизаторах и мостах/коммутаторах для более точного сравнения маршрутов. Однако в IPX-маршрутизаторах традиционно задержка измеряется в тиках таймера персонального компьютера, который выдает сигнал прерывания 18,21 раза в секунду. Эта традиция ведется от первых программных IPX-маршрутизаторов, которые работали в составе операционной системы NetWare и пользовались таймером персонального компьютера для измерения интервалов времени. Напомним, что IP-маршрутизаторы, а также мосты/коммутаторы, поддерживающие протокол Spanning Tree, измеряют задержку, вносимую какой-либо сетью в 10-наносекундных единицах передачи одного бита информации, так что сеть Ethernet оценивается задержкой в 10 единиц. Кроме этого, IPX-маршрутизаторы оценивают задержку не одного бита, а стандартного для IPX-пакета в 576 байт.
Поэтому задержка в тиках для сети Ethernet получается равной 0,00839 тика, а для канала 64 Кбит/с - 1,31 тика. Задержка в тиках всегда округляется до целого числа тиков в большую сторону, так что сеть Ethernet вносит задержку в один тик, а канал 64 Кбит/с - в 2 тика. При вычислении метрики в тиках для составного маршрута задержки в тиках складываются.
Две метрики в записях таблицы маршрутизации протокола IPX используются в порядке приоритетов. Наибольшим приоритетом обладает метрика, измеренная в задержках, а если эта метрика совпадает для каких-либо маршрутов, то во внимание принимается расстояние в хопах.
Несмотря на традиции измерения задержки в тиках, IPX-маршрутизаторы могут использовать и стандартные задержки сетей, измеренные в 10-наносекундных интервалах.
IPX-маршрутизаторы могут поддерживать как статические маршруты, так и динамические, полученные с помощью протоколов RIP IPX и NLSP.
Протокол RIP IPX очень близок к протоколу RIP IP. Так как в IPX-сетях маски не применяются, то RIP IPX не имеет аналога RIPv2, передающего маски. Интервал между объявлениями у протПротокол RIP IPX очень близок к протоколу RIP IP. Так как в IPX-сетях маски не применяются, то RIP IPX не имеет аналога RIPv2, передающего маски. Интервал между объявлениями у протокола RIP IPX равен 60 с (в отличие от 30 су RIP IP). В пакетах RIP IPX для каждой сети указываются обе метрики - в хопах и тиках. Для исключения маршрутных петель IPX-маршрутизаторы используют прием расщепления горизонта.
Время жизни динамической записи составляет 180 секунд. Недостижимость сети указывается значением числа хопов в 15 (0xF), а тиков - в 0xFFFF.
IPX-маршрутизаторы, как и IP-маршрутизаторы, не передают из сети в сеть пакеты, имеющие широковещательный сетевой адрес. Однако для некоторых типов таких пакетов IPX-маршрутизаторы делают исключения. Это пакеты службы SAP, с помощью которой серверы NetWare объявляют о себе по сети. IPX-маршрутизаторы передают SAP-пакеты во все непосредственно подключенные сети, кроме той, от которой этот пакет получен (расщепление горизонта). Если бы IPX-маршрутизаторы не выполняли таких передач, то клиенты NetWare не смогли бы взаимодействовать с серверами в сети, разделенной маршрутизаторами, в привычном стиле, то есть путем просмотра имеющихся серверов с помощью команды SLIST.
IPX-маршрутизаторы всегда используют внутренний номер сети, который относится не к интерфейсам маршрутизатора, а к самому модулю маршрутизации. Внутренний номер сети является некоторым аналогом сети 127.0.0.0 узлов IP-сетей, однако каждый IPX-маршрутизатор должен иметь уникальный внутренний номер сети, причем его уникальность должна распространяться и на внешние номера IPX-сетей в составной сети.
IPX-маршрутизаторы выполняют также функцию согласования форматов кадров Ethernet. В составных IPX-сетях каждая сеть может работать только с одним из 4-х возможных типов кадров IPX. Поэтому если в разных сетях используются разные типы кадров Ethernet, то маршрутизатор посылает в каждую сеть тот тип кадра, который установлен для этой сети.
Протокол NLSP (NetWare Link Services Protocol) представляет собой реализацию алгоритма состояния связей для IPX-сетей. В основном он работает аналогично протоколу OSPF сетей TCP/IP.
Выводы
· Стек Novell состоит из четырех уровней: канального, который собственно стеком Novell не определяется; сетевого, представленного протоколом дейтаграмм-ного типа IPX; транспортного, на котором работает протокол надежной передачи данных SPX; прикладного, на котором работает протокол NCP, поддерживающий файловую службу и службу печати, а также протоколы SAP и NDS, выполняющие служебные функции по поиску в сети разделяемых ресурсов.
· Особенностью стека Novell является то, что основной прикладной протокол NCP не пользуется транспортным протоколом SPX, а обращается непосредственно к сетевому протоколу IPX. Это значительно ускоряет работу стека, но усложняет прикладной протокол NCP.
· Сетевой IPX-адрес состоит из номера сети, назначаемого администратором, и номера узла, который в локальных сетях совпадает с аппаратным адресом узла, то есть МАС - адресом. Использование аппаратных адресов узлов на сетевом уровне ускоряет работу протокола, так как при этом отпадает необходимость в выполнении протокола типа ARP. Также упрощается конфигурирование компьютеров сети, так как они узнают свой номер сети от локального маршрутизатора, а номер узла извлекается из сетевого адаптера.
· Недостатком IPX-адресации является ограничение в 6 байт, накладываемое на адрес узла на сетевом уровне. Если какая-либо составная сеть использует аппаратные адреса большего размера (это может произойти, например, в сети Х.25), то протокол IPX не сможет доставить пакет конечному узлу такой сети.
· IPX-маршрутизаторы используют протоколы динамической маршрутизации RIP IPX, являющийся аналогом RIP IP, и NLSP, который во многом похож на протокол OSPF сетей TCP/IP.
6. Основные характеристики маршрутизаторов и концентраторов
6.1 Маршрутизаторы
Основная задача маршрутизатора - выбор наилучшего маршрута в сети - часто является достаточно сложной с математической точки зрения. Особенно интенсивных вычислений требуют протоколы, основанные на алгоритме состояния связей, вычисляющие оптимальный путь на графе, - OSPF, NLSP, IS-IS. Кроме этой основной функции в круг ответственности маршрутизатора входят и другие задачи, такие как буферизация, фильтрация и фрагментация перемещаемых пакетов. При этом очень важна производительность, с которой маршрутизатор выполняет эти задачи.
Поэтому типичный маршрутизатор является мощным вычислительным устройством с одним или даже несколькими процессорами, часто специализированными или построенными на RISC-архитектуре, со сложным программным обеспечением. То есть сегодняшний маршрутизатор - это специализированный компьютер, имеющий скоростную внутреннюю шину или шины (с пропускной способностью 600-2000 Мбит/с), часто использующий симметричное или асимметричное мультипроцессирование и работающий под управлением специализированной операционной системы, относящейся к классу систем реального времени. Многие разработчики маршрутизаторов построили в свое время такие операционные системы на базе операционной системы Unix, естественно, значительно ее переработав.
Маршрутизаторы могут поддерживать как один протокол сетевого уровня (например, IP, IPX или DECnet), так и множество таких протоколов. В последнем случае они называются многопротокольными маршрутизаторами. Чем больше протоколов сетевого уровня поддерживает маршрутизатор, тем лучше он подходит для корпоративной сети.
Большая вычислительная мощность позволяет маршрутизаторам наряду с основной работой по выбору оптимального маршрута выполнять и ряд вспомогательных высокоуровневых функций.
Классификация маршрутизаторов по областям применения
По областям применения маршрутизаторы делятся на несколько классов.
Магистральные маршрутизаторы (backbone routers) предназначены для построения центральной сети корпорации. Центральная сеть может состоять из большого количества локальных сетей, разбросанных по разным зданиям и использующих самые разнообразные сетевые технологии, типы компьютеров и операционных систем. Магистральные маршрутизаторы - это наиболее мощные устройства, способные обрабатывать несколько сотен тысяч или даже несколько миллионов пакетов в секунду, имеющие большое количество интерфейсов локальных и глобальных сетей. Поддерживаются не только среднескоростные интерфейсы глобальных сетей, такие как Т1/Е1, но и высокоскоростные, например, АТМ или SDH со скоростями 155 Мбит/с или 622 Мбит/с. Чаще всего магистральный маршрутизатор конструктивно выполнен по модульной схеме на основе шасси с большим количеством слотов - до 12-14. Большое внимание уделяется в магистральных моделях надежности и отказоустойчивости маршрутизатора, которая достигается за счет системы терморегуляции, избыточных источников питания, заменяемых на ходу (hot swap) модулей, а также симметричного муль-типроцессирования. Примерами магистральных маршрутизаторов могут служить маршрутизаторы Backbone Concentrator Node (BCN) компании Nortel Networks (ранее Bay Networks), Cisco 7500, Cisco 12000.
Маршрутизаторы региональных отделений соединяют региональные отделения между собой и с центральной сетью. Сеть регионального отделения, так же как и центральная сеть, может состоять из нескольких локальных сетей. Такой маршрутизатор обычно представляет собой некоторую упрощенную версию магистрального маршрутизатора. Если он выполнен на основе шасси, то количество слотов его шасси меньше: 4- Возможен также конструктив с фиксированным количеством портов. Поддерживаемые интерфейсы локальных и глобальных сетей менее скоростные. Примерами маршрутизаторов региональных отделений могут служить маршрутизаторы BLN, ASN компании Nortel Networks, Cisco 3600, Cisco 2500, NetBuilder II компании 3Com. Это наиболее обширный класс выпускаемых маршрутизаторов, характеристики которых могут приближаться к характеристикам магистральных маршрутизаторов, а могут и опускаться до характеристик маршрутизаторов удаленных офисов.
Маршрутизаторы удаленных офисов соединяют, как правило, единственную локальную сеть удаленного офиса с центральной сетью или сетью регионального отделения по глобальной связи. В максимальном варианте такие маршрутизаторы могут поддерживать и два интерфейса локальных сетей. Как правило, интерфейс локальной сети - это Ethernet 10 Мбит/с, а интерфейс глобальной сети - выделенная линия со скоростью 64 Кбит/с, 1,544 или 2 Мбит/с. Маршрутизатор удаленного офиса может поддерживать работу по коммутируемой телефонной линии в качестве резервной связи для выделенного канала. Существует очень большое количество типов маршрутизаторов удаленных офисов. Это объясняется как массовостью потенциальных потребителей, так и специализацией такого типа устройств, проявляющейся в поддержке одного конкретного типа глобальной связи. Например, существуют маршрутизаторы, работающие только по сети ISDN, существуют модели только для аналоговых выделенных линий и т. п. Типичными представителями этого класса являются маршрутизаторы Nautika компании Nortel Networks, Cisco 1600, Office Connect компании 3Com, семейство Pipeline компании Ascend.
Маршрутизаторы локальных сетей (коммутаторы 3-го уровня) предназначены для разделения крупных локальных сетей на подсети. Основное требование, предъявляемое к ним, - высокая скорость маршрутизации, так как в такой конфигурации отсутствуют низкоскоростные порты, такие как модемные порты 33,6 Кбит/с или цифровые порты 64 Кбит/с. Все порты имеют скорость по крайней мере 10 Мбит/с, а многие работают на скорости 100 Мбит/с. Примерами коммутаторов 3-го уровня служат коммутаторы CoreBuilder 3500 компании 3Com, Accelar 1200 компании Nortel Networks, Waveswitch 9000 компании Plaintree, Turboiron Switching Router компании Foudry Networks.
В зависимости от области применения маршрутизаторы обладают различными основными и дополнительными техническими характеристиками.
Основные технические характеристики маршрутизатора
Основные технические характеристики маршрутизатора связаны с тем, как он решает свою главную задачу - маршрутизацию пакетов в составной сети. Именно эти характеристики прежде всего определяют возможности и сферу применения того или иного маршрутизатора.
Перечень поддерживаемых сетевых протоколов. Магистральный маршрутизатор должен поддерживать большое количество сетевых протоколов и протоколов маршрутизации, чтобы обеспечивать трафик всех существующих на предприятии вычислительных систем (в том числе и устаревших, но все еще успешно эксплуатирующихся, так называемых унаследованных - legacy), а также систем, которые могут появиться на предприятии в ближайшем будущем. Если центральная сеть образует отдельную автономную систему Internet, то потребуется поддержка и специфических протоколов маршрутизации этой сети, таких как EGP и BGP. Программное обеспечение магистральных маршрутизаторов обычно строится по модульному принципу, поэтому при возникновении потребности можно докупать и добавлять программные модули, реализующие недостающие протоколы.
Перечень поддерживаемых сетевых протоколов обычно включает протоколы IP, CONS и CLNS OSI, IPX, AppleTalk, DECnet, Banyan VINES, Xerox XNS.
Перечень протоколов маршрутизации составляют протоколы IP RIP, IPX RIP, NLSP, OSPF, IS-IS OSI, EGP, BGP, VINES RTP, AppleTalk RTMP.
Перечень поддерживаемых интерфейсов локальных и глобальных сетей. Для локальных сетей - это интерфейсы, реализующие физические и канальные протоколы сетей Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN иАТМ.
Для глобальных связей - это интерфейсы физического уровня для связи с аппаратурой передачи данных, а также протоколы канального и сетевого уровней, необходимые для подключения к глобальным сетям с коммутацией каналов и пакетов.
Поддерживаются интерфейсы последовательных линий (serial lines) RS-232, RS-449/422, V.35 (для передачи данных со скоростями до 2-6 Мбит/с), высокоскоростной интерфейс HSSI, обеспечивающий скорость до 52 Мбит/с, а также интерфейсы с цифровыми каналами Т1/Е1, ТЗ/ЕЗ и интерфейсами BRI и PRI цифровой сети ISDN. Некоторые маршрутизаторы имеют аппаратуру связи с цифровыми глобальными каналами, что исключает необходимость использования внешних устройств сопряжения с этими каналами.
В набор поддерживаемых глобальных технологий обычно входят технологии Х.25, frame relay, ISDN и коммутируемых аналоговых телефонных сетей, сетей АТМ, а также поддержка протокола канального уровня РРР.
Общая производительность маршрутизатора. Высокая производительность маршрутизации важна для работы с высокоскоростными локальными сетями, а также для поддержки новых высокоскоростных глобальных технологий, таких как frame relay, ТЗ/Е3, SDH и АТМ. Общая производительность маршрутизатора зависит от многих факторов, наиболее важными из которых являются: тип используемых процессоров, эффективность программной реализации протоколов, архитектурная организация вычислительных и интерфейсных модулей. Общая производительность маршрутизаторов колеблется от нескольких десятков тысяч пакетов в секунду до нескольких миллионов пакетов в секунду. Наиболее производительные маршрутизаторы имеют мультипроцессорную архитектуру, сочетающую симметричные и асимметричные свойства - несколько мощных центральных процессоров по симметричной схеме выполняют функции вычисления таблицы маршрутизации, а менее мощные процессоры в интерфейсных модулях занимаются передачей пакетов на подключенные к ним сети и пересылкой пакетов на основании части таблицы маршрутизации, кэшированной в локальной памяти интерфейсного модуля.
Подобные документы
Стандартные сети коммуникационных протоколов. Стек OSI. Стек TCP/IP. Принципы объединения сетей на основе протоколов сетевого уровня. Ограничения мостов и коммутаторов. Модем как средство связи между компьютерами. Международные стандарты модемов.
курсовая работа [29,3 K], добавлен 06.07.2008Принципы построения составных сетей. Согласование протоколов канального уровня. Маршрутизация в сетях с произвольной топологией. Сетевой уровень и модель OSI. Система MFG/PRO, языки QAD. Обзор, архитектура системы. Некоторые возможности интерфейса.
курсовая работа [1,6 M], добавлен 29.09.2013Отображение физических адресов на IP-адреса: протоколы ARP и RARP. Примеры организации доменов и доменных имен. Автоматизация процесса порядка назначения IP-адресов узлами сети. Маска подсети переменной длины. Протокол межсетевого взаимодействия IP.
контрольная работа [145,7 K], добавлен 23.01.2015Официальные международные организации, выполняющие работы по стандартизации информационных сетей, протоколы IP, ARP, RARP, семиуровневая модель OSI. TCP/IP, распределение протоколов по уровням ISO в локальных и в глобальных сетях, разделение IP-сетей.
шпаргалка [50,0 K], добавлен 24.06.2010Работы по созданию сети ARPANET, протоколы сетевого взаимодействия TCP/IP. Характеристика программного обеспечения для TCP/IP. Краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур. Архитектура, уровни сетей и протоколы TCP/IP.
реферат [15,7 K], добавлен 03.05.2010Задача и особенности составления таблиц маршрутизации. Принципы процесса определения маршрута следования информации в сетях связи в TCP/IP. Процесс обмена пакетами информации путем использования протоколов Routing Information, Open Shortest Path First.
презентация [494,8 K], добавлен 23.01.2014Методы проектирования LAN для обеспечения обмена данными, доступа к общим ресурсам, принтерам и Internet. Автоматическая адресация в IP-сетях при помощи протокола DHCP. Алгоритмы маршрутизации, базирующиеся на информации о топологии и состоянии сети.
дипломная работа [2,7 M], добавлен 01.07.2014Общие сведения о глобальных сетях с коммутацией пакетов, построение и возможности сетей, принцип коммутации пакетов с использованием техники виртуальных каналов. Характеристики и возможности коммутаторов сетей, протоколы канального и сетевого уровней.
курсовая работа [2,0 M], добавлен 26.08.2010Разработка и использование протокола маршрутизации RIP в небольших и сравнительно однородных сетях. Причины неустойчивой работы по протоколу, их устранение. Применения протокола Hello для обнаружения соседей и установления с ними отношений смежности.
курсовая работа [264,0 K], добавлен 06.06.2009Протокол динамического распределения адресов DHCP (Dynamic Host Configuration Protocol). Конфигурационные параметры, взаимодействие клиента и сервера при выделении сетевого адреса. Internet/intranet - технологический базис новых методов управления.
контрольная работа [825,5 K], добавлен 09.06.2010