Интерфейсы ПК

Последовательный интерфейс СОМ-порт, его использование. Функциональное тестирование СОМ-портов, ресурсы, конфигурирование, функции BIOS. Универсальная последовательная шина USB: общая характеристика, структура, Физический интерфейс, типы передачи данных.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 14.01.2010
Размер файла 533,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат на тему

«Интерфейсы ПК»

Введение

По способу передачи информации интерфейсы подразделяются на параллельные и последовательные. В параллельном интерфейсе все биты передаваемого слова (обычно байта) выставляются и передаются по соответствующим параллельно идущим проводам одновременно. В PC традиционно используется параллельный интерфейс Centronics, реализуемый LPT-портами. В последовательном же интерфейсе биты передаются друг за другом, обычно по одной линии. СОМ порты PC обеспечивают последовательный интерфейс в соответствии со стандартом RS-232C. При рассмотрении интерфейсов важным параметром является пропускная способность.

При рассмотрении интерфейсов важным параметром является пропускная способность. Технический прогресс приводит к неуклонному росту объемов передаваемой информации. Если раньше матричные принтеры, печатающие в символьном режиме, могли обходиться и COM-портом с невысокой пропускной способностью, то современным лазерным принтерам при высоком разрешении порой не хватает и производительности самых быстрых LPT-портов. То же самое касается и сканеров. А передача «живого» видеоизображения, даже с применением компрессии, требует немыслимой ранее пропускной способности.

Вполне очевидно, что при одинаковом быстродействии приемопередающих цепей и пропускной способности соединительных линий по скорости параллельный интерфейс должен превосходить последовательный. Однако повышение производительности за счет увеличения тактовой частоты передачи данных упирается в волновые свойства соединительных кабелей. В случае параллельного интерфейса начинают сказываться задержки сигналов при их прохождении по линиям кабеля, и что самое неприятное, задержки в разных линиях интерфейса могут быть различными вследствие неидентичности проводов и контактов разъемов. Для надежной передачи данных, временные диаграммы обмена строятся с учетом возможного разброса времени прохождения сигналов, что является одним из факторов, сдерживающих рост пропускной способности параллельных интерфейсов. В последовательных интерфейсах, конечно же, есть свои проблемы повышения производительности, но, поскольку в них используется меньшее число линий (чаще всего - одна), то повышение пропускной способности линий связи обходится дешевле.

С появлением шин USB и FireWire в качестве характеристики интерфейса стала фигурировать и топология соединения. Для интерфейсов RS-232C и Centonics практически всегда применялась двухпоточная топология PC - устройство. Исключениями из этого правила являются различные устройства безопасности и защиты данных, которые подключаются к COM- или LPT-портам, но имеют разъем для подключения внешнего устройства. Но поскольку эти устройства для традиционной периферии прозрачны, то можно считать, что они не нарушают общего правила. Аналогично обстоит дело и с адаптерами локальных сетей и внешних дисковых накопителей (например Iomega ZIP), которые подключаются к параллельным LPT-портам. Хотя разрабатываемые стандарты для параллельного порта и предусматривают соединение устройств в цепочку или через мультиплексоры, широкого распространения такие способы подключения не получили. К другому классу исключений относится построение моноканала на COM-портах, которое несколько лет назад применялось в «любительских» локальных сетях, но было вытеснено существенно более эффективной и подешевевшей технологией Ethernet. Интерфейсные шины USB и FireWire реализуют древовидную топологию, в которой внешние устройства могут быть как оконченными, так и промежуточными (разветвителями). Эта топология позволяет подключать множество устройств к одному USB- или FireWire- порту.

1. СОМ-порт

Последовательный интерфейс СОМ-порт (Communication Port - коммуникационный порт) появился в первых моделях IBM PC. Он был реализован на микросхеме асинхронного приемопередатчика Intel 8250. Порт имел поддержку BIOS, однако широко применялось (и применяется) взаимодействие с портом на уровне регистров. Поэтому во всех PC совместимых компьютерах для последовательного интерфейса применяют микросхемы приемопередатчиков, совместимые с i8250. В ряде отечественных почти PC-совместимых компьютеров для последовательного интерфейса применялась микросхема КР580ВВ51 - аналог i8251. Однако эта микросхема является универсальным синхронно-асинхронным приемопередатчиком (УСАПП или USART - Universal Asynchronous Receiver-Transmitter). Совместимости с PC на уровне регистров СОМ-порта такие компьютеры не имеют. Хорошо, если у соответствующих компьютеров имеется "честный" драйвер BIOS Int 14h, а не заглушка, возвращающая состояние модема "всегда готов" и ничего не делающая. Совместимость на уровне регистров СОМ-порта считается необходимой. Многие разработчики коммуникационных пакетов предлагают работу и через BIOS Int 14h, однако на высоких скоростях это неэффективно. Говоря о СОМ-порте PC, по умолчанию будем подразумевать совместимость регистровой модели с i8250 и реализацию асинхронного интерфейса RS-232C.

Интерфейс RS-232, совсем официально называемый "EIA/TIA-232-E", но более известный как интерфейс "COM-порта", ранее был одним из самых распространенных интерфейсов в компьютерной технике. Он до сих пор встречается в настольных компьютерах, несмотря на появление более скоростных и "интеллектуальных" интерфейсов, таких как USB и FireWare. К его достоинствам с точки зрения радиолюбителей можно отнести невысокую минимальную скорость и простоту реализации протокола в самодельном устройстве.

Ниже на рисунках 1.1 и 1.2, показаны 9- и 25-контактный COM-порты.

Рисунок 1.1 - 9-контактная вилка типа DB-9M. Нумерация контактов со стороны штырьков.

Рисунок 1.2 - 25-контактная вилка типа DB-25M. Нумерация контактов со стороны штырьков.

1.1 Использование СОМ-портов

СОМ-порты чаще всего применяют для подключения манипуляторов (мышь, трекбол). В этом случае порт используется в режиме последовательного ввода; питание производится от интерфейса. Мышь с последовательным интерфейсом - Serial Mouse - может подключаться к любому исправному порту. Для согласования разъемов порта и мыши возможно применение переходника DB-9S-DB-25P или DB-25S-DB-9P. Для мыши требуется прерывание, для порта СОМ1 - IRQ4, для COM2 - IRQ3. Жесткая привязка номера IRQ к номеру порта обусловлена свойствами драйверов. Каждое событие - перемещение мыши или нажатие-отпускание кнопки - кодируется двоичной посылкой по интерфейсу RS-232C. Применяется асинхронная передача; двуполярное питание обеспечивается от управляющих линий интерфейса (табл. 1.1).

Таблица 1.1 - разъемы Serial Mouse

Сигнал

Контакты

DB-9

DB-25

Data

2

3

GND

5

7

+V (питание)

4, 7

4, 20

-V (питание)

3

9

Две разновидности Serial Mouse - MS-Mouse и PC-Mouse (Mouse Systems Mouse) - требуют соответствующих драйверов, многие мыши имеют переключатель MS/PC. Мышь с "чужим" драйвером либо не отзывается, либо "скачет" загадочным образом. Эти разновидности используют различные форматы посылок: при одинаковой скорости 1200 бит/с, одном стоп-бите и отсутствии контроля четности Microsoft Mouse использует 7 бит данных, a PC-Mouse - 8 бит. Мышь посылает пакет при каждом изменении состояния - перемещении, нажатии или отпускании кнопки. Пакет, передаваемый MS-Mouse, состоит из трех байт (табл. 2.4). PC-Mouse передает 5 байт (табл. 2.5). Здесь LB (Left Buttom), MB (Middle Buttom) и RB (Right Buttom) означают состояние левой, средней и правой кнопок, Х[7:0] и Y[7:0] - биты относительного перемещения мыши с момента предыдущей посылки по координатам Х и Y. Положительным значениям соответствует перемещение по координате Х вправо, а по координате Y вниз для MS-Mouse и вверх для PC-Mouse. Отсюда становятся понятными беспорядочные перемещения курсора на экране при несоответствии драйвера типу мыши.

Таблица 1.2 - Формат пакета MS-Mouse

Биты

D6

D5

D4

D3

D2

D1

D0

1-й байт

1

LB

RB

Y7

Y6

Х7

Х6

2-й байт

0

Х5

Х4

Х3

Х2

Х1

X0

3-й байт

0

Y5

Y4

Y3

Y2

Y1

Y0

Таблица 1.3 - Формат пакета PC-Mouse

Биты

D7

D6

D5

D4

D3

D2

D1

D0

1-й байт

1

0

0

0

0

LB

MB

RB

2-й байт

Х7

Х6

Х5

Х4

ХЗ

Х2

Х1

Х0

3-й байт

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

4-й байт

Совпадает со 2-м байтом

5-й байт

Совпадает с 3-м байтом

Д

Для подключения внешних модемов используется полный (9-проводный) кабель АПД-АКД, схема которого приведена на рис. 2.7. Этот же кабель используется для согласования разъемов (по количеству контактов); возможно применение переходников 9-25, предназначенных для мышей. Для работы коммуникационного ПО обычно требуется использование прерываний, но здесь есть свобода выбора номера (адреса) порта и линии прерывания. Если предполагается работа на скоростях 9600 бит/с и выше, то СОМ-порт должен быть реализован на микросхеме UART 16550A или совместимой. Возможности работы с использованием FIFO-буферов и обмена по каналам DMA зависят от коммуникационного ПО.

Для связи двух компьютеров, удаленных друг от друга на небольшое расстояние, используют и непосредственное соединение их СОМ-портов нуль-модемным кабелем (рис. 2.8). Использование программ типа Norton Commander или Interlink MS-DOS позволяет обмениваться файлами со скоростью до 115,2 Кбит/с без применения аппаратных прерываний. Это же соединение может использоваться и сетевым пакетом Lantastic, предоставляющим более развитый сервис.

Подключение принтеров и плоттеров к СОМ-порту требует применения кабеля, соответствующего выбранному протоколу управления потоком: программному XON/XOFF или аппаратному RTS/CTS. Схемы кабелей приведены на рис. 2.10 и 2.12. Аппаратный протокол предпочтительнее. Прерывания при выводе средствами DOS (командами COPY или PRINT) не используются.

СОМ-порт используется для подключения электронных ключей (Security Devices), предназначенных для защиты от нелицензированного использования ПО. Эти устройства могут быть как "прозрачными", позволяя воспользоваться тем же портом для подключения периферии, так и полностью занимающими порт.

СОМ-порт при наличии соответствующей программной поддержки позволяет превратить PC в терминал, эмулируя систему команд распространенных специализированных терминалов (VT-52, VT-100 и т. д.). Простейший терминал получается, если замкнуть друг на друга функции BIOS обслуживания СОМ-порта (INT 14h), телетайпного вывода (/Л/Т 10h) и клавиатурного ввода (INT 16h). Однако такой терминал будет работать лишь на малых скоростях обмена (если, конечно, его делать не на Pentium), поскольку функции BIOS хоть и универсальны, но не слишком быстры.

Интерфейс RS-232C широко распространен в различных ПУ и терминалах. СОМ-порт может использоваться и как двунаправленный интерфейс, у которого имеется 3 программно-управляемые выходные линии и 4 программно-читаемые входные линии с двуполярными сигналами. Их использование определяется разработчиком. Существует, например, схема однобитного широтно-импульсного преобразователя, позволяющего записывать звуковой сигнал на диск PC, используя входную линию СОМ-порта. Воспроизведение этой записи через обычный динамик PC позволяет передать речь. В настоящее время, когда звуковая карта стала почти обязательным устройством PC, это не впечатляет, но когдато такое решение было интересным.

СОМ-порт используют для беспроводных коммуникаций с применением излучателей и приемников инфракрасного диапазона - IR (Infra Red) Connection. Этот интерфейс позволяет осуществлять связь между парой устройств, удаленных на расстояние, достигающее нескольких метров. Различают инфракрасные системы низкой (до 115,2 Кбит/с), средней (1,152 Мбит/с) и высокой (4 Мбит/с) скорости. Низкоскоростные системы служат для обмена короткими сообщениями, высокоскоростные - для обмена файлами между компьютерами, подключения к компьютерной сети, вывода на принтер, проекционный аппарат и т. п. Ожидаются более высокие скорости обмена, которые позволят передавать "живое видео". В 1993 году создана ассоциация разработчиков систем инфракрасной передачи данных IrDA (Infrared Data Association), призванная обеспечить совместимость оборудования от различных производителей. В настоящее время действует стандарт IrDA 1.1. Имеются собственные системы фирм Hewlett Packard - HP-SIR (Hewlett Packard Slow Infra Red) - и Sharp - ASK (Amplitude Shifted Keyed IR). Основные характеристики интерфейсов следующие:

· IrDA SIR (Slow Infra Red), HP-SIR - 9,6-115,2 Кбит/с;

· IrDA MIR (Middle Infra Red) - 1,2 Мбит/с;

· IrDA FIR (Fast Infra Red) - 4 Мбит/с;

· + Sharp ASK - 9,6-57,6 Кбит/с.

На скоростях до 115 200 бит/с для инфракрасной связи используются UART, совместимые с 16450/16550. В современных системных платах на использование инфракрасной связи может конфигурироваться порт COM2. В этом случае на переднюю панель компьютера устанавливается внешний приемопередатчик - "инфракрасный глаз", который подключается к разъему IR-Connector системной платы.

На средних и высоких скоростях обмена применяются специализированные микросхемы, ориентированные на интенсивный программно-управляемый обмен или DMA с возможностью прямого управления шиной.

Инфракрасные излучатели не создают помех в радиочастотном диапазоне и обеспечивают конфиденциальность передачи. ИК-лучи не проходят через стены, поэтому зона приема ограничивается небольшим легко контролируемым пространством. Инфракрасная технология привлекательна для связи портативных компьютеров со стационарными компьютерами или док-станциями. Инфракрасный интерфейс имеют некоторые модели принтеров.

1.2 Функциональное тестирование COM-портов

Рисунок 1.3 - Заглушка для проверки COM-портов

В первом приближении СОМ-порт можно проверить диагностической программой (Checkit) без использования заглушек. Этот режим тестирования проверяет микросхему UART (внутренний диагностический режим) и вырабатывание прерываний, но не входные и выходные буферные микросхемы, которые являются более частыми источниками неприятностей. Если тест не проходит, причину следует искать или в конфликте адресов/прерываний, или в самой микросхеме UART. Для более достоверного тестирования рекомендуется использовать внешнюю заглушку, подключаемую к разъему СОМ порта (рис. 1.3). В отличие от LPT-порта у СОМ-порта количество входных сигналов превышает количество выходных, что позволяет выполнить полную проверку всех цепей. Заглушка соединяет выход приемника со входом передатчика.

Обязательная для всех схем заглушек перемычка RTSCTS позволяет работать передатчику - без нее символы не смогут передаваться. Выходной сигнал DTR обычно используют для проверки входных линий DSR, DCD и RI.

Если тест с внешней заглушкой не проходит, причину следует искать во внешних буферах, их питании или в шлейфах подключения внешних разъемов. Здесь может помочь осциллограф или вольтметр. Последовательность проверки может быть следующей:

1. Проверить наличие двуполярного питания выходных схем передатчиков (этот шаг логически первый, но поскольку он технически самый сложный, его можно отложить на крайний случай, когда появится желание заменить буферные микросхемы).

2. Проверить напряжение на выходах TD, RTS и DTR: после аппаратного сброса на выходе TD должен быть отрицательный потенциал около -12 В (по крайней мере ниже -5 В), а на выходах RTS и DTR - такой же положительный. Если этих потенциалов нет, возможна ошибка подключения разъема к плате через шлейф. Распространенные варианты:

· шлейф не подключен;

· шлейф подключен неправильно (разъем перевернут или вставлен со смещением);

· раскладка шлейфа не соответствует разъему платы.

Первые два варианта проверяются при внимательном осмотре, третий же может потребовать некоторых усилий. В табл. 2.1 приведены три варианта раскладки 10-проводного шлейфа разъема СОМ-порта, известных автору; для СОМ-портов на системных платах возможно существование и других. Теоретически шлейф должен поставляться в соответствии с разъемом платы, на которой расположен порт.

Если дело в ошибочной раскладке, то эти три выходных сигнала удастся обнаружить на других контактах разъемов (на входных контактах потенциал совсем небольшой). Если эти сигналы обнаружить не удалось, очевидно, вышли из строя буферные формирователи.

1.3 Ресурсы и конфигурирование СОМ-портов

Компьютер может иметь до четырех последовательных портов СОМ 1-COM4 (для машин класса AT типично наличие двух портов). СОМ-порты имеют внешние разъемы-вилки DB25P или DB9P, выведенные на заднюю панель компьютера (назначение выводов приведено в табл. 2.1).

СОМ-порты реализуются на микросхемах UART, совместимых с семейством i8250. Они занимают в пространстве ввода/вывода по 8 смежных 8-битных регистров и могут располагаться по стандартным базовым адресам. Порты вырабатывают аппаратные прерывания. Возможность разделяемого использования одной линии запроса несколькими портами (или ее разделения с другими устройствами) зависит от реализации аппаратного подключения и ПО. При использовании портов, установленных на шину ISA, разделяемые прерывания обычно не работают.

Управление последовательным портом разделяется на два этапа -- предварительное конфигурирование (Setup) аппаратных средств порта и текущее (оперативное) переключение режимов работы прикладным или системным ПО. Конфигурирование СОМ-порта зависит от его исполнения. Порт на плате расширения конфигурируется джамперами на самой плате. Порт на системной плате конфигурируется через BIOS Setup.

Конфигурированию подлежат следующие параметры:

· Базовый адрес, который может иметь значения 3F8h, 2F8h, 3E8h (3E0h, 338h) или 2E8h (2E0h, 238h). При инициализации BIOS проверяет наличие портов по адресам именно в этом порядке и присваивает обнаруженным портам логические имена СОМ1, COM2, COM3 и COM4. Для PS/2 стандартными для портов СОМЗ-СОМ8 являются адреса 3220h, 3228h, 4220h, 4228h, 5220h и 5228h соответственно.

· Используемая линия запроса прерывания: для СОМ1 и COM3 обычно используется IRQ4 или IRQ11, для COM2 и COM4 -- IRQ3 или IRQ10. В принципе номер прерывания можно назначать в произвольных сочетаниях с базовым адресом (номером порта), но некоторые программы и драйверы (например, драйверы последовательной мыши) настроены на стандартные сочетания. Каждому порту, нуждающемуся в аппаратном прерывании, назначают отдельную линию, не совпадающую с линиями запроса прерываний других устройств. Прерывания необходимы для портов, к которым подключаются устройства ввода, UPS или модемы. При подключении принтера или плоттера прерываниями пользуются только многозадачные ОС (не всегда), и этот дефицитный ресурс PC можно сэкономить. Также прерываниями обычно не пользуются при связи двух компьютеров нуль-модемным кабелем.

Канал DMA (для UART 16450/16550, расположенных на системной плате) -- разрешение использования и номер канала DMA. Режим DMA при работе с СОМ-портами используют редко.

Режим работы порта по умолчанию (2400 бит/с, 7 бит данных, 1 стоп-бит и контроль четности), заданный при инициализации порта во время BIOS POST, может изменяться в любой момент при настройке коммуникационных программ или командой DOS MODE СОМx: с указанием параметров.

1.4 Функции BIOS для СОМ-портов

В процессе начального тестирования POST BIOS проверяет наличие последовательных портов (регистров UART 8250 или совместимых) по стандартным адресам и помещает базовые адреса обнаруженных портов в ячейки BIOS Data Area 0:0400, 0402, 0404, 0406. Эти ячейки хранят адреса портов с логическими именами СОМ 1-COM4. Нулевое значение адреса является признаком отсутствия порта с данным номером. В ячейки 0:047С, 047D, 047Е, 047F заносятся константы, задающие тайм-аут для портов.

Обнаруженные порты инициализируются на скорость обмена 2400 бит/с, 7 бит данных с контролем на четность (even), 1 стоп-бит. Управляющие сигналы интерфейса DTR и RTS переводятся в исходное состояние ("выключено" положительное напряжение).

Порты поддерживаются сервисом BIOS INT 14h, который обеспечивает следующие функции:

· 00h - инициализация (установка скорости обмена и формата посылок, заданных регистром AL; запрет источников прерываний). На сигналы DTR и RTS влияния не оказывает (после аппаратного сброса они пассивны).

· 0lh - вывод символа из регистра AL (без аппаратных прерываний). Активируются сигналы DTR и RTS, и после освобождения регистра THR в него помещается выводимый символ. Если за заданное время регистр не освобождается, фиксируется ошибка тайм-аута и функция завершается.

· 02h - ввод символа (без аппаратных прерываний). Активируется только сигнал DTR (RTS переходит в пассивное состояние), и ожидается готовность принятых данных, принятый символ помещается в регистр AL. Если за заданное время данные не получены, функция завершается с ошибкой тайм-аута.

· 03h - опрос состояния модема и линии (чтение регистров MSR и LSR). Эту гарантированно быструю функцию обычно вызывают перед функциями ввода/вывода во избежание риска ожидания тайм-аута.

При вызове INT 14h номер функции задается в регистре АН, номер порта (0-3) - в регистре DX(0 - СОМ 1, 1 - COM2...). При возврате из функций 0,1 и 3 регистр АН содержит байт состояния линии (регистр LSR), AL - байт состояния модема (MSR). При возврате из функции 2 нулевое значение бита 7 регистра АН указывает на наличие принятого символа в регистре AL, ненулевое значение бита 7 - на ошибку приема, которую можно уточнить функцией 3.

1.5 СОМ-порт и PnP (Plug and Play)

Современные ПУ, подключаемые к СОМ-порту, могут поддерживать спецификацию PnP. Основная задача ОС заключается в идентификации подключенного устройства, для чего разработан несложный протокол, реализуемый на любых СОМ-портах чисто программным способом (рис. 1.4):

Рисунок 1.4 - Запрос идентификатора устройства PnP

1. Порт инициализируется с состоянием линий DTR=OA, RTS=OFF, TXD=Mark - состояние покоя (Idle).

2. Некоторое время (0,2 с) ожидается появление сигнала DSR, которое указало бы на наличие устройства, подключенного к порту. В простейшем случае устройство имеет на разъеме перемычку DTR-DSR, обеспечивающую указанный ответ. Если устройство обнаружено, выполняются манипуляции управляющими сигналами DTR и RTS для получения информации от устройства. Если ответ не получен, ОС, поддерживающая динамическое реконфигурирование, периодически опрашивает состояние порта для обнаружения новых устройств.

3. Порт программируется на режим 1200 бит/с, 7 бит данных, без паритета, 1 стоп-бит, и на 0,2 с снимается сигнал DTR. После этого устанавливается DTR=1, а еще через 0,2 с устанавливается и RTS=1.

4. В течение 0,2 с ожидается приход первого символа от устройства. По приходе символа начинается прием идентификатора (см. ниже). Если за это время символ не пришел (рис. 2.18), выполняется вторая попытка опроса (см. п. 5), несколько отличающаяся от первой.

5. На 0,2 с снимаются оба сигнала (DTR=0 и RTS=0), после чего они оба устанавливаются (DTR=1 и RTS==1).

6. В течение 0,2 с ожидается приход первого символа от устройства, по приходе символа начинается прием идентификатора (см. ниже). Если за это время символ не пришел, то в зависимости от состояния сигнала DSR переходят к проверке отключения Verify Disconnect (при DSR=O) или в дежурное состояние Connect Idle (при DSR=1).

7. В дежурном состоянии Connect Idle устанавливается DTR=1, RTS=0, порт программируется на режим 300 бит/с, 7 бит данных, без паритета, 1 стоп-бит. Если в этом состоянии обнаружится DSR=0, ОС следует уведомить об отключении устройства.

Посимвольный прием идентификатора устройства имеет ограничения по тайм-ауту в 0,2 с на символ, а также общее ограничение в 2,2 с, позволяющее принять строку длиной до 256 символов. Строка идентификатора PnP должна иметь маркеры начала (28h или 08h) и конца (29h или 09h), между которыми располагается тело идентификатора в стандартизованном формате. Перед маркером начала может находиться до 16 символов, не относящихся к идентификатору PnP. Если за первые 0,2 с ожидания символа (шаг 4 или 6) маркер начала не пришел, или же сработал тайм-аут, а маркер конца не получен, или же какой-либо символ принят с ошибкой, происходит переход в состояние Connect Idle. Если получена корректная строка идентификатора, она передается ОС.

Для проверки отключения (Verify Disconnect) устанавливается DTR=1, RTS=0 и через 5 с проверяется состояние сигнала DSR. При DSR=1 происходит переход в состояние Connect Idle, при DSR=0 происходит переход в состояние Disconnect Idle, в котором система может периодически опрашивать сигнал DSR для обнаружения подключения устройства.

Описанный механизм разрабатывался фирмой Microsoft с учетом совместимости с не РпР устройствами - невозможность их вывода из строя и устойчивость системы к сообщениям, не являющимся PnP идентификаторами. Например, обычная Microsoft Mouse при включении питания от интерфейса ответит ASCII-символом "М" (трехкнопочная - строкой "МЗ").

2. Шина USB

2.1 Общая характеристика

USB (Universal Serial Bus -- универсальная последовательная шина) является промышленным стандартом расширения архитектуры PC, ориентированным на интеграцию с телефонией и устройствами бытовой электроники. Версия 1.0 была опубликована в январе 1996 года. Архитектура USB определяется следующими критериями:

· Легко реализуемое расширение периферии PC.

· Дешевое решение, поддерживающее скорость передачи до 12 Mбит/с.

· Полная поддержка в реальном времени передачи аудио и (сжатых) видеоданных.

· Гибкость протокола смешанной передачи изохронных данных и асинхронных сообщений.

· Интеграция с выпускаемыми устройствами.

· Доступность в PC всех конфигураций и размеров.

· Обеспечение стандартного интерфейса, способного быстро завоевать рынок.

· Создание новых классов устройств, расширяющих PC.

· С точки зрения конечного пользователя, привлекательны следующие черты USB:

· Простота кабельной системы и подключений.

· Скрытие подробностей электрического подключения от конечного пользователя.

· Самоидентифицирующиеся ПУ, автоматическая связь устройств с драйверами и конфигурирование.

· Возможность динамического подключения и конфигурирования ПУ.

· С середины 1996 года выпускаются PC со встроенным контроллером USB, реализуемым чипсетом. Уже появились модемы, клавиатуры, сканеры, динамики и другие устройства ввода/вывода с поддержкой USB, а также мониторов с USB-адаптерами - они играют роль концентраторов для подключения других устройств.

2.2 Структура USB

USB обеспечивает одновременный обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Распределение пропускной способности шины между ПУ планируется хостом и реализуется им с помощью посылки маркеров. Шина позволяет подключать, конфигурировать, использовать и отключать устройства во время работы хоста и самих устройств.

В архитектуре современных компьютеров все большее значение приобретают внешние шины, служащие для подключения различных устройств. Сегодня это могут быть, например, внешние жесткие диски, CD-, DVD-устройства, сканеры, принтеры, цифровые камеры и прочее.

Широко используемый последовательный интерфейс синхронной и асинхронной передачи данных.

Ниже приводится авторский вариант перевода терминов из спецификации "Universal Serial Bus Specification", опубликованной Compaq, DEC, IBM, Intel, Microsoft, NEC и Northern Telecom. Более подробную и оперативную информацию можно найти по адресу:

Устройства (Device) USB могут являться хабами, функциями или их комбинацией. Хаб (Hub) обеспечивает дополнительные точки подключения устройств к шине. Функции (Function) USB предоставляют системе дополнительные возможности, например подключение к ISDN, цифровой джойстик, акустические колонки с цифровым интерфейсом и т. п. Устройство USB должно иметь интерфейс USB, обеспечивающий полную поддержку протокола USB, выполнение стандартных операций (конфигурирование и сброс) и предоставление информации, описывающей устройство. Многие устройства, подключаемые к USB, имеют в своем составе и хаб, и функции. Работой всей системы USB управляет хост-контроллер (Host Controller), являющийся программно-аппаратной подсистемой хост-компьютера.

Физическое соединение устройств осуществляется по топологии многоярусной звезды. Центром каждой звезды является хаб, каждый кабельный сегмент соединяет две точки - хаб с другим хабом или с функцией. В системе имеется один (и только один) хост-контроллер, расположенный в вершине пирамиды устройств и хабов. Хост-контроллер интегрируется с корневым хабом (Root Hub), обеспечивающим одну или несколько точек подключения - портов. Контроллер USB, входящий в состав чипсетов, обычно имеет встроенный двухпортовый хаб. Логически устройство, подключенное к любому хабу USB и сконфигурированное (см. ниже), может рассматриваться как непосредственно подключенное к хост-контроллеру.

Функции представляют собой устройства, способные передавать или принимать данные или управляющую информацию по шине. Типично функции представляют собой отдельные ПУ с кабелем, подключаемым к порту хаба. Физически в одном корпусе может быть несколько функций со встроенным хабом, обеспечивающим их подключение к одному порту. Эти комбинированные устройства для хоста являются хабами с постоянно подключенными устройствами-функциями.

Каждая функция предоставляет конфигурационную информацию, описывающую возможности ПУ и требования к ресурсам. Перед использованием функция должна быть сконфигурирована хостом - ей должна быть выделена полоса в канале и выбраны опции конфигурации.

Примерами функций являются:

· Указатели - мышь, планшет, световое перо.

· Устройства ввода - клавиатура или сканер.

· Устройство вывода - принтер, звуковые колонки (цифровые).

· Телефонный адаптер ISDN.

Хаб - ключевой элемент системы PnP в архитектуре USB. Хаб является кабельным концентратором. Точки подключения называются портами хаба. Каждый хаб преобразует одну точку подключения в их множество. Архитектура допускает соединение нескольких хабов.

У каждого хаба имеется один восходящий порт (Upstream Port), предназначенный для подключения к хосту или хабу верхнего уровня. Остальные порты являются нисходящими (Downstream Ports), предназначенными для подключения функций или хабов нижнего уровня. Хаб может распознать подключение устройств к портам или отключение от них и управлять подачей питания на их сегменты. Каждый из портов может быть разрешен или запрещен и сконфигурирован на полную или ограниченную скорость обмена. Хаб обеспечивает изоляцию сегментов с низкой скоростью от высокоскоростных.

Хабы могут управлять подачей питания на нисходящие порты; предусматривается установка ограничения на ток, потребляемый каждым портом.

Рисунок 2.1 - Взаимодействие компонентов USB

Система USB разделяется на три уровня с определенными правилами взаимодействия. Устройство USB содержит интерфейсную часть, часть устройства и функциональную часть. Хост тоже делится на три части - интерфейсную, системную и ПО устройства. Каждая часть отвечает только за определенный круг задач, логическое и реальное взаимодействие между ними иллюстрирует рис. 2.1.

В рассматриваемую структуру входят следующие элементы:

· Физическое устройство USB - устройство на шине, выполняющее функции, интересующие конечного пользователя.

· Client SW - ПО, соответствующее конкретному устройству, исполняемое на хост-компьютере. Может являться составной частью ОС или специальным продуктом.

· USB System SW - системная поддержка USB, независимая от конкретных устройств и клиентского ПО.

· USB Host Controller - аппаратные и программные средства для подключения устройств USB к хост-компьютеру.

2.3 Физический интерфейс

Стандарт USB определяет электрические и механические спецификации шины. Информационные сигналы и питающее напряжение 5В передаются по четырехпроводному кабелю. Используется дифференциальный способ передачи сигналов D+ и D- по двум проводам. Уровни сигналов передатчиков в статическом режиме должны быть ниже 0,3 В (низкий уровень) или выше 2,8 В (высокий уровень). Приемники выдерживают входное напряжение в пределах - 0,5...+3,8 В. Передатчики должны уметь переходить в высокоимпедансное состояние для двунаправленной полудуплексной передачи по одной паре проводов.

Передача по двум проводам в USB не ограничивается дифференциальными сигналами. Кроме дифференциального приемника каждое устройство имеет линейные приемники сигналов D+ и D-, а передатчики этих линий управляются индивидуально. Это позволяет различать более двух состояний линии, используемых для организации аппаратного интерфейса. Состояния Diff0 и Diff1 определяются по разности потенциалов на линиях D+ и D- более 200 мВ при условии, что на одной из них потенциал выше порога срабатывания VSE. Состояние, при котором на обоих входах D+ и D- присутствует низкий уровень, называется линейным нулем (SEO - Single-Ended Zero). Интерфейс определяет следующие состояния:

· Data J State и Data К State - состояния передаваемого бита (или просто J и К), определяются через состояния Diff0 и Diff1.

· Idle State - пауза на шине.

· Resume State - сигнал "пробуждения" для вывода устройства из "спящего" режима.

· Start of Packet (SOP) - начало пакета (переход из Idle State в К).

· End of Packet (EOP) - конец пакета.

· Disconnect - устройство отключено от порта.

· Connect - устройство подключено к порту.

· Reset - сброс устройства.

Состояния определяются сочетаниями дифференциальных и линейных сигналов; для полной и низкой скоростей состояния Diff0 и Diff1 имеют противоположное назначение.

В декодировании состояний Disconnect, Connect и Reset учитывается время нахождения линий (более 2,5 мс) в определенных состояниях.

Шина имеет два режима передачи. Полная скорость передачи сигналов USB составляет 12 Мбит/с, низкая - 1,5 Мбит/с. Для полной скорости используется экранированная витая пара с импедансом 90 Ом и длиной сегмента до 5 м, для низкой - невитой неэкранированный кабель до 3 м. Низкоскоростные кабели и устройства дешевле высокоскоростных. Одна и та же система может одновременно использовать оба режима; переключение для устройств осуществляется прозрачно.

Низкая скорость предназначена для работы с небольшим количеством ПУ, не требующих высокой скорости. Скорость, используемая устройством, подключенным к конкретному порту, определяется хабом по уровням сигналов на линиях D+ и D-, смещаемых нагрузочными резисторами R2 приемопередатчиков (см. рис. 2.2 и 2.3).

Рисунок 2.2 - Подключение полноскоростного устройства

Рисунок 2.3 - Подключение низкоростного устройства

Рисунок 2.4 - Кодирование данных по методу NRZI

Сигналы синхронизации кодируются вместе с данными по методу NRZI (Non Return to Zero Invert), его работу иллюстрирует рис. 2.4. Каждому пакету предшествует поле синхронизации SYNC, позволяющее приемнику настроиться на частоту передатчика. Кабель также имеет линии VBus и GND для передачи питающего напряжения 5 В к устройствам. Сечение проводников выбирается в соответствии с длиной сегмента для обеспечения гарантированного уровня сигнала и питающего напряжения. Стандарт определяет два типа разъемов (см. табл. 2.1 и рис. 2.5).

Таблица 2.1 - Назначение выводов разъема USB

Контакт

Цепь

Контакт

Цепь

1

VBus

3

D+

2

D-

4

GND

Разъемы типа "А" применяются для подключения к хабам (Upstream Connector). Вилки устанавливаются на кабелях, не отсоединяемых от устройств (например, клавиатура, мышь и т. п.). Гнезда устанавливаются на нисходящих портах (Downstream Port) хабов. Разъемы типа "В" (Downstream Connector) устанавливаются на устройствах, от которых соединительный кабель может отсоединяться (принтеры и сканеры). Ответная часть (вилка) устанавливается на соединительном кабеле, противоположный конец которого имеет вилку типа "А".

Разъемы типов "А" и "В" различаются механически, что исключает недопустимые петлевые соединения портов хабов. Четырехконтактные разъемы имеют ключи, исключающие неправильное присоединение. Конструкция разъемов обеспечивает позднее соединение и раннее отсоединение сигнальных цепей по сравнению с питающими. Для распознавания разъема USB на корпусе устройства ставится стандартное символическое обозначение.

Рисунок 2.5 - Гнезда USB: а - типа "А", б - типа "В", в - символическое обозначение

Питание устройств USB возможно от кабеля (Bus-Powered Devices) или от собственного блока питания (Self-Powered Devices). Хост обеспечивает питанием непосредственно подключенные к нему ПУ. Каждый хаб, в свою очередь, обеспечивает питание устройств, подключенных к его нисходящим портам. При некоторых ограничениях топологии допускается применение хабов, питающихся от шины. На рис. 2.6 приведен пример схемы соединения устройств USB. Здесь клавиатура, перо и мышь могут питаться от шины.

Рисунок 2.6 - Пример подключения USB-устройств

2.4 Типы передачи данных

USB поддерживает как однонаправленные, так и двунаправленные режимы связи. Передача данных производится между ПО хоста и конечной точкой устройства. Устройство может иметь несколько конечных точек, связь с каждой из них (канал) устанавливается независимо.

Архитектура USB допускает четыре базовых типа передачи данных:

· Управляющие посылки (Control Transfers), используемые для конфигурирования во время подключения и в процессе работы для управления устройствами. Протокол обеспечивает гарантированную доставку данных. Длина поля данных управляющей посылки не превышает 64 байт на полной скорости и 8 байт на низкой.

· Сплошные передачи (Bulk Data Transfers) сравнительно больших пакетов без жестких требований ко времени доставки. Передачи занимают всю свободную полосу пропускания шины. Пакеты имеют поле данных размером 8, 16, 32 или 64 байт. Приоритет этих передач самый низкий, они могут приостанавливаться при большой загрузке шины. Допускаются только на полной скорости передачи.

· Прерывания (Interrupt) - короткие (до 64 байт на полной скорости, до 8 байт на низкой) передачи типа вводимых символов или координат. Прерывания имеют спонтанный характер и должны обслуживаться не медленнее, чем того требует устройство. Предел времени обслуживания устанавливается в диапазоне 1-255 мс для полной скорости и 10-255 мс - для низкой.

· Изохронные передачи (Isochronous Transfers) - непрерывные передачи в реальном времени, занимающие предварительно согласованную часть пропускной способности шины и имеющие заданную задержку доставки. В случае обнаружения ошибки изохронные данные передаются без повтора - недействительные пакеты игнорируются. Пример - цифровая передача голоса. Пропускная способность определяется требованиями к качеству передачи, а задержка доставки может быть критичной, например, при реализации телеконференций.

Полоса пропускания шины делится между всеми установленными каналами. Выделенная полоса закрепляется за каналом, и если установление нового канала требует такой полосы, которая не вписывается в уже существующее распределение, запрос на выделение канала отвергается.

Архитектура USВ предусматривает внутреннюю буферизацию всех устройств, причем чем большей полосы пропускания требует устройство, тем больше должен быть его буфер. USB должна обеспечивать обмен с такой скоростью, чтобы задержка данных в устройстве, вызванная буферизацией, не превышала нескольких миллисекунд.

Изохронные передачи классифицируются по способу синхронизации конечных точек - источников или получателей данных - с системой: различают асинхронный, синхронный и адаптивный классы устройств, каждому из которых соответствует свой тип канала USB.

Литература

Михаил Гук Интерфейсы ПК: - справочник - СПб: ЗАО «Издательство «Питер», 1999 - 416 с.:ил.

Тули М. Справочное пособие по цифровой электронике: Перевод с английского -- М.: Энергоатомиздат, 1990.

Рудометов Е., Рудометов В., Устройство мультимедийного компьютера. - СПб.: Питер, 2001 - 512 с.: ил.


Подобные документы

  • Последовательный интерфейс для передачи данных. Синхронный и асинхронный режимы передачи данных. Формат асинхронной посылки. Постоянная активность канала связи при синхронном режиме передачи. Реализация последовательного интерфейса на физическом уровне.

    реферат [106,9 K], добавлен 28.04.2010

  • Сущность и предназначение последовательных интерфейсов. Формат асинхронной и синхронной посылки. Функциональные возможности и схема соединения по интерфейсу RS-232C. Назначение сигналов интерфейса. Понятие, конфигурирование и использование СОМ-портов.

    контрольная работа [175,2 K], добавлен 09.11.2010

  • Условное разделение частей ЭВМ на основные и периферийные устройства. Использование последовательной передачи данных в интерфейсе винчестеров Serial ATA. Порядок установки и конфигурирование нового контроллера, модернизация BIOS, основы технологии RAID.

    курсовая работа [1,3 M], добавлен 21.05.2009

  • Универсальная последовательная шина USB - универсальный порт для подключения устройств к персональному компьютеру и организации обмена между ними. Особенности спецификаций USB от версии 1.0 до версии 3.0. Архитектура, правила подключения, совместимость.

    курсовая работа [2,6 M], добавлен 23.11.2013

  • Взаимодействие приложений с устройствами USB. Последовательный порт или COM-порт, его широкое распространение до появления USB в телекоммуникационном оборудовании для персональных компьютеров. Основные причины вытеснения COM-интерфейса USB-интерфейсом.

    курсовая работа [2,0 M], добавлен 20.12.2015

  • Тенденция к увеличению скорости передачи данных, расширению выполняемых функций в развитии периферийных устройств. Интерфейс шины ISА. Описание работы принципиальной схемы, выбор элементной базы и интегральных схем. Прикладная программа и её возможности.

    курсовая работа [128,5 K], добавлен 28.10.2009

  • Пользовательский интерфейс - "лицо" системы, от продуманности которого зависит эффективность работы пользователя с системой. Функциональное тестирование пользовательских интерфейсов. Проверка требований, тестопригодность. Методы проведения тестирования.

    реферат [28,7 K], добавлен 21.01.2010

  • Описание использованных структур данных, характеристика процедур и функций. Структура приложения и интерфейс пользователя. Системные требования и имеющиеся ограничения. Тестирование приложения. Анализ временных характеристик и выводы по эффективности.

    курсовая работа [3,3 M], добавлен 23.07.2012

  • Понятие конфигурации в системе программ 1С: Предприятие 8.0. Технологические средства выполнения конфигурирования. Метаданные, регистр накопления, пользовательские интерфейсы. Механизм сравнения и объединения конфигураций. Администрирование в системе.

    курсовая работа [1007,3 K], добавлен 02.12.2015

  • Высокие скорость передачи данных и помехоустойчивость, способностью обнаруживать любые возникающие ошибки как основные характеристики полевой шины CAN (сеть контроллеров). Регламентация международными стандартами интерфейса. Описание стандарта, протокол.

    курсовая работа [878,3 K], добавлен 01.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.