Сетевые приложения

Характеристика конкретных классов языка Java, разработанных для сетевого программирования: доступ из приложений Java к файлам, расположенным на сервере Web; создания серверных и клиентских приложений с использованием потоковых и датаграммных сокетов.

Рубрика Программирование, компьютеры и кибернетика
Вид лекция
Язык русский
Дата добавления 03.12.2009
Размер файла 123,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сетевые приложения

Создание сетевых приложений

Когда мы начинали разговор про язык программирования Java, то отмечали, что он специально ориентирован на глобальные сети, такие как Internet. В этой главе мы начнем знакомство с конкретными классами Java, разработанными для сетевого программирования. На примере наших приложений вы сможете убедиться, что классы Java действительно очень удобны для создания сетевых приложений.

В этой главе мы рассмотрим два аспекта сетевого программирования. Первый из них касается доступа из приложений Java к файлам, расположенным на сервере Web, второй - создания серверных и клиентских приложений с использованием сокетов.

Напомним, что из соображений безопасности алпетам полностью запрещен доступ к локальным файлам рабочей станции, подключенной к сети. Тем не менее, аплет может работать с файлами, расположенными на серверах Web. При этом можно использовать входные и выходные потоки, описанные нами в предыдущей главе.

Для чего аплетам обращаться к файлам сервера Web?

Таким аплетам можно найти множество применений.

Представьте себе, например, что вам нужно отображать у пользователя диаграмму, исходные данные для построения которой находятся на сервере Web. Эту задачу можно решить, грубо говоря, двумя способами.

Первый заключается в том, что вы создаете расширение сервера Web в виде приложения CGI или ISAPI, которое на основании исходных данных динамически формирует графическое изображение диаграммы в виде файла GIF и посылает его пользователю.

Однако на пути решения задачи с помощью расширения сервера Web вас поджидают две неприятности. Во-первых, создать из программы красивый цветной графический файл в стандарте GIF не так-то просто - вы должны разобраться с форматом этого файла и создать все необходимые заголовки. Во-вторых, графический файл занимает много места и передается по каналам Internet достаточно медленно - средняя скорость передачи данных в Internet составляет 1 Кбайт в секунду.

В то же время файл с исходными данными может быть очень компактным. Возникает вопрос - нельзя ли передавать через Internet только исходные данные, а построение графической диаграммы выполнять на рабочей станции пользователя?

В этом заключается второй способ, который предполагает применение аплетов. Ваше приложение может, например, получать через сеть файл исходных данных, а затем на основании содержимого этого файла рисовать в своем окне цветную круговую диаграмму. Объем передаваемых данных при этом по сравнению с использованием расширения сервера Web сокращается в десятки и сотни раз.

Помимо работы с файлами, расположенными на сервере Web, мы расскажем о создании каналов между приложениями Java, работающими на различных компьютерах в сети, с использованием сокетов.

Сокеты позволяют организовать тесное взаимодействие аплетов и полноценных приложений Java, при котором аплеты могут предавать друг другу данные через сеть Internet. Это открывает широкие возможности для обработки информации по схеме клиент-сервер, причем в роли серверов здесь может выступать любой компьютер, подключенный к сети, а не только сервер Web. Каждая рабочая станция может выступать одновременно и в роли сервера, и в роли клиента.

Адрес IP и класс InetAddress

Прежде чем начинать создание сетевых приложений для Internet, вы должны разобраться с адресацией компьютеров в сети с протоколом TCP/IP, на базе которого построена сеть Internet. Здесь мы приведем самые необходимые для этого сведения.

Все компьютеры, подключенные к сети TCP/IP, называются узлами (в оригинальной терминологии узел - это host). Каждый узел имеет в сети свой адрес IP, состоящий из четырех десятичных цифр в диапазоне от 0 до 255, разделенных символом "точка ", например: 193.120.54.200

Фактически адрес IP является 32-разрядным двоичным числом. Упомянутые числа представляют собой отдельные байты адеса IP.

Так как работать с цифрами удобно лишь компьютеру, была придумана система доменных имен. При использовании этой системы адресам IP ставится в соответсвие так называемый доменный адрес, такой как, например, www.sun.com.

В сети Internet имеется распределенная по всему миру база доменных имен, в которой установлено соответствие между доменными именами и адресами IP в виде четырех чисел.

Для работы с адресами IP в библиотеке классов Java имеется класс InetAddress, определение наиболее интересных методов, которого приведено ниже:

public static InetAddress getLocalHost();

public static InetAddress

getByName(String host);

public static InetAddress[]

getAllByName(String host);

public byte[] getAddress();

public String toString();

public String getHostName();

public boolean equals(Object obj);

Рассмотрим применение этих методов.

Чтобы работать с адресами IP, прежде всего вы должны создать объект класса InetAddress. Эта процедура выполняется не с помощью оператора new, а с применением статических методов getLocalHost, getByName и getAllByName.

Создание объекта класса InetAddress для локального узла

Метод getLocalHost создает объект класса InetAddress для локального узла, то есть для той рабочей станции, на которой выполняется приложение Java. Так как этот метод статический, вы можете вызывать его, ссылаясь на имя класса InetAddress:

InetAddress iaLocal;

iaLocal = InetAddress.getLocalHost();

Создание объекта класса InetAddress для удаленного узла

В том случае, если вас интересует удаленный узел сети Internet или корпоративной сети Intranet, вы можете создать для него объект класса InetAddress с помощью методов getByName или getAllByName. Первый из них возвращает адрес узла, а второй - массив всех адресов IP, связанных с данным узлом. Если узел с указанным именем не существует, при выполнении методов getByName и getAllByName возникает исключение UnknownHostException.

Заметим, что методам getByName и getAllByName можно передавать не только имя узла, такое как, например, "sun.com", но и строку адреса IP в виде четырех десятичных чисел, разделенных точками.

После создания объекта класса InetAddress для локального или удаленного узла вы можете использовать другие методы этого класса.

Определение адреса IP

Метод getAddress возвращает массив из чеырех байт адреса IP объекта. Байт с нулевым индексом этого массива содержит старший байт адреса IP.

Метод toString возвращает текстовую строку, которая содержит имя узла, разделитель '/' и адрес IP в виде четырех десятичных чисел, разделенных точками.

С помощью метода getHostName вы можете определить имя узла, для которого был создан объект класса InetAddress.

И, наконец, метод equals предназначен для сравнения адресов IP как объектов класса InetAddress.

Универсальный адрес ресурсов URL

Адрес IP позволяет идентифицировать узел, однако его недостаточно для идентификации ресурсов, имеющихся на этом узле, таких как работающие приложения или файлы. Причина очевидна - на узле, имеющем один адрес IP, может существовать много различных ресурсов.

Для ссылки на ресурсы сети Internet применяется так называемый универсальный адрес ресуросв URL (Universal Resource Locator). В общем виде этот адрес выглядит следующим образом:

[protocol]://host[:port][path]

Строка адреса начинаетс с протокола protocol, который должен быть использован для доступа к ресурсу. Документы HTML, например, передаются из сервера Web удаленным пользователям с помощью протокола HTTP. Файловые серверы в сети Internet работают с протоколом FTP.

Для ссылки на сетевые ресурсы через протокол HTTP используется следующая форма универсального адреса ресурсов URL:

http://host[:port][path]

Параметр host обязательный. Он должен быть указан как доменный адрес или как адрес IP (в виде четырех десятичных чисел). Например:

http://www.sun.com

http://157.23.12.101

Необязательный параметр port задает номер порта для работы с сервером. По умолчанию для протокола HTTP используется порт с номером 80, однако для специализированных серверов Web это может быть и не так.

Номер порта идентифицирует программу, работающую в узле сети TCP/IP и взаимодействующую с другими программами, расположенными на том же или на другом узле сети. Если вы разрабатываете программу, передающую данные через сеть TCP/IP с использованием, например, интерфейса сокетов Windows Sockets, то при создании канала связи с уделенным компьютером вы должны указать не только адрес IP, но и номер порта, который будет использован для передачи данных.

Ниже мы показали, как нужно указывать в адресе URL номер порта:

http://www.myspecial.srv/:82

Теперь займемся параметром path, определяющем путь к объекту.

Обычно любой сервер Web или FTP имеет корневой каталог, в котором расположены подкаталоги. Как в корневом каталоге, так и в подкаталогах сервера Web могут находиться документы HTML, двоичные файлы, файлы с графическими изображениями, звуковые и видео-файлы, расширения сервера в виде программ CGI или библиотек динамической компоновки, дополняющих возможности сервера.

Если в качестве адреса URL указать навигатору только доменное имя сервера, сервер перешлет навигатору свою главную страницу. Имя файла этой страницы зависит от сервера. Большинство серверов на базе операционной системы UNIX посылают по умолчанию файл документа с именем index.html. Другие серверы Web могут использовать для этой цели имя default.htm или какое-нибудь еще, определенное при установке сервера, например, home.html или home.htm.

Для ссылки на конкретный документ HTML или на файл любого другого объекта необходимо указать в адресе URL его путь, включающий имя файла, например:

http://www.glasnet.ru/~frolov/index.html

http://www.dials.ccas.ru/frolov/home.htm

Корневой каталог сервера Web обозначается символом /. В спецификации протокола HTTP сказано, что если путь не задан, то используется корневой каталог.

Класс URL в библиотеке классов Java

Для работы с ресурсами, заданными своими адресами URL, в библиотеке классов Java имеется очень удобный и мощный класс с названием URL. Простота создания сетевых приложений с использованием этого класса в значительной степени опровергает общераспространенное убеждение в сложности сетевого программирования. Инкапсулируя в себе достаточно сложные процедуры, класс URL предоставляет в распоряжение программиста небольшой набор простых в использовании конструкторов и методов.

Конструкторы класса URL

Сначала о конструкторах. Их в классе URL имеется четыре штуки.

public URL(String spec);

Первый из них создает объект URL для сетевого ресурса, адрес URL которого передается конструктору в виде текстовой строки через единственный параметр spec:

public URL(String spec);

В процессе создания объекта проверяется заданный адрес URL, а также наличие указанного в нем ресурса. Если адрес указан неверно или заданный в нем ресурс отсутствует, возникает исключение MalformedURLException. Это же исключение возникает при попытке использовать протокол, с которым данная система не может работать.

Второй вариант конструктора класса URL допускает раздельное указание протокола, адреса узла, номера порта, а также имя файла:

public URL(String protocol,

String host, int port, String file);

Третий вариант предполагает использование номера порта, принятого по умолчанию:

public URL(String protocol,

String host, String file);

Для протокола HTTP это порт с номером 80.

И, наконец, четвертый вариант конструктора допускает указание контекста адреса URL и строки адреса URL:

public URL(URL context, String spec);

Строка контекста позволяет указывать компоненты адреса URL, отсустсвующие в строке spec, такие как протокол, имя узла, файла или номер порта.

Методы класса URL

Рассмотрим самые интересные методы, определенные в классе URL.

Метод openStream

Метод openStream позволяет создать входной поток для чтения файла ресурса, связанного с созданным объектом класса URL:

public final InputStream openStream();

Для выполнения операции чтения из созданного таким образом потока вы можете использовать метод read, определенный в классе InputStream (любую из его разновидностей).

Данную пару методов (openStream из класса URL и read из класса InputStream) можно применить для решения задачи получения содержимого двоичного или текстового файла, хранящегося в одном из каталогов сервера Web. Сделав это, обычное приложение Java или аплет может выполнить локальную обработку полученного файла на компьютере удаленного пользователя.

Метод getContent

Очень интересен метод getConten. Этот метод определяет и получает содержимое сетевого ресурса, для которого создан объект URL:

public final Object getContent();

Практически вы можете использовать метод getContent для получения текстовых файлов, расположенных в сетевых каталогах.

К сожалению, данный метод непригоден для получения документов HTML, так как для данного ресурса не определен обработчик соедржимого, предназначенный для создания объекта. Метод getContent не способен создать объект ни из чего другого, кроме текстового файла.

Данная проблема, тем не менее, решается очень просто - достаточно вместо метода getContent использовать описанную выше комбинацию методов openStream из класса URL и read из класса InputStream.

Метод getHost

С помощью метода getHost вы можете определить имя узла, соответствующего данному объекту URL:

public String getHost();

Метод getFile

Метод getFile позволяет получить информацию о файле, связанном с данным объектом URL:

public String getFile();

Метод getPort

Метод getPortt предназначен для определения номера порта, на котором выполняется связь для объекта URL:

public int getPort();

Метод getProtocol

С помощью метода getProtocol вы можете определить протокол, с использованием которого установлено соединение с ресурсом, заданным объектом URL:

public String getProtocol();

Метод getRef

Метод getRef возвращает текстовую строку ссылки на ресурс, соответствующий данному объекту URL:

public String getRef();

Метод hashCode

Метод hashCode возвращает хэш-код объекта URL:

public int hashCode();

Метод sameFile

С помощью метода sameFile вы можете определить, ссылаются ли два объекта класса URL на один и тот же ресурс, или нет:

public boolean sameFile(URL other);

Если объекты ссылаются на один и тот же ресурс, метод sameFile возвращает значение true, если нет - false.

Метод equals

Вы можете использовать метод equals для определения идентичности адресов URL, заданных двумя объектами класса URL:

public boolean equals(Object obj);

Если адреса URL идентичны, метод equals возвращает значение true, если нет - значение false.

Метод toExternalForm

Метод toExternalForm возвращает текстовую строку внешнего представления адреса URL, определенного данным объектом класса URL:

public String toExternalForm();

Метод toString

Метод toString возвращает текстовую строку, представляющую данный объект класса URL:

public String toString();

Метод openConnection

Метод openConnection предназначен для создания канала между приложением и сетевым ресурсом, представленным объектом класса URL:

public URLConnection openConnection();

Если вы создаете приложение, которое позволяет читать из каталогов сервера Web текстовые или двоичные файлы, можно создать поток методом openStream или получить содержимое текстового ресурса методом getContent.

Однако есть и другая возможность. Вначале вы можете создать канал, как объект класса URLConnection, вызвав метод openConnection, а затем создать для этого канала входной поток, воспользовавшись методом getInputStream, определенным в классе URLConnection. Такая методика позволяет определить или установить перед созданием потока некоторые характеристики канала, например, задать кэширование.

Однако самая интересная возможность, которую предоставляет этот метод, заключается в организации взаимодействия приложения Java и сервера Web.

Сокеты. Передача данных с использованием сокетов

В библиотеке классов Java есть очень удобное средство, с помощью которых можно организовать взаимодействие между приложениями Java и аплетами, работающими как на одном и том же, так и на разных узлах сети TCP/IP. Это средство, родившееся в мире операционной системы UNIX, - так называемые сокеты (sockets).

Что такое сокеты?

Вы можете представить себе сокеты в виде двух розеток, в которые включен кабель, предназначенный для передачи данных через сеть. Переходя к компьютерной терминологии, скажем, что сокеты - это программный интерфейс, предназначенный для передачи данных между приложениями.

Прежде чем приложение сможет выполнять передачу аили прием данных, оно должно создать сокет, указав при этом адрес узла IP, номер порта, через который будут передаваться данные, и тип сокета.

С адресом узла IP вы уже сталкивались. Номер порта служит для идентификации приложения. Заметим, что существуют так называемые "хорошо известные" (well known) номера портов, зарезервированные для различных приложений. Например, порт с номером 80 зарезервирован для использования серверами Web при обмене данными через протокол HTTP.

Что же касается типов сокетов, то их два - потоковые и датаграммные.

С помощью потоковых сокетов вы можете создавать каналы передачи данных между двумя приложениями Java в виде потоков, которые мы уже рассматривали во второй главе. Потоки могут быть входными или выходными, обычными или форматированными, с использованием или без использования буферизации. Скоро вы убедитесь, что организовать обмен данными между приложениями Java с использованием потоковых сокетов не труднее, чем работать через потоки с обычными файлами.

Заметим, что потоковые сокеты позволяют передавать данные только между двумя приложениями, так как они предполагают создание канала между этими приложениями. Однако иногда нужно обеспечить взаимодействие нескольких клиентских приложений с одним серверным или нескольких клиентских приложений с несколькими серверными приложениями. В этом случае вы можете либо создавать в серверном приложении отдельные задачи и отдельные каналы для каждого клиентского приложения, либо воспользоваться датаграммными сокетами. Последние позволяют передавать данные сразу всем узлам сети, хотя такая возможность редко используется и часто блокируется администраторами сети.

Для передачи данных через датаграммные сокеты вам не нужно создавать канал - данные посылаются непосредственно тому приложению, для которого они предназначены с использованием адреса этого приложения в виде сокета и номера порта. При этом одно клиентское приложение может обмениваться данными с несколькими серверными приложениями или наоборот, одно серверное приложение - с несколькими клиентскими.

К сожалению, датаграммные сокеты не гарантируют доставку передаваемых пакетов данных. Даже если пакеты данных, передаваемые через такие сокеты, дошли до адресата, не гарантируется, что они будут получены в той же самой последовательности, в которой были переданы. Потоковые сокеты, напротив, гарантируют доставку пакетов данных, причем в правильной последовательности.

Причина отсутствия гарантии доставки данных при использовании датаграммных сокетов заключается в использовании такими сокетами протокола UDP, который, в свою очередь, основан на протоколе с негарантированной доставкой IP. Потоковые сокеты работают через протокол гарантированной доставки TCP.

Работа с потоковыми сокетами

Как мы уже говорили, интерфейс сокетов позволяет передавать данные между двумя приложениями, работающими на одном или разных узлах сети. В процессе создания канала передачи данных одно из этих приложений выполняет роль сервера, а другое - роль клиента. После того как канал будет создан, приложения становятся равноправными - они могут передавать друг другу данные симметричным образом.

Рассмотрим этот процесс в деталях.

Инициализация сервера

Вначале мы рассмотрим действия приложения, которое на момент инициализации является сервером.

Первое, что должно сделать серверное приложение, это создать объект класса ServerSocket, указав конструктору этого класса номер используемого порта:

ServerSocket ss;

ss = new ServerSocket(9999);

Заметим, что объект класса ServerSocket вовсе не является сокетом. Он предназначен всего лишь для установки канала связи с клиентским приложением, после чего создается сокет класса Socket, пригодный для передачи данных.

Установка канала связи с клиентским приложением выполняется при помощи метода accept, определенного в классе ServerSocket:

Socket s;

s = ss.accept();

Метод accept приостанавливает работу вызвавшего потока до тех пор, пока клиентское приложение не установит канал связи с сервером. Если ваше приложение однопоточное, его работа будет блокирована до момента установки канала связи. Избежать полной блокировки приложения можно, если выполнять создание канала передачи данных в отдельном потоке.

Как только канал будет создан, вы можете использовать сокет сервера для образования входного и выходного потока класса InputStream и OutputStream, соответственно:

InputStream is;

OutputStream os;

is = s.getInputStream();

os = s.getOutputStream();

Эти потоки можно использовать таким же образом, что и потоки, связанные с файлами.

Обратите также внимание на то, что при создании серверного сокета мы не указали адрес IP и тип сокета, ограничившись только номером порта.

Что касается адреса IP, то он, очевидно, равен адресу IP узла, на котором запущено приложение сервера. В классе ServerSocket определен метод getInetAddress, позволяющий определить этот адрес:

public InetAddress getInetAddress();

Тип сокета указывать не нужно, так как для работы с датаграммными сокетами предназначен класс DatagramSocket, который мы рассмотрим позже.

Инициализация клиента

Процесс инициализации клиентского приложения выглядит весьма просто. Клиент должен просто создать сокет как объект класса Socket, указав адрес IP серверного приложения и номер порта, используемого сервером:

Socket s;

s = new Socket("localhost",9999);

Здесь в качестве адреса IP мы указали специальный адрес localhost, предназначенный для тестирования сетевых приложений, а в качестве номера порта - ззначение 9999, использованное сервером.

Теперь можно создавать входной и выходной потоки. На стороне клиента эта операция выполняется точно также, как и на стороне сервера:

InputStream is;

OutputStream os;

is = s.getInputStream();

os = s.getOutputStream();

Передача данных между клиентом и сервером

После того как серверное и клиентское приложения создали потоки для приема и передачи данных, оба этих приложения могут читать и писать в канал данных, вызывая методы read и write, определенные в классах InputStream и OutputStream.

Ниже мы представили фрагмент кода, в котором приложение вначале читает данные из входного потока в буфер buf, а затем записывает прочитанные данные в выходной поток:

byte buf[] = new byte[512];

int lenght;

lenght = is.read(buf);

os.write(buf, 0, lenght);

os.flush();

На базе потоков класса InputStream и OutputStream вы можете создать буферизованные потоки и потоки для передачи форматированных данных, о которых мы рассказывали раньше.

Завершение работы сервера и клиента

После завершения передачи данных вы должны закрыть потоки, вызвав метод close:

is.close();

os.close();

Когда канал передачи данных больше не нужен, сервер и клиент должны закрыть сокет, вызвав метод close, определенный в классе Socket:

s.close();

Серверное приложение, кроме того, должно закрыть соединение, вызвав метод close для объекта класса ServerSocket:

ss.close();

Класс Socket

После краткого введения в сокеты приведем описание наиболее интересных конструкторов и методов класса Socket.

Конструкторы класса Socket

Чаще всего для создания сокетов в клиентских приложениях вы будете использовать один из двух конструкторов, прототипы которых приведены ниже:

public Socket(String host,int port);

public Socket(InetAddress address,int port);

Первый из этих конструкторов позволяет указывать адрес серверного узла в виде текстовой строки, второй - в виде ссылки на объект класса InetAddress. Вторым параметром задается номер порта, с использованием которого будут передаваться данные.

В классе Socket определена еще одна пара конструкторов, которая, однако не рекомендуется для использования:

public Socket(String host,

int port, boolean stream);

public Socket(InetAddress address,

int port, boolean stream);

В этих конструкторах последний параметр определяет тип сокета. Если этот параметр равен true, создается потоковый сокет, а если false - датаграммный. Заметим, что для работы с датаграммными сокетами следует использовать класс DatagramSocket.

Методы класса Socket

Перечислим наиболее интересные, на наш взгляд, методы класса Socket.

Прежде всего, это методы getInputStream и getOutputStream, предназначенные для создания входного и выходного потока, соответственно:

public InputStream getInputStream();

public OutputStream getOutputStream();

Эти потоки связаны с сокетом и должны быть использованы для передачи данных по каналу связи.

Методы getInetAddress и getPort позволяют определить адрес IP и номер порта, связанные с данным сокетом (для удаленного узла):

public InetAddress getInetAddress();

public int getPort();

Метод getLocalPort возвращает для данного сокета номер локального порта:

public int getLocalPort();

После того как работа с сокетом завершена, его необходимо закрыть методом close:

public void close();

И, наконец, метод toString возвращает текстовую строку, представляющую сокет:

public String toString();

Использование датаграммных сокетов

Как мы уже говорили, датаграммные сокеты не гарантируют доставку пакетов данных. Тем не менее, они работают быстрее потоковых и обеспечивают возможность широковещательной расслыки пакетов данных одновременно всем узлам сети. Последняя возможность используется не очень широко в сети Internet, однако в корпоративной сети Intranet вы вполне можете ей воспользоваться.

Для работы с датаграммными сокетами приложение должно создать сокет на базе класса DatagramSocket, а также подготовить объект класса DatagramPacket, в который будет записан принятый от партнера по сети блок данных.

Канал, а также входные и выходные потоки создавать не нужно. Данные передаются и принимаются методами send и receive, определенными в классе DatagramSocket.

Рассмотрим конструкторы и методы класса DatagramSocket, предназначенного для создания и использования датаграммных сокетов.

В классе DatagramSocket определены два конструктора, прототипы которых представлены ниже:

public DatagramSocket(int port);

public DatagramSocket();

Первый из этих конструкторов позволяет определить порт для сокета, второй предполагает использование любого свободного порта.

Обычно серверные приложения работают с использованием какого-то заранее определенного порта, номер которого известен клиентским приложениям. Поэтому для серверных приложений больше подходит первый из приведенных выше конструкторов.

Клиентские приложения, напротив, часто применяют любые свободные на локальном узле порты, поэтому для них годится конструктор без параметров.

Кстати, с помощью метода getLocalPort приложение всегда может узнать номер порта, закрепленного за данным сокетом:

public int getLocalPort();

Прием и передача данных на датаграммном сокете выполняется с помощью методов receive и send, соответственно:

public void receive(DatagramPacket p);

public void send(DatagramPacket p);

В качестве параметра этим методам передается ссылка на пакет данных (соответственно, принимаемый и передаваемый), определенный как объект класса DatagramPacket. Этот класс будет рассмотрен позже.

Еще один метод в классе DatagramSocket, которым вы будете пользоваться, это метод close, предназначенный для закрытия сокета:

public void close();

Напомним, что сборка мусора в Java выполняется только для объектов, находящихся в оперативной памяти. Такие объекты, как потоки и сокеты, вы должны закрывать после использования самостоятельно.

Как указать адрес сети?

Напомним, что адрес IP состоит из двух частей - адреса сети и адреса узла. Для разделения компонент 32-разрядного адреса IP используется 32-разрядная маска, в которой битам адреса сети соответствуют единицы, а битам адреса узла - нули.

Например, адрес узла может быть указан как 193.24.111.2. Исходя из значения старшего байта адреса, это сеть класса С, для которой по умолчанию используется маска 255.255.255.0. Следовательно, адрес сети будет такой: 193.24.111.0.

Связь с Web. Связь приложений Java с расширениями сервера Web

Итак, мы расказали вам, как приложения Java могут получать с сервера Web для обработки произвольные файлы, а также как они могут передавать данные друг другу с применением потоковых сокетов.

Однако наиболее впечатляющие возможности открываются, если организовать взаимодействие между приложением Java и расширением сервера Web, таким как CGI или ISAPI. В этом случае приложения или аплеты Java могли бы посылать произвольные данные расширению сервера Web для обработки, а затем получать результат этой обработки в виде файла.

Методика организации взаимодействия приложений Java и расширений сервера Web основана на применении классов URL и URLConnection.

Приложение Java, желающее работать с расширением сервера Web, создает объект класса URL для программы расширения (то есть для исполняемого модуля расширения CGI или библиотеки динамической компоновки DLL расширения ISAPI).

Далее приложение получает ссылку на канал передачи данных с этим расширением как объекта класса URLConnection. Затем, пользуясь методами getOutputStream и getInputStream из класса URLConnection, приложение создает с расширением сервера Web выходной и входной канал передачи данных.

Когда данные передаются приложением в выходной канал, созданный подобным образом, он попадает в стандартный поток ввода приложения CGI, как будто бы данные пришли методом POST из формы, определенной в документе HTML.

Обработав полученные данные, расширение CGI записывает их в свой стандартный выходной поток, после чего эти данные становятся доступны приложению Java через входной поток, открытый методом getInputStream класса URLConnection.

На рис. 1 показаны потоки данных для описанной выше схемы взаимодействия приложения Java и расширения сервреа Web с интерфейсом CGI.

Рис. 1. Взаимодействие приложения Java с расширением сервера Web на базе интерфейса CGI

Расширения ISAPI работают аналогично, однако они получают данные не из стандратного входного потока, а с помощью вызова специально предназначенной для этого функции интерфейса ISAPI. Вместо стандартного потока вывода также применяется специальная функция.

Класс URLConnection

Напомним, что в классе URL, рассмотренном нами в начале этой главы, мы привели прототип метода openConnection, возвращающий для заданного объекта класса URL ссылку на объект URLConnection: public URLConnection openConnection();

Что мы можем получить, имея ссылку на этот объект?

Прежде всего, пользуясь этой ссылкой, мы можем получить содержимое объекта, адресуемое соответствующим объектом URL, методом getContent: public Object getContent();

Заметим, что метод с таким же названием есть и в классе URL. Поэтому если все, что вы хотите сделать, это получение содержимое файла, адресуемое объектом класса URL, то нет никакой необходимости обращаться к классу URLConnection.

Метод getInputStream позволяет открыть входной поток данных, с помощью которого можно считать файл или получить данные от расширения сервера Web:

public InputStream getInputStream();

В классе URLConnection определен также метод getOutputStream, позволяющий открыть выходной поток данных:

public OutputStream getOutputStream();

Не следует думать, что этот поток можно использовать для записи файлов в каталоги сервера Web. Однако для этого потока есть лучшее применение - с его помощью можно передать данные расширению сервера Web.

Рассмотрим еще несколько полезных методов, определенных в классе URLConnection.

Метод connect предназначен для установки соединения с объектом, на который ссылается объект класса URL:

public abstract void connect();

Перед установкой соединения приложение может установить различные параметры соединения. Некоторые из методов, предназначенных для этого, приведены ниже:

setDefaultUseCaches

Включение или отключение кэширования по умолчанию

public void setDefaultUseCaches(

boolean defaultusecaches);

· setUseCaches

В классе URLConnection есть методы, позволяющие определить значения параметров, установленных только что описанными методами:

public boolean getDefaultUseCaches();

public boolean getUseCaches();

public boolean getDoInput();

public boolean getDoOutput();

public long getIfModifiedSince();

Определенный интерес могут представлять методы, предназначенные для извлечения информации из заголовка протокола HTTP:

· getContentEncoding

Другие методы, определенные в классе URLConnection, позволяют получить все заголовки или заголовки с заданным номером, а также другую информацию о соединении. При необходимости вы найдете описание этих методов в справочной системе Java.

Попробуем теперь на практике применить технологию передачи файлов из каталога сервера Web в аплет для локальной обработки. Наше следующее приложение с названием ShowChart получает небольшой текстовый файл с исходными данными для построения круговой диаграммы, содержимое которого представлено ниже:

10,20,5,35,11,10,3,6,80,10,20,5,35,11,10,3,6,80

В этом файле находятся численные значения углов для отдельных секторов диаграммы, причем сумма этих значений равна 360 градусам. Наш аплет принимает этот файл через сеть и рисует круговую диаграмму, показанную на рис. 2.

Рис. 2. Круговая диаграмма, построенная на базе исходных данных, полученных через сеть

Файл исходных данных занимает всего 49 байт, поэтому он передается по сети очень быстро. Если бы мы передавали графическое изображение этой диаграммы, статическое или динамическое, подготовленное, например, расширением сервера CGI или ISAPI, объем передаваемых по сети данных был бы намного больше.

Исходные тексты аплета ShowChart

Исходный текст приложения ShowChart приведен в листинге 1.

Листинг 1. Файл ShowChart.java

import java.applet.*;

import java.awt.*;

import java.net.*;

import java.io.*;

import java.util.*;

public class ShowChart extends Applet

{

URL SrcURL;

Object URLContent;

int errno = 0;

String str;

byte buf[] = new byte[200];

public String getAppletInfo()

{

return "Name: ShowChart";

}

public void init()

{

try

{

SrcURL = new URL(

"http://frolov/chart.txt");

try

{

InputStream is = SrcURL.openStream();

is.read(buf);

str = new String(buf, 0);

}

catch (IOException ioe)

{

showStatus("read exception");

errno = 1;

}

}

catch (MalformedURLException uex)

{

showStatus(

"MalformedURLException exception");

errno = 2;

}

}

public void paint(Graphics g)

{

Integer AngleFromChart = new Integer(0);

int PrevAngle = 0;

int rColor, gColor, bColor;

Dimension dimAppWndDimension = getSize();

g.setColor(Color.yellow);

g.fillRect(0, 0,

dimAppWndDimension.width - 1,

dimAppWndDimension.height - 1);

g.setColor(Color.black);

g.drawRect(0, 0,

dimAppWndDimension.width - 1,

dimAppWndDimension.height - 1);

showStatus(str);

StringTokenizer st =

new StringTokenizer(str, ",\r\n");

while(st.hasMoreElements())

{

rColor = (int)(255 * Math.random());

gColor = (int)(255 * Math.random());

bColor = (int)(255 * Math.random());

g.setColor(new Color(rColor,

gColor, bColor));

String angle =

(String)st.nextElement();

AngleFromChart = new Integer(angle) ;

g.fillArc(0, 0, 200, 200,

PrevAngle,

AngleFromChart.intValue());

PrevAngle += AngleFromChart.intValue();

}

}

}

Исходный текст документа HTML, созданного автоматически для нашего аплета, представлен в листинге 2.

Листинг 2. Файл ShowChart.tmp.html

<applet

name="ShowChart"

code="ShowChart"

codebase=

"file:/e:/Sun/Articles/vol12/src/ShowChart"

width="200"

height="200"

align="Top"

alt="If you had a java-enabled browser,

you would see an applet here.">

<hr>If your browser recognized

the applet tag,

you would see an applet here.

<hr>

</applet>

Описание исходного текста аплета ShowChart

Аплет ShowChart получает содержимое файла исходных данных для построения круговой диаграммы с помощью класса URL. Как вы увидите, для получения содержимого этого файла оно создает поток ввода явным образом.

Поля класса ShowChart

В классе ShowChart определены пять полей.

URL SrcURL;

Object URLContent;

int errno = 0;

String str;

byte buf[] = new byte[200];

Поле SrcURL класса URL хранит адрес URL файла исходных данных для круговой диаграммы. В поле URLContent типа Object будет переписано содержимое этого файла. В поле errno хранится текущий код ошибки, если она возникла, или нулевое значение, если все операции были выполнены без ошибок.

Поле str хранит принятую строку, которая предварительно записывается во временный буфер buf.

Метод init

Во время инициализации метод init создает объект класса URL для файла исходных данных:

SrcURL = new URL("http://frolov/chart.txt");

Здесь для упрощения исходного текста мы указали адрес URL файла данных непосредственно в программе, однако вы можете передать этот адрес аплету через параметр в документе HTML.

Далее для нашего объекта URL мы создаем поток ввода и получаем содержимое файла (то есть исходные данные для построения диаграммы):

InputStream is = SrcURL.openStream();

is.read(buf);

Принятые данные записываются в буфер buf и затем преобразуются к типу String с помощью соответствующего конструктора:

str = new String(buf, 0);

Если при создании объекта класса URL возникло исключение, метод init записывает в поле errno код ошибки, равный 2, записывая при этом в строку состояния браузера сообщение "MalformedURLException exception".

В том случае, когда объект класса URL создан успешно, а исключение возникло в процессе чтения содержимого файла, в поле errno записывается значение 1, а в строку состояния браузера - сообщение "read exception".

Метод paint

После раскрашивания фона окна аплета и рисования вокруг него рамки метод paint приступает к построению круговой диаграммы. Принятые данные отображаются в строке состояния браузера.

Далее создается разборщик строки исходных данных:

StringTokenizer st =

new StringTokenizer(sChart, ",\r\n");

В качестве разделителей для этого разборщика указывается запятая, символ возврата каретки и перевода строки.

Рисование секторов диаграммы выполняется в цикле, условием выхода из которого является завершение разбора строки исходных данных:

while(st.hasMoreElements())

{

. . .

}

Для того чтобы секторы диаграммы не сливались, они должны иметь разный цвет. Цвет сектора можно было бы передавать вместе со значением угла через файл исходных данных, однако мы применили более простой способ раскаршивания секторов - в случайные цвета. Мы получаем случайные компоненты цвета сектора, а затем выбираем цвет в контекст отображения:

rColor = (int)(255 * Math.random());

gColor = (int)(255 * Math.random());

bColor = (int)(255 * Math.random());

g.setColor(new Color(rColor,

gColor, bColor));

С помощью метода nextElement мы получаем очередное значение угла сектора и сохраняем его в переменной angle:

String angle = (String)st.nextElement();

Далее с помощью конструктора класса Integer это значение преобразуется в численное:

AngleFromChart = new Integer(angle);

Рисование сектора круговой диаграммы выполняется с помощью метода fillArc:

g.fillArc(0, 0, 200, 200,

PrevAngle, AngleFromChart.intValue());

В качестве начального значения угла сектора используется значение из переменной PrevAngle. Сразу после инициализации в эту переменную записывается нулевое значение.

Конечный угол сектора задается как AngleFromChart.intValue(), то есть указывается значение, полученное из принятого по сети файла исходных данных.

После завершения рисования очередного сектора круговой диаграммы начальное значение PrevAngle увеличивается на величину угла нарисованного сектора:

PrevAngle += AngleFromChart.intValue();

В качестве примера мы приведем исходные тексты двух приложений Java, работающих с потоковыми сокетами. Одно из этих приложений называется SocketServ и выполняет роль сервера, второе называется SocketClient и служит клиентом.

Приложение SocketServ выводит на консоль строку "Socket Server Application" и затем переходит в состояние ожидания соединения с клиентским приложением SocketClient.

Приложение SocketClient устанавливает соединение с сервером SocketServ, используя потоковый сокет с номером 9999 (этот номер выбран нами произвольно). Далее клиентское приложение выводит на свою консоль приглашение для ввода строк. Введенные строки отображаются на консоли и передаются серверному приложению. Сервер, получив строку, отображает ее в своем окне и посылает обратно клиенту. Клиент выводит полученную от сервера строку на консоли.

Когда пользователь вводит строку "quit", цикл ввода и передачи строк завершается.

Весь процесс показан на рис. 3 и 4.

Рис. 3. Окно клиентского приложения

Рис. 4. Окно серверного приложения

Здесь в окне клиентского приложения мы ввели несколько строк, причем последняя строка была строкой "quit", завершившая работу приложений.

Исходный текст серверного приложения SocketServ

Исходный текст серверного приложения SocketServ приведен в листинге 3.

Листинг 3. Файл SocketServ.java

import java.io.*;

import java.net.*;

import java.util.*;

public class SocketServ

{

public static void main(String args[])

{

byte bKbdInput[] = new byte[256];

ServerSocket ss;

Socket s;

InputStream is;

OutputStream os;

try

{

System.out.println(

"Socket Server Application");

}

catch(Exception ioe)

{

System.out.println(ioe.toString());

}

try

{

ss = new ServerSocket(9999);

s = ss.accept();

is = s.getInputStream();

os = s.getOutputStream();

byte buf[] = new byte[512];

int lenght;

while(true)

{

lenght = is.read(buf);

if(lenght == -1)

break;

String str = new String(buf, 0);

StringTokenizer st;

st = new StringTokenizer(

str, "\r\n");

str = new String(

(String)st.nextElement());

System.out.println("> " + str);

os.write(buf, 0, lenght);

os.flush();

}

is.close();

os.close();

s.close();

ss.close();

}

catch(Exception ioe)

{

System.out.println(ioe.toString());

}

try

{

System.out.println(

"Press <Enter> to terminate

application...");

System.in.read(bKbdInput);

}

catch(Exception ioe)

{

System.out.println(ioe.toString());

}

}

}

Описание исходного текста серверного приложения SocketServ

В методе main, получающем управление сразу после запуска приложения, мы определили несколько переменных.

Массив bKbdInput размером 256 байт предназначен для хранения строк, введенных при помощи клавиатуры.

В переменную ss класса ServerSocket будет записана ссылка на объект, предназначенный для установления канала связи через потоковый сокет (но не ссылка на сам сокет):

ServerSocket ss;

Ссылка на сокет, с использованием которого будет происходить передача данных, хранится в переменной с именем s класса Socket:

Кроме того, мы определили переменные is и os, соответственно, классов InputStream и OutputStream:

InputStream is;

OutputStream os;

В эти переменные будут записаны ссылки на входной и выходной поток данных, которые связаны с сокетом.

После отображения на консоли строки названия приложения, метод main создает объект класса ServerSocket, указывая конструктору номер порта 9999:

ss = new ServerSocket(9999);

Конструктор возвращает ссылку на объект, с использованием которого можно установить канал передачи данных с клиентом.

Канал устанавливается методом accept:

s = ss.accept();

Этот метод переводит приложение в состояние ожидания до тех пор, пока не будет установлен канал передачи данных.

Метод accept в случае успешного создания канала передачи данных возвращает ссылку на сокет, с применением которого нужно принимать и передавать данные.

На следующем этапе сервер создает входной и выходной потоки, вызывая для этого методы getInputStream и getOutputStream, соответственно:

is = s.getInputStream();

os = s.getOutputStream();

Далее приложение подготавливает буфер buf для приема данных и определяет переменную length, в которую будет записываться размер принятого блока данных:

byte buf[] = new byte[512];

int lenght;

Теперь все готово для запуска цикла приема и обработки строк от клиентского приложения.

Для чтения строки мы вызываем метод read применительно ко входному потоку:

lenght = is.read(buf);

Этот метод возвращает управление только после того, как все данные будут прочитаны, блокируя приложение на время своей работы. Если такая блокировка нежелательна, вам следует выполнять обмен данными через сокет в отдельной задаче.

Метод read возвращает размер принятого блока данных или -1, если поток исчерпан. Мы воспользовались этим обстоятельством для завершения цикла приема данных:

if(lenght == -1)

break;

После завершения приема блока данных мы преобразуем массив в текстовую строку str класса String, удаляя из нее символ перевода строки, и отображаем результат на консоли сервера:

System.out.println("> " + str);

Затем полученная строка отправляется обратно клиентскому приложению, для чего вызывается метод write:

os.write(buf, 0, lenght);

Методу write передается ссылка на массив, смещение начала данных в этом массиве, равное нулю, и размер принятого блока данных.

Для исключения задержек в передаче данных из-за накопления данных в буфере (при использовании буферизованных потоков) необходимо принудительно сбрасывать содержимое буфреа метдом flush:

os.flush();

И хотя в нашем случае мы не пользуемся буферизованными потоками, мы включили вызов этого метода для примера.

Теперь о завершающих действиях после прерывания цикла получения, отображения и передачи строк.

Наше приложение явням образом закрывает входной и выходной потоки данных, сокет, а также объект класса ServerSocket, с использованием которого был создан канал передачи данных:

is.close();

os.close();

s.close();

ss.close();

Исходный текст клиентского приложения SocketClient

Исходный текст клиентского приложения SocketClient приведен в листинге 4.

Листинг 4. Файл SocketClient.java

import java.io.*;

import java.net.*;

import java.util.*;

public class SocketClient

{

public static void main(String args[])

{

byte bKbdInput[] = new byte[256];

Socket s;

InputStream is;

OutputStream os;

try

{

System.out.println(

"Socket Client Application" +

"\nEnter any string or" +

" 'quit' to exit...");

}

catch(Exception ioe)

{

System.out.println(ioe.toString());

}

try

{

s = new Socket("localhost",9999);

is = s.getInputStream();

os = s.getOutputStream();

byte buf[] = new byte[512];

int length;

String str;

while(true)

{

length = System.in.read(bKbdInput);

if(length != 1)

{

str = new String(bKbdInput, 0);

StringTokenizer st;

st = new StringTokenizer(

str, "\r\n");

str = new String(

(String)st.nextElement());

System.out.println("> " + str);

os.write(bKbdInput, 0, length);

os.flush();

length = is.read(buf);

if(length == -1)

break;

str = new String(buf, 0);

st = new StringTokenizer(

str, "\r\n");

str = new String(

(String)st.nextElement());

System.out.println(">> " + str);

if(str.equals("quit"))

break;

}

}

is.close();

os.close();

s.close();

}

catch(Exception ioe)

{

System.out.println(ioe.toString());

}

try

{

System.out.println(

"Press <Enter> to " +

"terminate application...");

System.in.read(bKbdInput);

}

catch(Exception ioe)

{

System.out.println(ioe.toString());

}

}

}

Описание исходного текста клиентского приложения SocketClient

Внутри метода main клиентского приложения SocketClient определены переменные для ввода строки с клавиатуры (массив bKbdInput), сокет s класса Socket для работы с сервером SocketServ, входной поток is и выходной поток os, которые связаны с сокетом s.

После вывода на консоль приглашающей строки клиентское приложение создает сокет, вызывая конструктор класса Socket:

s = new Socket("localhost",9999);

В процессе отладки мы запускали сервер и клиент на одном и том же узле, поэтому в качестве адреса сервера указана строка "localhost". Номер порта сервера SocketServ равен 9999, поэтому мы и передали конструктору это значение.

После создания сокета наше клиентское приложение создает входной и выходной потоки, связанные с этим сокетом:

is = s.getInputStream();

os = s.getOutputStream();

Теперь клиентское приложение готово обмениваться данными с сервером.

Этот обмен выполняется в цикле, условием завершения которого является ввод пользователем строки "quit".

Внутри цикла приложение читает строку с клавиатуры, записывая ее в массив bKbdInput:

length = System.in.read(bKbdInput);

Количество введенных символов сохраняется в переменной length.

Далее если пользователь ввел строку, а не просто нажал на клавишу <Enter>, эта строка отображается на консоли и передается серверу:

os.write(bKbdInput, 0, length);

os.flush();

Сразу после передачи сбрасывается буфер выходного потока.

Далее приложение читает ответ, посылаемый сервером, в буфер buf:

length = is.read(buf);

Напомним, что наш сервер посылает клиенту принятую строку в неизменном виде.

Если сервер закрыл канал, то метод read возвращает значение -1. В этом случае мы прерываем цикл ввода и передачи строк:

if(length == -1)

break;

Перед завершением своей работы клиент закрывает входной и выходной потоки, а также сокет, на котором выполнялась передача данных:

is.close();

os.close();

s.close();

Аплет Form

Аплет Form

На примере аплета Form мы покажем, как приложения Java могут взаимодействовать с расширениями сервера Web, такими как программы CGI или приложения ISAPI.

В окне нашего аплета находится форма, содержащая два однострочных поля редактирования, кнопку и многострочное поле редактирования (рис. 5).

Рис. 5. Окно аплета Form

Эта форма предназначена для добавления записей в базу данных, содержащую электронные почтовые адреса. Заполнив поля имени и адреса E-Mail, пользователь должен нажать кнопку Send. При этом введенная информация будет передана расширению сервера CGI, который запишет ее в базу данных, а затем отправит обратно аплету. Сохраненные записи, полученные от программы CGI, аплет FORM отобразит в многострочном поле редактирования, как это показано на рис. 5.

Исходные тексты аплета Form

Исходные тексты аплета Form представлены в листинге 5.

Листинг 5. Файл Form.java

import java.applet.*;

import java.awt.*;

import java.net.*;

import java.io.*;

import java.util.*;

public class Form extends Applet

implements Runnable

{

private Thread m_store = null;

TextField txtName;

TextField txtEMail;

TextArea txta;

Button btnGetText;

public void init()

{

Label lbName;

Label lbEMail;

Label lbPress;

lbName = new Label("Enter your name:");

lbEMail = new Label(


Подобные документы

  • История создания языка Java. Основные принципы объектно-ориентированного программирования. Структура, особенности синтаксиса и примеры прикладных возможностей использования языка Java, его преимущества. Перспективы работы программистом на языке Java.

    курсовая работа [795,9 K], добавлен 14.12.2012

  • Кратка историческая справка развития языка Java. Анализ предметной области. Java platform, enterprise and standart edition. Апплеты, сервлеты, gui-приложения. Розработка программного кода, консольное приложение. Результаты работы апплета, сервлета.

    курсовая работа [549,2 K], добавлен 23.12.2015

  • Создание языка программирования с помощью приложения "Java". История названия и эмблемы Java. Обзор многообразия современных текстовых редакторов. Обработка строки. Методы в классе String. Java: задачи по обработке текста. Примеры программирования.

    курсовая работа [276,1 K], добавлен 19.07.2014

  • Разработка графического редактора для рисования двухмерной и трехмерной графики, используя язык программирования Java и интерфейсы прикладного программирования Java 2D и Java 3D. Создание графического редактора 3D Paint. Основные методы класса Graphics.

    курсовая работа [197,5 K], добавлен 19.11.2009

  • Разработка технологии и средств реализации Java-приложения, сокращающих трудоемкость создания и гибкость модификации интерфейса пользователя. Использование XML-документов для описания внешнего представления, элементов управления и событий экранных форм.

    дипломная работа [2,8 M], добавлен 19.08.2011

  • Особенности архитектуры Java. Технология Java Database Connectivity. Кроссплатформенность Java-приложений. Преимущества языка программирования. Логическая структура базы данных. Структура программного комплекса. Верификация программных средств.

    курсовая работа [962,8 K], добавлен 13.01.2016

  • Java Runtime Environment - минимальная реализация виртуальной машины, необходимая для исполнения приложений, без компилятора и других средств разработки. Компиляция исходного кода через командную строку. Основные моменты создания игрового 2d-приложения.

    курсовая работа [2,1 M], добавлен 26.04.2014

  • Методология объектно-ориентированного программирования в Java. Понятия класса, объекта и объектной переменной. Динамическая и статическая объектные модели. Логическое структурирование приложения. Наследование в Java. Отличия интерфейсов от классов.

    курс лекций [547,2 K], добавлен 01.05.2014

  • Архитектура Java и Java RMI, их основные свойства, базовая система и элементы. Безопасность и виртуальная Java-машина. Интерфейс Java API. Пример использования приложения RMI. Работа с программой "Calculator". Универсальность, портативность платформ.

    курсовая работа [208,6 K], добавлен 03.12.2013

  • Принципы написания консольных приложений на языке Java в среде Eclipse. Составление программы завтрака на основе списка продуктов, передаваемых в качестве параметров в командной строке. Создание пакета для классов, интерфейса, базового класса иерархии.

    лабораторная работа [1,2 M], добавлен 01.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.