Области применения искусственного интеллекта
История развития науки о искусственном интеллекте. Области применения исскуственного интеллекта. Некоторые сведения о мозге. Основные теории нейроподобных и нейтронных сетей. Нейроподобный элемент и нейроподобные сети. Классификация нейронных сетей.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 01.10.2009 |
Размер файла | 96,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
31
Содержание
Введение
1. История развития науки о искусственном интеллекте
1.1 Искусственный интеллект
1.2 Некоторые сведения о мозге
2. Основные теории нейроподобных и нейтронных сетей
2.1 Нейроподобный элемент и нейроподобные сети (НПС)
2.2 Классификация нейронных сетей
Заключение
Глоссарий
Список использованных источников
Приложение А
Приложение Б
Приложение В
Введение
Понятие искусственный интеллект, как впрочем, и просто интеллект, весьма расплывчато. [1, С.95] Если обобщить все сказанное за последние тридцать лет, то оказывается, что человек просто хочет создать себе подобного в той или иной форме, хочет, чтобы какие-то действия выполнялись более рационально, с меньшими затратами времени и энергии. С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума. В последнее время наблюдается возрастание интереса к искусственному интеллекту, вызванное повышением требований к информационным системам. Умнеет программное обеспечение, умнеет бытовая техника. Мы неуклонно движемся к новой информационной революции, сравнимой по масштабам с развитием Интернета, имя которой - искусственный интеллект.
Искусственный интеллект является сейчас «горячей точкой» научных исследований. В этой точке, как в фокусе, сконцентрированы наибольшие усилия кибернетиков, лингвистов, психологов, философов, математиков и инженеров. Именно здесь решаются многие коренные вопросы, связанные с путями развития научной мысли, с воздействием достижений в области вычислительной техники и робототехники на жизнь будущих поколений людей. Здесь возникают и получают права на жизнь новые методы научных междисциплинарных исследований. Здесь формируется новый взгляд на роль тех или иных научных результатов и возникает то, что можно было бы назвать философским осмыслением этих результатов. Поэтому я посчитал актуальным раскрыть данную тему в реферате.
Терпеливо продвигаясь вперед в своем нелегком труде, исследователи, работающие в области искусственного интеллекта (ИИ), обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики. Оказалось, что, прежде всего, необходимо понять механизмы процесса обучения, природу языка и чувственного восприятия. Выяснилось, что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов. И тогда многие исследователи пришли к выводу, что, пожалуй, самая трудная проблема, стоящая перед современной наукой - познание процессов функционирования человеческого разума, а не просто имитация его работы. Что непосредственно затрагивало фундаментальные теоретические проблемы психологической науки. В самом деле, ученым трудно даже прийти к единой точке зрения относительно самого предмета их исследований - интеллекта. Некоторые считают, что интеллект - умение решать сложные задачи; другие рассматривают его как способность к обучению, обобщению и аналогиям; третьи - как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее, многие исследователи ИИ склонны принять тест машинного интеллекта, предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной технике Аланом Тьюрингом. «Компьютер можно считать разумным, - утверждал Тьюринг, - если он способен заставить нас поверить, что мы имеем дело не с машиной, а с человеком».
Объектом исследования в курсовой работе является искусственный интеллект. Предметом исследования - пути совершенствования и развития искусственного интеллекта.
Цель данной работы выявить области применения искусственного интелектания.
Основные задачи, которые необходимо решить в данной работе:
1) Рассмотреть зарождение искусственного интеллекта;
2) Проанализировать для чего создают искусственный интеллект;
3) Исследовать нейроподобные и нейтронне сетей ;
4) Раскрыть бедующее искусственный интеллект;
5) Современное применение искусственный интеллект;
6) Проанализировать области применения их в практике.
Для разработки темы курсовой работы были использованы научные работы отечественных и зарубежных авторов таких как Змитррович А.И. Интеллектуальные информационные системы, Эндрю А. Искусственный интеллект, Брушлинский А.В. Возможен ли искусственный интеллект? Труды третьего международного симпозиума «Интеллектуальные системы» - Псков: 1998., и т.д.
Данная работа будет интересна тем, кто желает краткого ознакомления с историей возникновения искусственного интеллекта и ее развитием. И пригодится в качестве небольшого учебного пособия по данному вопросу.
1 История развития науки о искусственном интеллекте
1.1 Искусственный интеллект
Искусственный интеллект - одна из новейших наук, появившихся во второй половине 20-го века на базе вычислительной техники, математической логики, программирования, психологии, лингвистики, нейрофизиологии и других отраслей знаний. Искусственный интеллект - это образец междисциплинарных исследований, где соединяются профессиональные интересы специалистов разного профиля. Само название новой науки возникло в конце 60-х годах, а в 1969 г. в Вашингтоне (США) состоялась первая Всемирная конференция по искусственному интеллекту. Известно, что совокупность научных исследований обретает права науки, если выполнены два необходимых условия. У этих исследований должен быть объект изучения, не совпадающий с теми, которые изучают другие науки. И должны существовать специфические методы исследования этого объекта, отличные от методов других, уже сложившихся наук. Исследования, которые объединяются сейчас термином "искусственный интеллект", имеют свой специфический объект изучения и свои специфические методы. В этой статье мы обоснуем это утверждение. Когда в конце 40-х - начале 50-х годов появились ЭВМ, стало ясно, что инженеры и математики создали не просто быстро работающее устройство для вычислений, а нечто более значительное. Оказалось, что с помощью ЭВМ можно решать различные головоломки, логические задачи, играть в шахматы, создавать игровые программы. ЭВМ стали принимать участие в творческих процессах: сочинять музыкальные мелодии, стихотворения и даже сказки. Появились программы для перевода с одного языка на другой, для распознавания образов, доказательства теорем. Это свидетельствовало о том, что с помощью ЭВМ и соответствующих программ можно автоматизировать такие виды человеческой деятельности, которые называются интеллектуальными и считаются доступными лишь человеку. Несмотря на большое разнообразие не вычислительных программ, созданных к началу 60-х годов, программирование в сфере интеллектуальной деятельности находилось в гораздо худшем положении, чем решение расчетных задач. Причина очевидна. Программирование для задач расчетного характера опиралось на соответствующую теорию - вычислительную математику. На основе этой теории было разработано много методов решения задач. Эти методы стали основой для соответствующих программ. Ничего подобного для не вычислительных задач не было. Любая программа была здесь уникальной, как произведение искусства. Опыт создания таких программ никак не обобщался, умение их создавать не формализовалось. Никто не станет отрицать, что, в отличие от искусства, у науки должны быть методы решения задач. С помощью этих методов все однотипные задачи должны решаться единообразным способом. И "набив руку" на решении задач определенного типа, легко решать новые задачи, относящиеся к тому же типу. Но именно таких методов и не смогли придумать те, кто создавал первые программы не вычислительного характера. Когда программист создавал программу дл игры в шахматы, то он использовал собственные знания о процессе игры. Он вкладывал их в программу, а компьютер лишь механически выполняли эту программу. Можно сказать, что компьютер "не отличал" вычислительные программы от не вычислительных. Он одинаковым образом находил корни квадратного уравнения или писал стихи. В памяти компьютера не было знаний о том, что он на самом деле делает. Об интеллекте компьютера можно было бы говорить, если бы он сам, на основании собственных знаний о том, как протекает игра в шахматы и как играют в эту игру люди, сумел составить шахматную программу или синтезировал программу для написания несложных вальсов и маршей. Не сами процедуры, с помощью которых выполняется та или иная интеллектуальная деятельность, а понимание того, как их создать, как научиться новому виду интеллектуальной деятельности, - вот где скрыто то, что можно назвать интеллектом. Специальные метапроцедуры обучения новым видам интеллектуальной деятельности отличают человека от компьютера. Следовательно, в создании искусственного интеллекта основной задачей становится реализация машинными средствами тех метапроцедур, которые используются в интеллектуальной деятельности человека. Что же это за процедуры? В психологии мышления есть несколько моделей творческой деятельности. Одна из них называется лабиринтной. Суть лабиринтной гипотезы, на которой основана лабиринтная модель, состоит в следующем: переход от исходных данных задачи к решению лежит через лабиринт возможных альтернативных путей. Не все пути ведут к желаемой цели, многие из них заводят в тупик, надо уметь возвращаться к тому месту, где потеряно правильное направление. Это напоминает попытки не слишком умелого школьника решить задачу об упрощении алгебраических выражений. Для этой цели на каждом шагу можно применять некоторые стандартные преобразования или придумывать искусственные приемы. Но весьма часто вместо упрощения выражения происходит его усложнение, и возникают тупики, из которых нет выхода. По мнению сторонников лабиринтной модели мышления, решение всякой творческой задачи сводится к целенаправленному поиску в лабиринте альтернативных путей с оценкой успеха после каждого шага. С лабиринтной моделью связана первая из метапроцедур - целенаправленный поиск в лабиринте возможностей. Программированию этой метапроцедуры соответствуют многочисленные процедуры поиска, основанные на соображениях здравого смысла (человеческого опыта решения аналогичных задач). В 60-х годах было создано немало программ на основе лабиринтной модели, в основном игровых и доказывающих теоремы "в лоб", без привлечения искусственных приемов. Соответствующее направление в программировании получило название эвристического программирования. Высказывались даже предположения, что целенаправленный поиск в лабиринте возможностей - универсальная процедура, пригодная для решения любых интеллектуальных задач. Но исследователи отказались от этой идеи, когда столкнулись с задачами, в которых лабиринта возможностей либо не существовало, либо он был слишком велик для метапроцедуры поиска, как, например, при игре в шахматы. Конечно, в этой игре лабиринт возможностей - это все мыслимые партии игры. Но как в этом астрономически большом лабиринте найти те партии, которые ведут к выигрышу? Лабиринт столь велик, что никакие мыслимые скорости вычислений не позволят целенаправленно перебрать пути в нем. И все попытки использовать для этого человеческие эвристики (в данном случае профессиональный опыт шахматистов) не дают пути решения задачи. Поэтому созданные шахматные программы уже давно используют не только метапроцедуру целенаправленного поиска, но и другие метапроцедуры, связанные с другими моделями мышления. Долгие годы в психологии изучалась ассоциативная модель мышления. Основной метапроцедурой модели является ассоциативный поиск и ассоциативное рассуждение. Предполагается, что решение неизвестной задачи так или иначе основывается на уже решенных задачах, чем-то похожих на ту, которую надо решить. Новая задача рассматривается как уже известная, хотя и несколько отличающаяся от известной. Поэтому способ ее решения должен быть близок к тому, который когда-то помог решить подобную задачу. Для этого надо обратиться к памяти и попытаться найти нечто похожее, что ранее уже встречалось. Это и есть ассоциативный поиск. Когда, увидев незнакомого человека, вы стараетесь вспомнить, на кого он похож, реализуется метапроцедура ассоциативного поиска. Но понятие ассоциации в психологии шире, чем просто "похожесть". Ассоциативные связи могут возникнуть и по контрасту, как противопоставление одного другому, и по смежности, т. е. в силу того, что некоторые явления возникали в рамках одной и той же ситуации или происходили одновременно (или с небольшим сдвигом по времени). Ассоциативное рассуждение позволяет переносить приемы, использованные ранее, на текущую ситуацию. К сожалению, несмотря на многолетнее изучение ассоциативной модели, не удалось создать стройную теорию ассоциативного поиска и ассоциативного рассуждения. Исключение составляет важный, но частный класс ассоциаций, называемых условными рефлексами. И все же метапроцедура ассоциативного поиска и рассуждения сыграла важную роль: она помогла создать эффективные программы в распознавании образов, в классификационных задачах и в обучении ЭВМ. [2, С.95]
Но одновременно эта метапроцедура привела к мысли о том, что для ее эффективного использования надо привлечь результаты, полученные в другой модели мышления, опирающейся на идею внутреннего представления проблемной области, на знания о ее особенностях, закономерностях и процедурах действия в ней. [3, С.200]
1.2 Некоторые сведения о мозге
«Пусть лошадь думает, у нее голова больше!» - знакомая фраза? И вот вроде бы все логично - чем больше мозг, тем умней его счастливый обладатель. Вот, пока вроде бы все правильно. Ну, а дальше-то начинаются полные непонятки: упуская всяких лошадок и коровок с весом мозга в 300-400 граммов, у слона - вес мозга более 5 кг, а у кашалотов, вообще 7кг с лишним! Так вот кто они - самые наиумнейшие и наимудрейшие! Ан-нет! Оказывается, что разумность как раз зависит не сколько от размеров и веса мозга, столько от соотношения его веса с общим весом всего тела. И вот тут уж человеку нет равных!
Например: У людей соотношение веса тела к весу мозга составляет: так 70 кг разделить на 1,4 кг получается в 50 раз, у коровы - в 1000 раз, у собаки - в 500 раз. Ну а если подсчитать у китов да кашалотов, то получается, что вес их тела превышает вес мозга аж в 3000 раз! В общем, наши единственные и ближайшие «по уму» родственники - это дельфины, вес мозга некоторых видов которых достигает 1700 гр., при весе тела около 135 кг.
А вот интересно, существует ли разница в весе мозга, так сказать, внутри рода человеческого? Оказывается да, существует! Так, в среднем мозг мужчины на 130 гр. больше мозга женщины. Кроме того, существуют так же расовые и национальные различия. Например, счастливыми обладателями самого легкого мозга -1185 гр. - являются австралийцы (австралоиды), а самого тяжелого - 1375 гр. - европейцы (европеоиды). При этом у англичан мозг весит, напоминаю - в среднем -1346 гр., а у французов -1280 гр. Лидеры - немцы, их мозг весит целых 1425 гр. Не расстраивайтесь, мы с вами тоже в лидерах! Наш, русский, мозг меньше немецкого всего-то на каких-то 26 граммов! Ненамного отстают от нас корейцы -1376 гр. и японцы -1313 гр. А вот у афроамериканцев средний вес мозга составляет 1223 гр., что на 100 гр. меньше чем у белокожего населения Америки. Но, поверьте, вес мозга не самое главное.
Что позволяет человеку анализировать поступающую информацию? В терминологии нейрогенетики введено понятие - нейросеть. [9, С.420] Именно совокупность нейросетей образует отделы нервной системы человека, которые в свою очередь определяют всю деятельность, придают существу разум, интеллект.
Мозг является, пожалуй, самой сложной из известных нам систем переработки информации. Достаточно сказать, что в нем содержится около 100 миллиардов нейронов, каждый из которых имеет в среднем 10 000 связей. При этом мозг чрезвычайно надежен: ежедневно погибает большое количество нейронов, а мозг продолжает функционировать. Обработка огромных объемов информации осуществляется мозгом очень быстро, за доли секунды, несмотря на то, что нейрон является медленнодействующим элементом со временем реакции не менее нескольких миллисекунд.
Пока не слишком понятно, как мозгу удается получить столь впечатляющее сочетание надежности и быстродействия. Довольно хорошо изучена структура и функции отдельных нейронов, имеются данные об организации внутренних и внешних связей между нейронами некоторых структурных образований мозга, совсем мало известно об участии различных структур в процессах переработки информации. [4, С.195]
Нервные клетки, или нейроны, представляют собой особый вид клеток в живых организмах, обладающих электрической активностью, основное назначение которых заключается в оперативном управлении организмом. Нейрон имеет тело (сому), дерево входов (дендриты) и выходов (аксон и его окончания). Сома, как правило, имеет поперечный размер в несколько десятков микрон. Длина дендритов может достигать 1 мм, дендриты сильно ветвятся, пронизывая сравнительно большое пространство в окрестности нейрона. Длина аксона может достигать сотен миллиметров. Начальный сегмент аксона, прилегающий к телу клетки, утолщен. Иногда этот сегмент называют аксонным холмиком. По мере удаления от клетки он постепенно сужается и на расстоянии нескольких десятков микрон на нем появляется миэлиновая оболочка, имеющая высокое электрическое сопротивление. На соме и на дендритах располагаются окончания (коллатерали) аксонов, идущих от других нервных клеток. Каждое такое окончание имеет вид утолщения, называемого синаптической бляшкой, или синапсом. Поперечные размеры синапса, как правило, не превышают нескольких микрон, чаще всего эти размеры составляют около 1 мкм.
Входные сигналы дендритного дерева взвешиваются и суммируются на пути к аксонному холмику, где генерируется выходной импульс (спайк) или группа импульсов. Его наличие, является функцией взвешенной суммы входных сигналов. Выходной сигнал проходит по ветвям аксона и достигает синапсов, которые соединяют аксоны с дендритными деревьями других нейронов. Через синапсы сигнал трансформируется в новый входной сигнал для смежных нейронов. Этот входной сигнал может быть положительным и отрицательным в зависимости от вида синапсов. Величина входного сигнала, генерируемого синапсом, может быть различной даже при одинаковой величине сигнала, приходящего в синапс. Эти различия определяются эффективностью или весом синапса. Синаптический вес может изменяться в процессе функционирования синапса. Многие ученые считают такое изменение нейрофизиологическим коррелятом (следом) памяти. При этом роль механизмов молекулярной памяти заключается в долговременном закреплении этих следов.
Нейроны можно разбить на три группы: рецепторные, промежуточные и эффекторные. Рецепторные нейроны обеспечивают ввод в мозг сенсорной информации. Они трансформируют сигналы, поступающие на органы чувств (оптические сигналы в сетчатке глаза, акустические в ушной улитке или обонятельные в хеморецепторах носа), в электрическую импульсацию своих аксонов. Эффекторные нейроны передают приходящие на них сигналы исполнительным органам. На конце их аксонов имеются специальные синаптические соединения с исполнительными органами, например мышцами, где возбуждение нейронов трансформируется в сокращения мышц. Промежуточные нейроны образуют центральную нервную систему.
2 Основные теории нейроподобных и нейтронных сетей
2.1 Нейроподобный элемент и нейроподобные сети (НПС)
Нейроподобный элемент, который обычно используется при моделировании нейронных сетей, приведен на рисунке (см. Приложение А). На нейроподобный элемент поступает набор входных сигналов x1...хn (или входной вектор ), представляющий собой выходные сигналы других нейроподобных элементов. Этот входной вектор соответствует сигналам, поступающим в синапсы биологических нейронов. Каждый входной сигнал умножается на соответствующий вес связи w1…wn - аналог эффективности синапса. Вес связи является скалярной величиной, положительной для возбуждающих и отрицательной для тормозящих связей. Взвешенные весами связей входные сигналы поступают на блок суммации, соответствующий телу клетки, где осуществляется их алгебраическая суммация и определяется уровень возбуждения нейроподобного элемента S:
Выходной сигнал нейрона у определяется путем пропускания уровня возбуждения S через нелинейную функцию f:
,
где и -- некоторое постоянное смещение (аналог порога нейрона).
Обычно используются простейшие нелинейные функции (см. Приложение Б):
- бинарная
- сигмоидная:
В такой модели нейрона пренебрегают многими известными характеристиками биологического прототипа, которые некоторые исследователи считают критическими. Например, в ней не учитывают нелинейность пространственно-временной суммации, которая особенно проявляется для сигналов, приходящих по возбуждающим и тормозящим синапсам, различного рода временные задержки, эффекты синхронизации и частотной модуляции, рефрактерность и т. п. Несмотря на это нейроподобные сети, простроенные на основе таких простых нейроподобных элементов, демонстрируют ассоциативные свойства, напоминающие свойства биологических систем. [6, С.100]
Что такое искусственные нейронные сети? Что они могут делать? Как они работают? Как их можно использовать? Эти и множество подобных вопросов задают специалисты из разных областей.
Что же такое нейроподобная сеть? Это искусственный аналог биологической сети, по своим параметрам максимально приближающийся к оригиналу. Нейроподобные сети прошли длинный путь становления и развития, от полного отрицания возможности их применения до воплощения во многих сферах деятельности человека (см. Приложение В).
Современные цифровые вычислительные машины способны с высоким быстродействием и точностью решать формализованные задачи с вполне определенными данными по заранее известным алгоритмам. Однако в тех случаях, когда задача не поддается формализации, а входные данные неполны, зашумлены или противоречивы, применение традиционных компьютеров становится неэффективным. Сильной стороной этих комплексов является нестандартный характер обработки информации. Она кодируется и запоминается не в отдельных ячейках памяти, а в распределении связей между нейронами и в их силе, поэтому состояние каждого отдельного нейрона определяется состоянием многих других нейронов, связанных с ним. Следовательно, потеря одной или нескольких связей не оказывает существенного влияния на результат работы системы в целом. Высокая «естественная» помехоустойчивость и функциональная надежность касаются как искаженных (зашумленных) потоков информации, так и в смысле отказов отдельных процессорных элементов. Этим обеспечиваются высокая оперативность и достоверность обработки информации, а простая дообучаемость и переобучаемость НПС позволяют при изменении внешних факторов своевременно осуществлять переход на новые виды решаемых задач.
Приведенные выше преимущества нейросетевой обработки данных определяют области применения НПС:
- обработка и анализ изображений;
- распознавание речи независимо от диктора, перевод;
- обработка высокоскоростных цифровых потоков;
- автоматизированная система быстрого поиска информации;
- классификация информации в реальном масштабе времени;
- планирование применения сил и средств в больших масштабах;
- решение трудоемких задач оптимизации;
Основные положения теории деятельности головного мозга и математическая модель нейрона были разработаны У. Маккалоком и Ч. Питтсом в 1943 году и опубликованы в статье «Логическое исчисление идей, относящихся к нервной деятельности», которая была издана на русском языке в сборнике «Автоматы» только спустя 13 лет. Согласно предложенной модели мозг представляет собой ансамбль нейронов, имеющих одинаковую структуру. Каждый нейрон реализует некоторую функцию, называемую пороговой, над входными значениями. Если значение функции превышает определенную величину - порог (что характеризует суммарную значимость полученной нейроном информации), нейрон возбуждается и формирует выходной сигнал для передачи его другим нейронам. Пройдя путь от рецепторов (слуховых, зрительных и других) через нейронные структуры мозга до исполнительных органов, входная информация преобразуется в набор управляющих воздействий, адекватных ситуации.
Отдельные нейроны, соединяясь между собой, образуют новое качество, которое, в зависимости от характера межнейронных соединений, имеет различные уровни биологического моделирования:
- группа нейронов;
- нейронная сеть;
- нервная система;
- мыслительная деятельность;
- мозг.
Другими словами, нейроподобная сеть -- это параллельная связная сеть простых адаптивных элементов, которая взаимодействует с объектами реального мира аналогично биологической нервной системе. С инженерной точки зрения такая сеть представляет собой сильно распараллеленную динамическую систему с топологией направленного графа, которая может выполнять переработку информации посредством изменения своего состояния в ответ на постоянный или импульсный входной сигнал.
В настоящее время основными направлениями реализации НПС являются:
- программная реализация на цифровых ЭВМ традиционной архитектуры;
- программно-аппаратная реализация в виде сопроцессоров к ЭВМ общего назначения;
- аппаратная реализация путем создания нейрокомпьютеров на базе нейроплат в виде параллельных нейроподобных структур.
Ранние варианты реализации НПС относятся к первым двум из указанных направлений. Первое направление характеризуется универсальностью, дешевизной и низкой скоростью обучения и функционирования НПС. Для второго направления характерна высокая скорость моделирования функционирования НПС, но при этом существуют серьезные физические ограничения числа моделируемых элементов и связей между ними, а также возможностей обучения и дообучения. По мере развития элементной базы ЭВМ стало возможным самостоятельное развитие третьего направления, которое положило начало индустрии нейрокомпьютеров, представляющих совокупность аппаратных и программных средств для реализации моделей нейронных сетей.
На сегодняшний день известно уже более 200 различных парадигм нейронных сетей (не только детерминированных, но и вероятностных), десятки НПС реализованы в специализированных кристаллах и платах, на их основе созданы мощные рабочие станции и даже суперкомпьютеры. Современные технологии достигли того рубежа, когда стало возможным изготовление технической системы из 3-4 млрд. нейронов (именно такое количество их в мозгу человека). Однако их соединение продолжает оставаться проблемой.
Обучение нейроподобной сети
Одно из важнейших свойств нейроподобной сети -- способность к самоорганизации, самоадаптации с целью улучшения качества функционирования. Это достигается обучением сети, алгоритм которого задается набором обучающих правил. Обучающие правила определяют, каким образом изменяются связи в ответ на входное воздействие. Многие из них являются развитием высказанной Д.О. Хеббом идеи о том, что обучение основано на увеличении силы связи (синаптического веса) между одновременно активными нейронами. Таким образом, часто используемые в сети связи усиливаются, что объясняет феномен обучения путем повторения и привыкания. Математически это правило можно записать следующим образом:
,
где wij(t) и wij(t+1) - значение веса связи от i-го к j-му нейрону соответственно до и после его изменения,
б -- скорость обучения, yi и yj -выходные сигналы i-го и j-го нейронов. В настоящее время существует множество разнообразных обучающих правил (алгоритмов обучения).
2.2 Классификация нейронных сетей
Решение задачи классификации является одним из важнейших применений нейронных сетей. Задача классификации представляет собой задачу отнесения образца к одному из нескольких попарно не пересекающихся множеств. Примером таких задач может быть, например, задача определения кредитоспособности клиента банка, медицинские задачи, в которых необходимо определить, например, исход заболевания, решение задач управления портфелем ценных бумаг (продать купить или "придержать" акции в зависимости от ситуации на рынке).
1. Цель классификации
При решении задач классификации необходимо отнести имеющиеся статические образцы (характеристики ситуации на рынке, данные медосмотра, информация о клиенте) к определенным классам. Возможно несколько способов представления данных. Наиболее распространенным является способ, при котором образец представляется вектором. Компоненты этого вектора представляют собой различные характеристики образца, которые влияют на принятие решения о том, к какому классу можно отнести данный образец. Например, для медицинских задач в качестве компонентов этого вектора могут быть данные из медицинской карты больного. Таким образом, на основании некоторой информации о примере, необходимо определить, к какому классу его можно отнести. Классификатор таким образом относит объект к одному из классов в соответствии с определенным разбиением N-мерного пространства, которое называется пространством входов, и размерность этого пространства является количеством компонент вектора.
Прежде всего, нужно определить уровень сложности системы. В реальных задачах часто возникает ситуация, когда количество образцов ограничено, что осложняет определение сложности задачи. Возможно выделить три основных уровня сложности. Первый - когда классы можно разделить прямыми линиями (или гиперплоскостями, если пространство входов имеет размерность больше двух) - так называемая линейная разделимость. Во втором случае классы невозможно разделить линиями (плоскостями), но их возможно отделить с помощью более сложного деления - нелинейная разделимость. В третьем случае классы пересекаются и можно говорить только о вероятностной разделимости. [7, С.365] В идеальном варианте после предварительной обработки мы должны получить линейно разделимую задачу, так как после этого значительно упрощается построение классификатора.
2. Использование нейронных сетей в качестве классификатора.
Сети с прямой связью являются универсальным средством аппроксимации функций, что позволяет использовать в решении задач классификации. Как правило, нейронные сети оказываются наиболее эффективным способом классификации, потому что генерируют большое число регрессионных моделей (которые используются в решении задач классификации статистическими методами).
К сожалению, в применении нейронных сетей в практических задачах возникает ряд проблем. Во-первых, заранее не известно, какой сложности может потребоваться сеть для достаточно точной реализации отображения. Так Минский в своей работе "Персептроны" доказал, что простейшие однослойные нейронные сети способны решать только линейно разделимые задачи. В общем виде можно сказать, что в сети с одним скрытым слоем вектор, соответствующий входному образцу, преобразуется скрытым слоем в некоторое новое пространство, которое может иметь другую размерность, а затем гиперплоскости, соответствующие нейронам выходного слоя, разделяют его на классы. Таким образом сеть распознает не только характеристики исходных данных, но и "характеристики характеристик", сформированные скрытым слоем.
3. Подготовка исходных данных
Для построения классификатора необходимо определить, какие параметры влияют на принятие решения о том, к какому классу принадлежит образец. При этом могут возникнуть две проблемы. Во-первых, если количество параметров мало, то может возникнуть ситуация, при которой один и тот же набор исходных данных соответствует примерам, находящимся в разных классах. Тогда невозможно обучить нейронную сеть, и система не будет корректно работать. Исходные данные обязательно должны быть непротиворечивы. Для решения этой проблемы необходимо увеличить размерность пространства признаков. Но при увеличении размерности пространства признаков может возникнуть ситуация, когда число примеров может стать недостаточным для обучения сети, и она вместо обобщения просто запомнит примеры из обучающей выборки и не сможет корректно функционировать. Таким образом, при определении признаков необходимо найти компромисс с их количеством.
Далее необходимо определить способ представления входных данных для нейронной сети. Нормировка необходима, поскольку нейронные сети работают с данными, представленными числами в диапазоне 0..1, а исходные данные могут иметь произвольный диапазон или вообще быть нечисловыми данными. При этом возможны различные способы, начиная от простого линейного преобразования в требуемый диапазон и заканчивая многомерным анализом параметров и нелинейной нормировкой в зависимости от влияния параметров друг на друга.
4. Кодирование выходных значений.
Задача классификации при наличии двух классов может быть решена на сети с одним нейроном в выходном слое, который может принимать одно из двух значений 0 или 1, в зависимости от того, к какому классу принадлежит образец. При наличии нескольких классов возникает проблема, связанная с представлением этих данных для выхода сети. Наиболее простым способом представления выходных данных в таком случае является вектор, компоненты которого соответствуют различным номерам классов. При этом i-я компонента вектора соответствует i-му классу. Все остальные компоненты при этом устанавливаются в 0. Тогда, например, второму классу будет соответствовать 1 на 2 выходе сети и 0 на остальных. При интерпретации результата обычно считается, что номер класса определяется номером выхода сети, на котором появилось максимальное значение. Например, если в сети с тремя выходами мы имеем вектор выходных значений (0.2,0.6,0.4), то мы видим, что максимальное значение имеет вторая компонента вектора, значит класс, к которому относится этот пример, - 2. При таком способе кодирования иногда вводится также понятие уверенности сети в том, что пример относится к этому классу. Наиболее простой способ определения уверенности заключается в определении разности между максимальным значением выхода и значением другого выхода, которое является ближайшим к максимальному. Например, для рассмотренного выше примера уверенность сети в том, что пример относится ко второму классу, определится как разность между второй и третьей компонентой вектора и равна 0.6-0.4=0.2. Соответственно чем выше уверенность, тем больше вероятность того, что сеть дала правильный ответ. Этот метод кодирования является самым простым, но не всегда самым оптимальным способом представления данных.
Другой подход состоит в разбиении задачи с k классами на k*(k-1)/2 подзадач с двумя классами (2 на 2 кодирование) каждая. Под подзадачей в данном случае понимается то, что сеть определяет наличие одной из компонент вектора. Т.е. исходный вектор разбивается на группы по два компонента в каждой таким образом, чтобы в них вошли все возможные комбинации компонент выходного вектора. Число этих групп можно определить как количество неупорядоченных выборок по два из исходных компонент. Из комбинаторики
Тогда, например, для задачи с четырьмя классами мы имеем 6 выходов (подзадач) распределенных следующим образом:
№ подзадачи(выхода) |
Компонты входа |
|
1 |
1-2 |
|
2 |
1-3 |
|
3 |
1-4 |
|
4 |
2-3 |
|
5 |
2-4 |
|
6 |
3-4 |
Где 1 на выходе говорит о наличии одной из компонент. Тогда мы можем перейти к номеру класса по результату расчета сетью следующим образом: определяем, какие комбинации получили единичное (точнее близкое к единице) значение выхода (т.е. какие подзадачи у нас активировались), и считаем, что номер класса будет тот, который вошел в наибольшее количество активированных подзадач (см. таблицу).
№ класса |
Акт. Выходы |
|
1 |
1,2,3 |
|
2 |
1,4,5 |
|
3 |
2,4,6 |
|
4 |
3,5,6 |
Это кодирование во многих задачах дает лучший результат, чем классический способ кодирование.
5. Выбор объема сети.
Правильный выбор объема сети имеет большое значение. Построить небольшую и качественную модель часто бывает просто невозможно, а большая модель будет просто запоминать примеры из обучающей выборки и не производить аппроксимацию, что, естественно, приведет к некорректной работе классификатора. Существуют два основных подхода к построению сети - конструктивный и деструктивный. При первом из них вначале берется сеть минимального размера, и постепенно увеличивают ее до достижения требуемой точности. При этом на каждом шаге ее заново обучают. Также существует так называемый метод каскадной корреляции, при котором после окончания эпохи происходит корректировка архитектуры сети с целью минимизации ошибки. При деструктивном подходе вначале берется сеть завышенного объема, и затем из нее удаляются узлы и связи, мало влияющие на решение. При этом полезно помнить следующее правило: число примеров в обучающем множестве должно быть больше числа настраиваемых весов. Иначе вместо обобщения сеть просто запомнит данные и утратит способность к классификации - результат будет неопределен для примеров, которые не вошли в обучающую выборку.
6. Выбор архитектуры сети.
При выборе архитектуры сети обычно опробуется несколько конфигураций с различным количеством элементов. [11, С.420] При этом основным показателем является объем обучающего множества и обобщающая способность сети. Обычно используется алгоритм обучения Back Propagation (обратного распространения) с подтверждающим множеством.
Заключение
Многие споры вокруг проблемы создания искусственного интеллекта имеют эмоциональную подоплеку.
Признание возможности искусственного разума представляется чем-то унижающим человеческое достоинство. Однако нельзя смешивать вопросы возможностей искусственного разума с вопросом о развитии и совершенствовании человеческого разума.
Повсеместное использование искусственного интеллекта создаёт предпосылки для перехода на качественно новую ступень прогресса, даёт толчок новому витку автоматизации производства, а значит и повышению производительности труда.
Однако развитие кибернетики выдвигает ряд проблем, которые все же требуют пристального внимания. Эти проблемы связаны с опасностями, возникающими в ходе работ по искусственному интеллекту.
Первая проблема связана с возможной потерей стимулов к творческому труду в результате массовой компьютеризации или использования машин в сфере искусств. Однако в последнее время стало ясно, что человек добровольно не отдаст самый квалифицированный творческий труд, так как он для самого человека является привлекательным.
Вторая проблема носит более серьезный характер, и на нее неоднократно указывали такие специалисты, как Н. Винер, Н. М. Амосов, И. А. Полетаев и др. Состоит она в следующем. Уже сейчас существуют машины и программы, способные в процессе работы самообучаться, т. е. повышать эффективность приспособления к внешним факторам. В будущем, возможно, появятся машины, обладающие таким уровнем приспособляемости и надежности, что необходимость человеку вмешиваться в процесс отпадет. В этом случае возможна потеря самим человеком своих качеств, ответственных за поиск решений.
Налицо возможная деградация способностей человека к реакции на изменение внешних условий и, возможно, неспособность принятия управления на себя в случае аварийной ситуации. Встает вопрос о целесообразности введения некоторого предельного уровня в автоматизации процессов, связанных с тяжелыми аварийными ситуациями. В этом случае у человека, "надзирающего" за управляющей машиной, всегда хватит умения и реакции таким образом воздействовать на ситуацию, чтобы погасить разгорающуюся аварийную ситуацию.
Таковые ситуации возможны на транспорте, в ядерной энергетике. Особо стоит отметить такую опасность в ракетных войсках стратегического назначения, где последствия ошибки могут иметь фатальный характер.
Несколько лет назад в США начали внедрять полностью компьютеризированную систему запуска ракет по командам суперкомпьютера, обрабатывающего огромные массивы данных, собранных со всего света.
Однако оказалось, что даже при условии многократного дублирования и перепроверки, вероятность ошибки оказалась бы столь велика, что отсутствие контролирующего оператора привело бы к непоправимой ошибке. От системы отказались. Люди будут постоянно решать проблему искусственного интеллекта, постоянно сталкиваясь все с новыми проблемами. И, видимо, процесс этот бесконечен.
Таким образом, сделана попытка дать определение искусственному интеллекту путем рассмотрения основных областей его исследования и применения. Этот обзор обнаружил молодую и многообещающую область науки, основная цель которой - найти эффективный способ понимания и применения интеллектуального решения проблем, планирования и навыков общения к широкому кругу практических задач. Несмотря на разнообразие проблем, затрагиваемых исследованиями ИИ, во всех отраслях этой сферы наблюдаются некоторые общие черты.
Глоссарий
№ п/п |
Новые понятия |
Содержание |
|
1 |
2 |
3 |
|
1 |
Искусственный интеллект |
это образец междисциплинарных исследований, где соединяются профессиональные интересы специалистов разного профиля |
|
2 |
Искусcтвенная нейронная сеть |
это математическая модель, а также устройства параллельных вычислений, представляющие собой систему соединённых и взаимодействующих между собой простых процессоров |
|
3 |
нейроподобная сеть |
это параллельная связная сеть простых адаптивных элементов, которая взаимодействует с объектами реального мира аналогично биологической нервной системе |
|
4 |
Парадигма |
конца 60-х годов 20-го века этот термин в философии науки и социологии науки используется для обозначения исходной концептуальной схемы, модели постановки проблем и их решения, методов исследования, господствующих в течение определённого исторического периода в научном сообществе |
|
5 |
Кибернетика |
наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе. |
|
6 |
Нейроны |
нервные клетки, структурно-функциональные единицы нервной системы. Кора головного мозга человека содержит 10--20 миллиардов нейронов |
|
7 |
Программирование |
процесс и искусство создания компьютерных программ с помощью языков программирования. Программирование сочетает в себе элементы искусства, науки, математики и инженерии |
|
8 |
Память |
способность к сохранению, накоплению и воспроизведению информации |
|
9 |
нервная система |
целостная морфологическая и функциональная совокупность различных взаимосвязанных нервных структур, которая совместно с гуморальной системой обеспечивает взаимосвязанную регуляцию деятельности всех систем организма и реакцию на изменение условий внутренней и внешней среды. Нервная система действует как интегративная система. |
|
10 |
мозг |
упрощённое название центральной нервной системы |
Список использованных источников
1. Змитррович А.И. Интеллектуальные информационные системы. [Текст]/ Змитррович А.И. - Минск, - 1997. -125 с. -ISBN: 5-86534-576-6
2. Эндрю А. Искусственный интеллект [Текст]/ Эндрю А. - М. Мир, - 1985. -187 с. -ISBN: 5-26552-745-1
3. Брушлинский А.В. Возможен ли искусственный интеллект? [Текст]/ Брушлинский А.В. -263 с. -ISBN: 5-86425-523-1
4. Винер Н. Наука, электронная версия, [Текст]/ Винер Н. - М. Кибернетика - 1998. -211 с. -ISBN: 5-15248-325-3
5. Федюкович Н. И. Анатомия и физиология: Учеб. Пособие. [Текст]/ Федюкович Н. И. - Мн.: Издательство ООО «Полифакт-Альфа», - 1999. -115 с. -ISBN: 5-86324-476-8
6. Соколов Е. Н., Вайткявичус Г.Г. Нейроинтеллект: от нейрона к нейрокомпьютеру [Текст]/ Соколов Е. Н., Вайткявичус Г.Г. - М.: Наука - 1989. -455 с. -ISBN: 5-83652-526-4
7. Цыганков В. Д. Нейрокомпьютер и его применение [Текст]/ Цыганков В. Д. - М.: СолСистем,- 1993. -223 с. -ISBN: 5-84534-376-3
8. Ноткин Л.И. Искусственный интеллект и проблемы обучения. [Текст]/ Ноткин Л.И. -132 с. -ISBN: 5-83334-336-9
9. Венда В.Ф. Системы гибридного интеллекта [Текст]/ Венда В.Ф. - М.: Машиностроение, - 1990. -232 с. -ISBN: 5-86475-354-8
10. Волгин Л.И. Комплементарная алгебра нейросетей [Текст]/ Волгин Л.И. - Таллин АО «KLTK», - 2003. -123 с. -ISBN: 5-86452-276-4
11. Чернухин Ю. В. Нейропроцессоры [Текст]/ Чернухин Ю. В. - Таганрог - 2000. -212 с. -ISBN: 5-86224-176-1
Приложение А
Схема строения нейроподобного элемента
Приложение Б
Простейшая нелинейная функци
я
Приложение В
Простая модель нейронной сети. Данная сеть содержит 5 нейронов во входном слое и 3 в выходном. Т.е. с ее помощью можно по 5 признаком определить один из трех классов
Подобные документы
История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.
реферат [45,1 K], добавлен 20.11.2009Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.
презентация [3,0 M], добавлен 28.05.2015Сущность и функции искусственных нейронных сетей (ИНС), их классификация. Структурные элементы искусственного нейрона. Различия между ИНС и машинами с архитектурой фон Неймана. Построение и обучение данных сетей, области и перспективы их применения.
презентация [1,4 M], добавлен 14.10.2013Обзор образовательных стандартов педагогического образования в области искусственного интеллекта. Построение модели предметной области в виде семантических сетей. Характеристика проблемного обучения. Основные средства языка программирования Пролог.
дипломная работа [387,8 K], добавлен 01.10.2013Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.
реферат [158,2 K], добавлен 16.03.2011Области человеческой деятельности, в которых может применяться искусственный интеллект. Решение проблем искусственного интеллекта в компьютерных науках с применением проектирования баз знаний и экспертных систем. Автоматическое доказательство теорем.
курсовая работа [41,3 K], добавлен 29.08.2013Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.
реферат [347,6 K], добавлен 17.12.2011Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.
реферат [78,9 K], добавлен 22.01.2015Искусственные нейросетевые системы как перспективное направление в области разработки искусственного интеллекта. Назначение нейро-нечётких сетей. Гибридная сеть ANFIS. Устройство и принцип работы нейро-нечётких сетей, применение в экономике и бизнесе.
контрольная работа [102,5 K], добавлен 21.06.2012Сущность искусственного интеллекта, сферы человеческой деятельности, в которых он распространен. История и этапы развития данного явления. Первые идеи и их воплощение. Законы робототехники. Использование искусственного интеллекта в коммерческих целях.
реферат [40,8 K], добавлен 17.08.2015