Устройства вывода информации

Основные характеристики электронно-лучевого и жидкокристаллического монитора. Основные компоненты необходимые для работы видеокарты. Принцип работы матричных, лазерных, струйных принтеров. Характеристики жидкокристаллических и микрозеркальных проекторов.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 16.06.2009
Размер файла 43,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Тульский государственный университет

Кафедра математики и математического моделирования

Устройства вывода информации

Выполнил: студент 1 курса группы

820181 Коновалов Р.О.

Проверила: канд. тех. наук, доц.

Дудина Ю.В.

Тула 2009

Содержание

Введение

Глава 1. Монитор

Глава 2. Видеокарта

Глава 3. Принтер

Глава 4. Плоттер

Глава 5. Проектор

Глава 6. Колонки

Заключение

Список литературы

Введение

Компьютер является универсальным устройством для переработки информации. Чтобы дать компьютеру переработать информацию, её необходимо каким-то образом туда ввести. Для осуществления ввода информации были созданы специальные устройства - это в первую очередь клавиатура, CD-ROM. Попадая в компьютер, информация обрабатывается и далее реализовывается возможность вывода этой информации, т.е. пользователь имеет возможность визуального восприятия данных. Для вывода информации используются основные устройства - монитор, видеоадаптер и принтер. После ввода и обработки информации, её можно сохранить, для чего были созданы жёсткий диск, магнитные диски и средства оптического хранения данных. В данной контрольно-курсовой работе представлена тема “Устройства вывода информации”.

Устройства вывода информации - это устройства, которые переводят информацию с машинного языка в формы, доступные для человеческого восприятия. К устройствам вывода информации относятся: монитор, видеокарта, принтер, плоттер, проектор, колонки.

Глава 1. Монитор

Монитор обеспечивает информационную связь между пользователем и компьютером. Первые микрокомпьютеры представляли собой небольшие блоки, в которых практически не было средств индикации. Всё, что имел в своем распоряжении пользователь -- это набор мигающих светодиодов или возможность распечатки результатов на принтере. По сравнению с современными стандартами первые компьютерные мониторы были крайне примитивны: текст отображался только в зелёном цвете, однако в те годы это было чуть ли не самым важным технологическим прорывом, поскольку пользователи получили возможность вводить и выводить данные в режиме реального времени. При появлении цветных мониторов, увеличился размер экрана, и они перешли с портативных компьютеров на рабочий стол пользователей. Существует два вида монитора: электронно-лучевой и жидкокристаллический монитор.

Электронно-лучевой монитор. В таком мониторе изображение передаётся с помощью электронно-лучевой трубки (ЭЛТ). ЭЛТ представляет собой электронный вакуумный прибор в стеклянной колбе, в горловине которого находится электронная пушка, а на дне -- экран, покрытый люминофором. Нагреваясь, электронная пушка испускает поток электронов, которые с большой скоростью движутся к экрану. Поток электронов проходит через фокусирующую и отклоняющую катушки, которые направляют его в определенную точку покрытого люминофором экрана. Под воздействием ударов электронов люминофор излучает свет, видимый пользователю. В ЭЛ-мониторах используются три слоя люминофора: красный, зеленый и синий. Для выравнивания потоков электронов используется теневая маска -- металлическая пластина, имеющая щели или отверстия, которые разделяют красный, зеленый и синий люминофоры на группы по три точки каждого цвета. Качество изображения определяется типом используемой теневой маски; на резкость изображения влияет расстояние между группами люминофоров.

Химическое вещество, используемое в качестве люминофора, характеризуется временем послесвечения, которое отображает длительность свечения люминофора после воздействия электронного пучка. Время послесвечения и частота обновления изображения должны соответствовать друг другу, чтобы не было заметно мерцание изображения и отсутствовала размытость и удвоение контуров в результате наложения последовательных кадров.

Электронный луч движется очень быстро, прочерчивая экран строками слева направо и сверху вниз по траектории, именуемой растром. Период сканирования по горизонтали определяется скоростью перемещения луча поперёк экрана. В процессе развёртки (перемещения по экрану) луч воздействует на те элементарные участки люминофорного покрытия экрана, где должно появиться изображение. Интенсивность луча постоянно меняется, в результате чего изменяется яркость свечения соответствующих участков экрана. Поскольку свечение исчезает очень быстро, электронный луч должен вновь и вновь пробегать по экрану, возобновляя его. Этот процесс называется возобновлением (или регенерацией) изображения.

Жидкокристаллический монитор. Позаимствовав технологию у изготовителей дисплеев для портативных компьютеров, некоторые компании разработали жидкокристаллические дисплеи, называемые также LCD-дисплеями (Liquid-Crystal Display). Для них характерен безбликовый экран и низкая потребляемая мощность (некоторые модели таких дисплеев потребляют 5 Вт, в то время как мониторы с электронно-лучевой трубкой -- порядка 100 Вт). По качеству цветопередачи ЖК-мониторы с активной матрицей в настоящее время превосходят большинство моделей ЭЛ-мониторов. В ЖК-мониторах используются аналоговые или цифровые активные матрицы. ЖК-мониторы с размером экрана более 15 дюймов предоставляют как аналоговый (VGA), так и цифровой (DVI) разъёмы, которыми оснащены многие видеоадаптеры средней и высокой стоимости. Поляризационный светофильтр создает две раздельные световые волны и пропускает только ту, у которой плоскость поляризации параллельна его оси. Располагая в ЖК-мониторе второй светофильтр так, чтобы его ось была перпендикулярна оси первого, можно полностью предотвратить прохождение света. Вращая ось поляризации второго фильтра, т. е. изменяя угол между осями светофильтров, можно изменить количество пропускаемой световой энергии, а значит, и яркость экрана. В цветном ЖК-мониторе есть ещё один дополнительный светофильтр; который имеет три ячейки на каждый пиксель изображения -- по одной для отображения красной, зеленой и синей точек. Красная, зеленая и синяя ячейки, формирующие пиксель, иногда называются субпикселями (subpixel).

Мёртвый пиксель (dead pixel) -- это пиксель, красная, зелёная или синяя ячейка которого постоянно включена или выключена. Постоянно включенные ячейки очень хорошо видны на тёмном заднем фоне как ярко-красная, зелёная или синяя точка. ЖК-мониторы бывают с активной и пассивной матрицей.

В большинстве ЖК-мониторов используются тонкоплёночные транзисторы (TFT). В каждом пикселе есть один монохромный или три цветных RGB транзистора, упакованные в гибком материале, имеющем точно такой же размер и форму, что и сам дисплей. Поэтому транзисторы каждого пикселя расположены непосредственно за ЖК-ячейками, которыми они управляют. В настоящее время для производства дисплеев с активной матрицей используется два материала: гидрогенизированный аморфный кремний (a-Si) и низкотемпературный поликристаллический кремний (p-Si). Основная разница между ними заключается в производственной цене. Для увеличения видимого горизонтального угла обзора ЖК-мониторов некоторые производители модифицировали классическую технологию TFT. Технология плоскостного переключения (in-plane switching -- IPS), также известная как STFT, подразумевает параллельное выравнивание ЖК-ячеек относительно стекла экрана, подачу электрического напряжения на плоскостные стороны ячеек и поворот пикселей для чёткого и равномерного вывода изображения на всю ЖК-панель. Технология Super-IPS -- перестраивает ЖК-молекулы в соответствии с зигзагообразной схемой, а не по строкам и столбцам, что позволяет уменьшить нежелательное цветовое смешение и улучшить равномерное распределение цветовой гаммы на экране. В аналогичной технологии мультидоменного вертикального выравнивания (MVA) экран монитора подразделяется на отдельные области, для каждой из которых изменяется угол ориентации.

В ЖК-мониторах с пассивной матрицей яркостью каждой ячейки управляет напряжение, протекающее через транзисторы, номера которых равны номерам строки и столбца данной ячейки в матрице экрана. Количество транзисторов (по строкам и столбцам) и определяет разрешение экрана. Например, экран с разрешением 1024x768 содержит 1024 транзисторов по горизонтали и 768 по вертикали. Ячейка реагирует на поступающий импульс напряжения таким образом, что поворачивается плоскость поляризации проходящей световой волны, причём угол поворота тем больше, чем выше напряжение.

На ячейки ЖК-монитора с пассивной матрицей подаётся пульсирующее напряжение, поэтому они уступают по яркости изображения ЖК-мониторам с активной матрицей, в каждую ячейку которых подаётся постоянное напряжение. Для повышения яркости изображения в некоторых конструкциях используется метод управления, получивший название двойное сканирование, и соответствующие ему устройства -- ЖК-мониторы с двойным сканированием (double-scan LCD). Экран разбивается на две половины (верхнюю и нижнюю), которые работают независимо, что приводит к сокращению интервала между импульсами, поступающими на ячейку. Двойное сканирование не только повышает яркость изображения, но и снижает время реакции экрана, поскольку сокращает время создания нового изображения. Поэтому ЖК-мониторы с двойным сканированием больше подходят для создания быстро изменяющихся изображений.

Правда, ЖК-мониторы имеют существенный недостаток - это время реакции пикселей (время послесвечения). Большое время реакции (более 25 мс) приводит к тому, что при полноэкранном воспроизведении видео, трёхмерных игр, анимации, а также быстром просмотре текста изображение смазывается.

Что касается параметров монитора, то стоит обратить внимание на ряд важных.

1) Размер диагонали экрана в дюймах (1 дюйм -- это около двух с половиной сантиметров). Следует учитывать, что диагональ видимого изображения для стандартного ЭЛ-монитора всегда окажется на целый дюйм меньше заявленной величины. 15-дюймовый ЖК-монитор соответствует 17-дюймовому на основе ЭЛТ.

2) Величина экранного «зерна». Второй важный показатель -- величина минимального пикселя экрана. Эта величина напрямую влияет на качество получаемой картинки: чем зерно больше, тем «глубже» изображение.

3) Разрешающая способность. Эта величина показывает, сколько минимальных элементов изображения -- пикселей -- может уместиться на экране монитора. Разрешающую способность описывают две величины -- количество точек по вертикали и по горизонтали. Изменяется она в компьютере не плавно, как и количество цветов, а как бы прыгает со ступеньки на ступеньку, с режима на режим:

*640x480 (стандартный режим для 14-дюймовых мониторов);

*800x600 (стандартный режим для 15-дюймовых мониторов);

*1024x768 (стандартный режим для 17-дюймовых мониторов);

*1152x864 (стандартный режим для 19-дюймовых мониторов);

*1280x1024 (стандартный режим для 20-дюймовых мониторов);

*1600x1200 (стандартный режим для 21-дюймовых мониторов).

4) Максимальная частота развертки (Refresh Rate) -- эту величину можно грубо определить как аналог «частоты обновления кадров» в кино. Чем выше частота развертки -- тем меньше будет «рябить» экран монитора. Для комфортной работы необходимо, чтобы частота вертикальной развертки составляла не менее 85 Гц, т. е., чтобы изображение на экране обновлялось с частотой не менее 85 раз в секунду.

5) Возможности настройки и коррекция изображения. Все современные устройства снабжены специальным цифровым управлением, позволяющим вручную отрегулировать множество параметров:

Пропорциональное сжатие/растяжку изображения по горизонтали и вертикали.

Сдвиг изображения по горизонтали или вертикали.

Коррекция «бочкообразных искажений» (когда края изображения на экране слишком выпуклы или, наоборот, вогнуты).

Трапециевидные и параллелограммные искажения, также связанные с «геометрией» изображения.

Цветовую «температуру», соотношение основных экранных цветов -- красного, зеленого и синего.

6) Тип «теневой маски». В современных мониторах используется несколько типов масок. Первый, самый простой -- точечная инваровая маска - сеточка с крохотными отверстиями, через которые и просеиваются лучи ЭЛТ. В более совершенных мониторах используется второй тип -- апертурная маска, состоящая из множества тонких, вертикально натянутых металлических нитей. Отличаются эти мониторы качеством, контрастностью и «сочностью» изображения.

7) Вид кинескопа: мониторы с плоским экраном и выпуклым экраном.

Глава 2. Видеокарта

Видеокарта (известна также как графическая плата, графическая карта, видеоадаптер) (англ. videocard) -- устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора. Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный (ISA, VLB, PCI, PCI-Express) или специализированный (AGP), но бывает и встроенной. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера. Например, все современные видеокарты NVIDIA и AMD(ATI) поддерживают приложения OpenGL на аппаратном уровне. Для работы видеокарты необходимы следующие основные компоненты:

1) BIOS (Basic Input/Output System -- базовая система ввода-вывода).

2) Графический процессор, иногда называемый набором микросхем системной логики видеокарты. Графический процессор является сердцем любой видеокарты и характеризует быстродействие адаптера и его функциональные возможности. Две видеокарты различных производителей с одинаковыми процессорами зачастую демонстрируют схожую производительность и функции обработки графических данных. Кроме того, программные драйверы, с помощью которых операционные системы и приложения управляют видеокартой, как правило, разрабатываются именно с учётом параметров конкретного набора микросхем.

3) Видеопамять. Большинство видеокарт для хранения изображений при их обработке обходятся собственной видеопамятью; хотя некоторые видеоадаптеры AGP используют системную оперативную память для хранения трёхмерных текстур. Во многих дешёвых системах встроенные графические системы используют оперативную память компьютера посредством унифицированной архитектуры памяти (Unified Memory Architecture -- UMA). В любом случае с помощью как собственной, так и заимствованной видеопамяти выполняются одни и те же операции. От объёма видеопамяти зависит максимальная разрешающая способность экрана и глубина цвета, поддерживаемая адаптером. На рынке в настоящее время предлагаются модели с различным объемом видеопамяти: 128, 256, 384, 512, 1024 Мбайт. Хотя больший объём видеопамяти не сказывается на скорости обработки графических данных, при использовании увеличенной шины данных (с 64 до 128 или 256 бит) или системной оперативной памяти для кэширования часто отображаемых объектов скорость видеокарты может существенно увеличиться. Кроме того, объём видеопамяти позволяет видеокарте отображать больше цветов и поддерживать более высокое разрешение, а также хранить и обрабатывать трёхмерные текстуры в видеопамяти адаптера с интерфейсом AGP/ PCI-E 16x, а не в ОЗУ системы.

4) Цифроаналоговый преобразователь, он же DAC (Digital to Analog Converter). Ранее используемый в качестве отдельной микросхемы, DAC зачастую встраивается в графический процессор новых наборов микросхем. Необходимость в подобном преобразователе в цифровых системах отпадает, однако, пока живы аналоговый интерфейс VGA и аналоговые мониторы, DAC ещё некоторое время будет использоваться. Практически все видеокарты имеют наборы микросхем с поддержкой функций ускорения отображения трехмёрных объектов.

5) Разъём DVI. DVI расшифровывается как Digital Video/Visual Interface. DVI - стандартный цифровой интерфейс для вывода видео на плоские ЖК-дисплеи. Большинство видеокарт с DVI-выходами поставляются вместе с переходниками, преобразующими сигнал с DVI на VGA/D-Sub. Так что владельцам аналоговых ЭЛ-мониторов расстраиваться не стоит. Все современные видеокарты дают два DVI-выхода, которые позволяют подключить два дисплея и расширить возможности рабочего стола Windows. Впрочем, два дисплея поддерживает любая комбинация выводов DVI и D-Sub/VGA. Для новых дисплеев с большой диагональю и разрешением, например, для 30" ЖК-панелей Dell и Apple, требуется выход с двухканальным DVI (Dual-Link), который поддерживает "родное" разрешение 2560x1600.

6) Драйвер. Программный драйвер -- важный элемент видеосистемы, с помощью которого осуществляется связь программного обеспечения с видеокартой. Видеокарта может быть оснащена самым быстрым процессором и наиболее эффективной памятью, но плохой драйвер способен свести на нет все эти преимущества. Видеодрайверы используются для поддержки процессора видеоадаптера. Несмотря на то, что видеокарты поставляются изготовителем вместе с драйверами, иногда используются драйверы, поставляемые вместе с набором микросхем системной логики.

7) BIOS видеокарты. Видеокарты имеют свою BIOS, которая подобна системной BIOS, но полностью независима от неё (другие устройства в компьютере, такие, как SCSI-адаптеры, могут также иметь собственную BIOS). BIOS видеокарты хранится в микросхеме ROM. Она содержит основные команды, которые предоставляют интерфейс между оборудованием видеоадаптера и программным обеспечением.

8) TV-выход.

9) Выход VGA. Вообще, под сокращением VGA подразумевают определённое разрешение (video graphics array), то есть массив из горизонтальных и вертикальных пикселей. Но в области графического "железа" VGA часто расшифровывают как графический адаптер (video graphics adapter). Соответствующий разъём называют VGA или D-Sub 15. Он предназначается для вывода аналогового сигнала, причём качество такого сигнала может отличаться от одной видеокарты к другой. Дорогие видеокарты используют качественные компоненты, поэтому дают ясную и чёткую картинку даже на высоких разрешениях.

Перед покупкой видеокарты необходимо определиться с графическим процессором видеоадаптера или типом интегрированного набора микросхем системы. Это позволит: сравнить видеокарты или системы различных производителей; ознакомиться с технической спецификацией; просмотреть различные обзоры и тестовые испытания; мотивировать свой выбор; познакомиться с производителями видеокарт или наборов микросхем, схемами клиентской поддержки и предоставляемыми драйверами.

Глава 3. Принтер

Одно из назначений компьютера -- создание напечатанной версии документа, или так называемой твёрдой копии. Именно поэтому принтер является необходимым аксессуаром компьютера. Принтеры (печатающие устройства) - это устройства вывода данных из ЭВМ, преобразующие информационные ASCII-коды в соответствующие им графические символы и фиксирующие эти символы на бумаге. Принтер расширяет взаимосвязи компьютера с материальным миром, заполняя бумагу результатами своей работы. По скоростным возможностям принтеры образуют диапазон от вялой работы до световой. Они соперничают с плоттерами в возможностях чертить графические изображения. На сегодняшний день существует три вида принтеров:

* Лазерный. Лазерный принтер работает следующим образом: на фоточувствительном барабане с помощью луча лазера создается электростатическое изображение страницы. Помешенный на барабан специально окрашенный порошок, называемый тонером, «прилипает» только к той области, которая представляет собой буквы или изображение на странице. Барабан поворачивается и прижимается к листу бумаги, перенося на нее тонер. После закрепления тонера на бумаге получается готовое изображение.

После загрузки данных в принтер компьютер начинает процесс интерпретации кода. Вначале интерпретатор из поступивших данных выделяет управляющие команды и содержимое документа. Процессор принтера считывает код и выполняет команды, являющиеся частью процесса форматирования, а затем выполняет другие инструкции по конфигурации принтера (например, выбор лотка с бумагой, односторонняя или двухстороння печать и т. д.).

Процесс интерпретации данных включает фазу форматирования, в ходе которой выполняются команды, указывающие, как содержимое документа должно располагаться на странице. Процесс форматирования также включает преобразование контуров шрифтов и векторной графики в растр. Эти растровые изображения символов помещаются во временный кэш шрифтов, откуда извлекаются по мере необходимости для непосредственного использования в том или ином месте документа.

В результате процесса форматирования с помощью детального набора команд определяется точное расположение каждого символа и графического изображения на каждой странице документа. В конце процесса интерпретации данных контроллер выполняет команды для создания массива точек, которые затем будут перенесены на бумагу. Эта процедура называется растеризацией. Созданный массив точек помещается в буфер страницы и находится там до момента переноса на бумагу. Принтеры, использующие буферы полосы, разделяют страницу на несколько горизонтальных полос. Контроллер выполняет растеризацию данных одной полосы, отправляет её на печать, очищает буфер и приступает к обработке следующей полосы (страница по частям попадает на фоточувствительный барабан или другое печатающее устройство).

После растеризации изображение страницы сохраняется в памяти, а затем передается печатающему устройству, которое физически выполняет процесс печати. Печатающее устройство -- это общий термин для определения устройств, которые непосредственно переносят изображение на бумагу в принтере и включают следующие элементы: узел лазерного сканирования, фоточувствительный элемент, контейнер с тонером, блок распределения тонера, коротроны, разрядную лампу, блок закрепления и механизм транспортировки бумаги. Чаще всего эти элементы конструктивно выполнены в виде одного модуля (аналогичное печатающее устройство используется в копировальных машинах).

* Струйный. В струйных принтерах, ионизированные капельки чернил через сопла распыляются на бумагу. Распыление происходит в тех местах, где необходимо сформировать буквы или изображения.

Процессы интерпретации данных при струйной и лазерной печати в основном подобны. Различие состоит лишь в том, что струйные принтеры имеют меньший объем памяти и менее мощную вычислительную систему. Жидкие чернила распыляются непосредственно на бумагу -- в те места, где в лазерном принтере формируется массив из точек. В настоящее время существует два основных типа струйной печати: термическая и пьезоэлектрическая. Картридж состоит из резервуара с жидкими чернилами и небольшими (около одного микрона) отверстиями, сквозь которые чернила выталкиваются на бумагу. Количество отверстий зависит от разрешения принтера и может колебаться от 21 до 256 на один цвет. В цветных принтерах используются четыре (или больше) резервуара с различными цветными чернилами (голубой, пурпурный, желтый и черный). При смешивании этих четырех цветов, можно воспроизвести практически любой цвет.

Термическая струйная печать

При термической струйной печати чернила в картридже нагреваются до температуры 400°С. При этом они закипают и образуется чернильный пар. Давление в резервуаре возрастает, и через сопла чернила небольшими каплями распыляются на бумагу.

Пьезоэлектрическая струйная печать

Этот тип струйной печати обладает несколькими явными преимуществами. Вместо нагревания в этих принтерах используется электрический заряд пьезоэлектрических кристаллов внутри отверстий в картридже. Эти кристаллы изменяют свою форму в результате электрического воздействия, проталкивая чернила сквозь отверстия. Изменение температурного режима в процессе струйной печати обеспечило следующие преимущества. Во-первых, уменьшение температуры позволило подобрать такой состав чернил, при котором они не будут растекаться и размазываться. Во-вторых, срок службы распыляющих отверстий при более низкой температуре увеличивается.

* Матричный. Матричные принтеры, в отличие от лазерных и струйных, не формируют страницу документа. Они работают в основном с потоком ASCII-символов и, следовательно, не требуют большого объёма памяти. Скорость работы матричных принтеров измеряется в символах в секунду, а не в страницах в минуту. Процесс печати матричного принтера предельно прост. Поток данных, исходящих из компьютера, содержит последовательности еаsсаре символов и используется для установки основных параметров принтера, таких как размер страницы и качество печати. Все сложные процессы формирования управляющих кодов принтера выполняются на компьютере. В матричном принтере бумага помещается в вертикальный лоток и перемещается построчно с помощью валиков. Печатающая головка перемещается горизонтально по специальной направляющей и содержит матрицу из металлических игл (чаще всего состоящую из 9 или 24 игл), которые выдавливают изображение на бумаге. Между иглами и бумагой расположена красящая лента, как на печатной машинке. Иглы (через ленту) создают на бумаге ряд небольших точек, формируя таким образом изображение. При печати графических изображений на матричных принтерах невозможно достичь высокого качества, поэтому такие принтеры в основном используются для печати текстовых документов. Матричные принтеры -- это принтеры ударного воздействия (т.е. между головкой принтера и бумагой существует контакт).

Наилучшее качество печати обеспечивают лазерные принтеры, за ними следуют струйные, а затем матричные. Характеристики принтеров схожи с характеристиками мониторов:

1) Разрешающая способность. Разрешающая способность принтера исчисляется в точках на дюйм, сокращенно dpi. Средний показатель струйного принтера -- 600 dpi, что же касается лазерного, то здесь может доходить и до 1200 -- в зависимости от модели.

2) Способность цветной фотопечати фотографического качества (фотопечать) -- речь здесь идет о струйных принтерах. Для этой задачи предусмотрен специальный фото картридж. А так же возможность печати на специальной бумаге для фотографических отпечатков. Качество печати в этом случае повышается в несколько раз.

3) Способ подачи бумаги. Большинство современных принтеров предусмотрительно оборудовано автоподатчиком бумаги. Можете поместить в приемник сразу несколько десятков: принтер сам будет брать листы по мере надобности. Вертикальная подача - бумага загружается сверху. Горизонтальная подача -- бумага кладется на специальный лоток внизу.

Глава 4. Плоттер

Задача вывода информации, представленной в графической форме, возникла одновременно с появлением вычислительных, и её решение - одна из основных целей вычислительных средств, применяемых для автоматизации проектирования. Устройства, выполняющие функции вывода графической информации на бумажный и некоторые другие носителей, называются графопостроителями или плоттерами (от англ. plotter).

Перьевые плоттеры

Перьевые плоттеры - это электромеханические устройства векторного типа. На него традиционно выводят графические изображения, различные векторные программные системы типа AutoCAD. Перьевые плоттеры создают изображение при помощи пишущих элементов, обобщенно называемых перьями, хотя имеется несколько видов таких элементов, отличающихся друг от друга используемым видом жидкого красителя. Пишущие элементы бывают одноразовые и многоразовые (допускающие перезарядку). Перо крепится в держателе пишущего узла, который имеет одну или две степени свободы перемещения.

Существует два типа перьевых плоттеров: планшетные, в которых бумага неподвижна, а перо перемещается по всей плоскости изображения, и барабанные, в которых перо перемещается вдоль одной оси координат, а бумага - вдоль другой за счёт захвата транспортным валом. Перемещения выполняются при помощи шаговых или линейных электродвигателей, создающих довольно большой шум. Хотя точность вывода информации барабанными плоттерами несколько ниже, чем планшетными, она удовлетворяет требованиям большинства задач. Эти плоттеры более компактны и могут отрезать от рулона лист необходимого размера автоматически (перьевые плоттеры формата А3 обычно планшетные).

Отличительной особенностью перьевых плоттеров являются высокое качество получаемого изображения и хорошая цветопередача при использовании цветных пишущих элементов. К сожалению, скорость вывода информации в них невысока, несмотря на более быструю механику и попытки оптимизации процедуры рисования.

Струйные плоттеры

Струйная технология создания изображения известна с 70-х годов, но истинный её прорыв стал возможен только с разработкой фирмой Canon технологии создания реактивного пузырька (Bubblejet) - направленного распыления чернил на бумагу при помощи сотен мельчайших форсунок одноразовой печатающей головки. Каждой форсунке соответствует свой микроскопический нагревательный элемент (терморезистор), который мгновенно (за 7-10 мкс) нагревается под воздействием электрического импульса. Чернила закипают, и пары создают пузырек, который выталкивает из форсунки каплю чернил. Когда импульс кончается, терморезистор быстро остывает, а пузырек исчезает.

Печатающие головки могут быть "цветными" и иметь соответствующее число групп форсунок. Для создания полноценного изображения используется стандартная для полиграфии цветовая схема CMYK, использующая четыре цвета: Cyan - голубой, Magenta - пурпурный, Yellow - жёлтый и Black - чёрный. Сложные цвета образуются смешением основных, причем получение оттенков различных цветов достигается путём сгущения или разрежения точек соответствующего цвета во фрагменте изображения.

Струйная технология имеет ряд достоинств. Сюда можно отнести простоту реализации, высокое разрешение, низкую потребляемую мощность и относительно высокую скорость печати. Приемлемая цена, высокое качество и большие возможности делают струйные плоттеры серьёзным конкурентом перьевых устройств, однако невысокая скорость вывода графической информации и выцветание со временем полученного цветного изображения без принятия специальных мер ограничивает их применение.

Электростатические плоттеры

Электростатическая технология основывается на создании скрытого электрического изображения на поверхности носителя - специальной электростатической бумаги, рабочая поверхность которой покрыта тонким слоем диэлектрика, а основа пропитана гидрофильными солями для обеспечения требуемых влажности и электропроводности. Потенциальный рельеф формируется при осаждении на поверхность диэлектрика свободных зарядов, образующихся при возбуждении тончайших электродов записывающей головки высоковольтными импульсами напряжения. Когда бумага проходит через проявляющий узел с жидким намагниченным тонером, частицы тонера оседают на заряженных участках бумаги. Полная цветовая гамма получается за четыре цикла создания скрытого изображения и прохода носителя через четыре проявляющих узла с соответствующими тонерами.

Электростатические плоттеры можно было бы считать идеальными устройствами, если бы не необходимость поддержания стабильных температуры и влажности в помещении, необходимость тщательного обслуживания и их высокая стоимость, в связи, с чем их приобретают пользователи, имеющие оправданно высокие требования к производительности и качеству. Для достижения максимальной эффективности электростатические плоттеры обычно работают как сетевые устройства, для чего снабжены адаптерами сетевого интерфейса. Немаловажны также высокая устойчивость изображения к воздействию ультрафиолетовых лучей и невысокая стоимость электростатической бумаги.

Плоттеры прямого вывода изображения

Изображение в таких плоттерах создаётся на специальной термобумаге (бумаге, пропитанной теплочувствительным веществом). Термобумага, которая обычно подаётся с рулона, движется вдоль "гребёнки" и меняет цвет в местах нагрева. Изображение получается высококачественным (разрешение до 800 dpi (dots per inch - точка/дюйм)), но только монохромным.

Учитывая их высокую надежность, производительность и низкие эксплуатационные затраты, плоттеры прямого вывода изображения применяют в крупных проектных организациях для вывода проверочных копий.

Плоттеры на основе термопередачи

Отличие этих плоттеров от плоттеров прямого вывода изображения состоит в том, что в них между термонагревателями и бумагой размещается "донорный цветоноситель" - тонкая, толщиной 5-10 мкм, лента, обращённая к бумаге красящим слоем, выполненным на восковой основе с низкой (менее 100° С) температурой плавления.

На донорной ленте последовательно нанесены области каждого из основных цветов размером, соответствующим листу используемого формата. В процессе вывода информации бумажный лист с наложенной на него донорной лентой проходит под печатающей головкой, которая состоит из тысяч мельчайших нагревательных элементов. Воск в местах нагрева расплавляется, и пигмент остается на листе. За один проход наносится один цвет. Её изображение получается за четыре прохода. Таким образом, на каждый лист цветного изображения затрачивается в четыре раза больше красящей ленты, чем на лист монохромного.

Ввиду дороговизны каждого отпечатка эти плоттеры используются в составе средств автоматизированного проектирования для высококачественного вывода объектов трехмерного моделирования, в системах картографии, и рекламными агентствами для вывода цветопроб плакатов и транспарантов для красочных презентаций.

Лазерные (светодиодные) плоттеры

Эти плоттеры базируются на электрографической технологии, в основу которой положены физические процессы внутреннего фотоэффекта в светочувствительных полупроводниковых слоях селеносодержащих материалов и силовое воздействие электростатического поля. Промежуточный носитель изображения (вращающийся селеновый барабан) в темноте может быть заряжен до потенциала в сотни вольт. Луч света снимает этот заряд, создавая скрытое электростатическое изображение, которое притягивает намагниченный мелкодисперсный тонер, переносимый затем механическим путём на бумагу. После этого бумага с нанесенным тонером проходит через нагреватель, в результате чего частицы тонера запекаются, создавая изображение.

Лазерные плоттеры ввиду высокого быстродействия (лист формата А1 выводится менее чем за полминуты) удобно использовать как сетевые устройства, и они имеют в стандартной комплектации адаптер сетевого интерфейса. Не менее важно и то, что эти плоттеры могут работать на обычной бумаги, что сокращает эксплуатационные затраты.

Глава 5. Проектор

Проектор -- световой прибор, перераспределяющий свет лампы с концентрацией светового потока на поверхности малого размера или в малом объёме. Основным элементом любого проектора является лампа, свет которой, проходя через определенные элементы попадает на экран и формирует таким образом картинку. В зависимости от того через какие элементы проходит свет от лампы проекторы делят на LCD и DLP (микрозеркальные). К преимуществам жидкокристаллических проекторов относят менее негативное влияние на зрение, а также компактность. Их недостатком является недостаточно насыщенный чёрный цвет (обладатели LCD мониторов поймут, о чём идёт речь). Достоинством микрозеркальных проекторов является более качественная картинка, а главным их недостатком принято считать утомляемость зрения при очень долгом просмотре.

Как и любое техническое устройство, проекторы имеют характеристики, на которые следует обратить внимание в первую очередь. Во-первых, это так называемое «базовое графическое разрешение». Оно обозначается двумя числами, отражающими число точек по горизонтали и вертикали. Как и у мониторов, разрешение бывает 800х600, 1024х768 и т.д. вплоть до 1600х1200. Разумеется, чем выше разрешение, тем лучше будет качество картинки. Для домашнего проектора, основной задачей которого является просмотр фильмов, вполне достаточно будет разрешения 800х600. Это обусловлено тем, что фильмы, рассчитанные на просмотр на экране телевизора, имеют еще меньшее разрешение, так что 800х600 - уже вполне достаточно. Во-вторых - яркость проектора. Чем ярче проектор - тем лучше. При слишком низкой яркости для комфортного просмотра может потребоваться полное затемнение комнаты. А яркости в 1000 люмен (люмен - единица измерения яркости) будет вполне достаточно для домашних условий, меньшие значения сегодня уже практически не встречаются. При этом надо учитывать условия эксплуатации проектора. Если он будет установлен в отдельной комнате с возможностью полного затемнения, то такой параметр как яркость не является слишком важным. Если же проектор планируется использовать в жилой комнате, где полной темноты добиться трудно, то на такой параметр как яркость следует обратить внимание. В-третьих - контрастность проектора. При низком показателе контрастности тёмные сцены в фильмах могут быть просто не видны. Контрастность домашнего видеопроектора должна быть в пределах от 1000:1 до 2000:1.

Второстепенные характеристики

Если три описанных выше характеристики являются основными, и при выборе проектора на них следует обращать внимание в первую очередь, то другие характеристики не столь значимы, но стоит учитывать и их. К таким характеристикам относятся:

1) Возможность геометрической коррекции изображения. Как правило, проектор сложно установить точно в центральной оси экрана. В связи с этим изображение на экране может иметь неправильную форму (в виде трапеции). Большинство современных видеопроекторов имеют возможность геометрической коррекции изображения.

2) Срок службы лампы. В настоящее время видеопроекторы оснащаются долговечными лампами, со сроком службы 2000 - 4000 часов. Но нужно учесть, что замена лампы дороговато обойдется.

3) Средства управления проектором. Обычно видеопроекторы комплектуются пультом дистанционного управления. Некоторые проекторы имеют также возможность управления с компьютера.

4) Совместимость с видеостандартами. Хотя современные видеопроекторы являются практически универсальными в плане стандартов видеосигнала, нелишним будет обратить внимание и на этот параметр.

Помимо перечисленных характеристик, есть и ещё некоторые другие. Производители проекторов постоянно совершенствуют свою продукцию, добавляя всё новые и новые возможности, такие как: картинка в картинке, всплывающие подсказки, цифровое масштабирование, цифровое изменение формата (16х9, 3х4) и другие. Выбор проектора в зависимости от этих дополнительных функций - дело вкуса. Кроме этого следует обратить внимание на размеры самого проектора, возможности крепления и другие, которые могут показаться важными.

Глава 6. Колонки

Колонки, или акустическая система - ещё одно устройство вывода информации, которое подключается к компьютеру (с задней части на материнской плате есть гнездо входа) и служит для воспроизведения звуковых эффектов, музыки, фильмов и т. д. В настоящее время имеется два принципа работы акустической системы: активная и пассивная.

Есть мнение, что активная акустика используется по большей части профессионалами, хотя к компьютерам подключается тоже. Звук направляется с dvd проигрывателя через усилитель (ресивер) прямиком на динамики акустической системы. Усиление сигнала звука играет одну из ключевых ролей в этом процессе. Как же может усиливаться звук? Существует два способа. Первый это когда перед подачей на колонки звуковой сигнал попадает в усилитель, а второй - с помощью самой акустической системы, в колонки которой встроен усилитель.

Кроме этого всего конструкция активной акустики позволяет обеспечить обратную связь между усилителем и динамиком. Это позволяет усилителю менять нагрузку на динамик во время максимальной нагрузки и предотвратить поломку последнего. В связи с тем, что усилители и динамики в активных колонках подключены напрямую, достигается максимальная производительность акустической системы. Это обеспечивает очень неплохой звуковой выход при небольших размерах акустики. Активные акустические системы для домашнего использования обычно состоят из сабвуфера и набора из 5 сателлитов. В сабвуфер встроен усилитель, который распределён на шесть колонок.

Но у активных колонок есть минус - невозможность модернизации. Такая акустическая система будет звучать всегда одинаково. Значимость этого факта очень существенна. Заинтересовавшись акустическими системами, покупатель превращается в любителя звуковой техники и старается время от времени улучшать качество звучания своей домашней акустики. Поэтому владельцу активной акустики придётся смириться с качеством выдаваемого с её помощью звука раз и навсегда. Активные колонки стараются сделать изначально высокого уровня.

При работе пассивной акустической системы греется встроенный кроссовер, т.к. он принимает на себя достаточно большую выходную мощность. Производители пытаются избежать этого различными способами, но главное понимать суть этого процесса. Усилитель в достаточной мере нагружает электронику акустической системы, вследствие чего, качество выдаваемого звука, ровно так же как и характеристики пассивных колонок изменяются. Если колонки используются в домашнем кинотеатре, то любитель вряд ли услышит разницу. А вот для профессионала эта разница будет достаточно критичной. Пассивные колонки должны быть немного мощнее, чем усилитель, для того, чтобы в критические моменты справляться с поступающей на них мощностью. В противном случае, когда усилитель мощнее, чем акустика, колонки могут просто выйти из строя. Пассивные акустические системы не могут предоставить усилителю обратной связи, чтобы он подавал меньше мощности, а сам он отслеживать нагрузку тоже не способен.

Несмотря на недостатки, пассивная акустическая система не так уж и плоха. Большинство покупателей акустических систем покупают её для домашнего кинотеатра, компьютера, а дома, как известно очень ценится комфорт и уют. Активная акустика требует подведения к каждой колонке отдельного шнура питания. Так что подключение всех активных колонок в сеть может стать весьма запутанным занятием. Следующий момент является гораздо более важным. Так как все акустические системы делятся на классы, при использовании пассивной акустики, можно со временем модернизировать систему, купив новый усилитель и ресивер. Качество звука хороших пассивных колонок при этом может улучшиться значительно. Поэтому, при выборе пассивной акустики колонки можно брать, как говорится «на вырост».

Заключение

В данной контрольно-курсовой работе была представлена достаточно подробная информация об устройствах вывода информации и о принципах их работы. Работу современного компьютера невозможно представить без оснащения его вышеперечисленными устройствами, так как они оказывают незаменимую помощь при работе пользователя с компьютером, а знание принципов работы этих устройств, обеспечивает более эффективное их пользование.

Список литературы

1) Бакова И.В. Технические средства АСУ. М.,1986.

2) Леонтьев В.П. Энциклопедия “Персональный компьютер”. М., 1993.

3) Макарова Н.В. Информатика (Учебник). М., 1999.

4) Матюшка В.М. Персональный компьютер: диалог и программные средства. М., 1991.

5) Мюллер С. “Ремонт и модернизация ПК”. М., 1998.

6) Фигурнов В.Э. “IBM PC для пользователя”. М., 2000.


Подобные документы

  • Основные виды принтеров. Принцип действия матричных, струйных и лазерных принтеров. Характеристика преимуществ и недостатков струйных и лазерных принтеров. Особенности многофункциональных устройств. Режущие и печатающие плоттеры, сферы их применения.

    реферат [24,3 K], добавлен 12.09.2014

  • Понятие и история возникновения принтеров, процесс их усовершенствования и модификации. Классификация и основные характеристики принтеров, принципы работы печатающего механизма. Отличительные особенности матричных, струйных и лазерных принтеров.

    реферат [19,6 K], добавлен 10.06.2011

  • Характеристика периферийных устройств, преобразующих результаты обработки цифровых машинных кодов в удобную для человека форму. Основные характеристики матричных, струйных, лазерных и термических принтеров, виды плоттеров. Особенности звукового вывода.

    презентация [7,5 M], добавлен 25.09.2012

  • Осуществление вывода из компьютера закодированной информации в виде печатных копий текста или графики посредством принтера. Преимущества и недостатки матричных, струйных и лазерных принтеров, принципы их работы и особенности внутреннего устройства.

    контрольная работа [74,2 K], добавлен 03.10.2011

  • Принтеры - устройства вывода данных из компьютера, преобразующие информационные ASCII-коды в соответствующие им графические символы на бумаге. Особенности классификации принтеров. Общая характеристика матричных, лазерных и струйных видов принтеров.

    реферат [17,4 K], добавлен 10.02.2012

  • Периферийными или внешними устройствами называют устройства, размещенные вне системного блока и задействованные на определенном этапе обработки информации. Характеристики и принцып действия матричных принтеров. Основные характеристики лазерных принтеров.

    курсовая работа [374,6 K], добавлен 14.04.2009

  • История возникновения, виды и особенности работы принтеров. Сравнительный анализ технических характеристик (производительность, качество, скорость работы, стоимость) матричных, струйных, лазерных принтеров и МФУ, выпущенных разными производителями.

    курсовая работа [75,9 K], добавлен 27.11.2012

  • Характеристика монитора - устройства для вывода на экран текстовой и графической информации, его основные параметры, принцип работы. Схема электронно-лучевой трубки. Мониторы с теневой маской. Особенности и преимущества жидкокристаллических мониторов.

    презентация [705,0 K], добавлен 10.08.2013

  • Основные виды мониторов: жидкокристаллические, плазменные, пластиковые, с электронно-лучевой трубкой. Гарантия безопасной работы пользователям компьютеров. Классификация видеопамяти. Характеристика разрешающих особенностей монитора, его настройки.

    презентация [12,4 M], добавлен 06.12.2011

  • Мониторы на электронно-лучевых трубках. Типы матриц жидкокристаллического монитора. Проекторы на основе DLP- технологии. Принцип действия лазерных проекторов. Типы видеокарт компьютера. Интерфейсы программирования приложений. Виды видео интерфейсов.

    курсовая работа [1,3 M], добавлен 25.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.