Технические средства реализации информационных процессов

Архитектура и структура персонального компьютера. Основные тенденции развития аппаратного обеспечения компьютера. Магистрально-модульный принцип архитектуры персональных компьютеров. Устройство персонального компьютера. Поколения ЭВМ и их характеристики.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 04.03.2009
Размер файла 521,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3

Курсовая работа

Технические средства реализации информационных процессов

Оглавление

1. Технические средства

2. Архитектура и структура персонального компьютера

2.1 Центральный процессор

2.2 Память

2.2.1 Внутренняя память

2.2.2 Внешняя память

3. Основные тенденции развития аппаратного обеспечения компьютера

4. Магистрально-модульный принцип архитектуры персональных компьютеров

4.1 Магистрально-модульный принцип построения компьютера

4.2 Частота процессора системной шины и шин периферийных устройств

5. Устройство персонального компьютера

6. Поколения ЭВМ и их основные характеристики

Литература

1. Технические средства

Совокупность устройств, предназначенных для автоматической или автоматизированной обработки данных, называется вычислительной техникой [7].

Конкретный набор, взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка, называется вычислительной системой.

Центральным устройством большинства вычислительных систем является компьютер.

Компьютер - это электронный прибор, предназначенный для автоматизации создания, обработки, хранения и транспортировки данных. Состав вычислительной системы называется конфигурацией. Архитектура ЭВМ - общее описание структуры и функций ЭВМ, ее ресурсов.

В это описание входит:

- общая конфигурация основных устройств;

- основные возможности и характеристики устройств;

- способы взаимосвязи основных устройств компьютера.

Ресурсы ЭВМ - средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени. К ресурсам ЭВМ традиционно относят объем доступной памяти, процессорное время и др. К центральным (системным) устройствам компьютера относят, прежде всего, центральный процессор, оперативную память, системную магистраль.

Периферийными устройствами компьютера являются: дисплей, клавиатура, манипуляторы - мышь, джойстик, световое перо и т.п., винчестер, дисководы для гибких и компакт-дисков, принтер, плоттер, сканер, модем и пр.

Порт - устройство, через которое периферийные устройства подключаются к системной магистрали.

При разработке принципов архитектуры компьютеров широко используется идея о разделении отдельных операций процесса решения задачи (процесса вычислений) между отдельными "специализированными" устройствами.

Когда Чарльз Бэббидж разрабатывал аналитическую счетную машину в 1830-х гг. он предположил, что для успешной работы необходимы как минимум следующие устройства (рис. 4):

- устройство для обработки данных, в котором непосредственно осуществляются вычисления ("мельница");

- устройство для хранения данных ("склад");

- устройство для управления процессом вычислений ("контора").

Рис. 4. Архитектура аналитической счетной машины с точки зрения Ч.Бэббиджа

Разработке Бэббиджа не суждено было воплотиться в действующей модели, но идеи о разделении отдельных операций процесса вычислений между отдельными "специализированными" устройствами получили дальнейшее развитие в принципах архитектуры компьютеров, традиционно называемых принципами фон Неймана (1940-е гг.). Эти принципы таковы [3]:

- принцип программного управления - все устройства работают под управлением программ. Программы состоят из отдельных шагов - команд. Последовательность команд и является программой;

- принцип условного перехода - существует возможность менять последовательность вычислений в зависимости от полученных промежуточных результатов;

- принцип хранимой программы - программы и данные к ним хранятся в одной той же памяти. Команды представляются в числовой форме и хранятся в том же ОЗУ, что и данные для вычислений. Таким образом, команды можно посылать в арифметическое устройство и преобразовывать как обычные числа. Это позволяет создавать программы, способные в процессе вычислений изменять сами себя;

- принцип иерархичности запоминающих устройств - память делится на оперативную (быстрая, небольшого размера) и долговременную (большую, а потому медленную). Наиболее часто используемые данные хранятся в быстром ЗУ сравнительно малой емкости, а более редко используемые в медленном, но гораздо большей емкости;

- принцип двоичного кодирования - вся информация в компьютере хранится и обрабатывается в двоичном коде.

- Начиная с первых ЭВМ (1940-е гг.), реализовывалась схема взаимодействия устройств компьютера, основанная на этих принципах, представленная на рис. 5.

Рис. 5. Схема взаимодействий устройств компьютера согласно архитектуре фон Неймана: УУ - устройство управления; АЛУ - арифметико-логическое устройство.

В современных компьютерах блоки УУ и АЛУ объединены в блок, называемый процессором. В состав процессора, кроме указанных блоков, входят также несколько регистров - специальных небольших областей памяти, куда процессор помещает промежуточные результаты и некоторую другую информацию, необходимую ему в ближайшие такты работы.

Структура компьютера основана на общих логических принципах, позволяющих выделить следующие устройства:

- память, состоящую из пронумерованных ячеек (ОЗУ и ПЗУ);

- процессор, включающий в себя арифметико-логическое устройство (АЛУ) и устройство управления (УУ). Та часть процессора, которая выполняет команды, называется АЛУ, другая его часть, выполняющая функции управления устройствами, называется УУ. Обычно эти 2 устройства выделяются условно, конструктивно они не разделены;

- устройство ввода;

- устройство вывода.

Основу персональных компьютеров составляет находящаяся в системном блоке системная ("материнская") плата, на которой размещены системные (центральные) устройства компьютера - процессор и память (оперативная и постоянная), соединенные между собой системной шиной (информационной магистралью), к которой подсоединяются контроллеры всех периферийных устройств, подключаемых к компьютеру (рис. 6).

Рис. 6. Схема архитектуры персонального компьютера

Примечание. БР - блок регистров; ОЗУ - оперативное запоминающее устройство; ПЗУ - постоянное запоминающее устройство; НЖМД - накопитель на жестком магнитном диске; НГМД - накопитель на гибком магнитном диске; НОД - накопитель на оптическом диске; ГТИ - генератор тактовых импульсов.

Периферийными считаются и клавиатура, и монитор, и винчестер, и дисководы, и модем, и манипуляторы, и сканер, и видеокамера, и т.д. Дополнительные устройства, позволяющие пользователю компьютера слушать музыку, смотреть видеоролики, работать в сети и т.д., подключаются через специальные платы расширения. Невозможна работа компьютера и без таких вспомогательных (с точки зрения процесса обработки информации) устройств, как блок питания, система охлаждения и пр.

Существует несколько разновидностей памяти: оперативная, постоянная, внешняя, кэш, CMOS, регистровая.

Регистровая память представляет собой блок регистров, размещенный внутри процессора. На рисунке показана только кэш-память первого уровня, которую обозначают символами L1. Кэш-память второго уровня (обозначается символами L2) располагается на материнской памяти. Кэш-память третьего уровня (обозначается символами L3) выполняется на быстродействующих микросхемах и размещается на материнской памяти вблизи процессора. Для непрерывной работы CMOS-памяти на материнской плате устанавливается малогабаритный аккумулятор или батарея питания [2].

2. Архитектура и структура персонального компьютера

При рассмотрении компьютерных устройств принято различать их архитектуру и структуру.

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Наиболее распространены следующие архитектуры:

- Классическая архитектура (архитектура фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа. Это однопроцессорный компьютер.

К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной. Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Периферийные устройства подключаются к аппаратуре компьютера через специальные контроллеры - устройства управления периферийными устройствами.

Контроллер - устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

- Многопроцессорная архитектура. Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи. Структура такой машины, имеющей общую оперативную память и несколько процессоров, представлена на рисунке:

Архитектура многопроцессорного компьютера

- Многомашинная вычислительная система. Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко.

Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.

Преимущество в быстродействии многопроцессорных и многомашинных вычислительных систем перед однопроцессорными очевидно.

- Архитектура с параллельными процессорами. Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе - то есть по одному потоку команд.

Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных. Структура таких компьютеров представлена на рисунке

Архитектура с параллельными процессорами

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и такие архитектурные решения, которые радикально отличаются от рассмотренных выше.

2.1 Центральный процессор

Центральный процессор (CPU, от англ. Central Processing Unit) - основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера.

Центральный процессор содержит в себе: арифметико-логическое устройство; шины данных и шины адресов; регистры; счетчики команд; кэш - очень быструю память малого объема; математический сопроцессор чисел с плавающей точкой.

Современные процессоры выполняются в виде микропроцессоров, которые физически представляют собой интегральную схему - тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.

В вычислительной системе может быть несколько параллельно работающих процессоров; такие системы называются многопроцессорными.

2.2 Память

Память компьютера построена из двоичных запоминающих элементов - битов, объединенных в группы по 8 битов, которые называются байтами. Все байты пронумерованы. Номер байта называется его адресом.

Байты могут объединяться в ячейки, которые называются также словами. Для каждого компьютера характерна определенная длина слова - два, четыре или восемь байтов. Это не исключает использования ячеек памяти другой длины (например, полуслово, двойное слово).

В одном машинном слове может быть представлено либо одно целое число, либо одна команда. Допускаются переменные форматы представления информации.

Разбиение памяти на слова для четырехбайтовых компьютеров представлено в таблице:

Байт 0

Байт 1

Байт 2

Байт 3

Байт 4

Байт 5

Байт 6

Байт 7

ПОЛУСЛОВО

ПОЛУСЛОВО

ПОЛУСЛОВО

ПОЛУСЛОВО

СЛОВО

СЛОВО

ДВОЙНОЕ СЛОВО

Широко используются и более крупные производные единицы объема памяти: Килобайт, Мегабайт, Гигабайт, а также, в последнее время, Терабайт и Петабайт.

Современные компьютеры имеют много разнообразных запоминающих устройств, которые сильно отличаются между собой по назначению, временным характеристикам, объёму хранимой информации и стоимости хранения одинакового объёма информации.

Различают два основных вида памяти - внутреннюю и внешнюю.

2.2.1 Внутренняя память

В состав внутренней памяти входят оперативная память, кэш-память и специальная память.

- Оперативная память

Оперативная память (ОЗУ, англ. RAM, Random Access Memory - память с произвольным доступом) - это быстрое запоминающее устройство не очень большого объёма, непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных, обрабатываемых этими программами.

Оперативная память используется только для временного хранения данных и программ, так как, когда машина выключается, все, что находилось в ОЗУ, пропадает. Доступ к элементам оперативной памяти прямой - это означает, что каждый байт памяти имеет свой индивидуальный адрес.

Обычно ОЗУ исполняется из интегральных микросхем памяти DRAM (Dynamic RAM - динамическое ОЗУ). Микросхемы DRAM работают медленнее, чем другие разновидности памяти, но стоят дешевле.

Каждый информационный бит в DRAM запоминается в виде электрического заряда крохотного конденсатора, образованного в структуре полупроводникового кристалла. Из-за токов утечки такие конденсаторы быстро разряжаются, и их периодически (примерно каждые 2 миллисекунды) подзаряжают специальные устройства. Этот процесс называется регенерацией памяти (Refresh Memory).

Современные микросхемы имеют ёмкость 1-16 Мбит и более. Они устанавливаются в корпуса и собираются в модули памяти.

Наиболее распространены модули типа SIMM (Single In-Line Memory Module - модуль памяти с однорядным расположением микросхем).

В модуле SIMM элементы памяти собраны на маленькой печатной плате длиной около 10 см. Ёмкость таких модулей неодинаковая - 256 Кбайт, 1, 2, 4, 8, 16, 32 и 64 Мбайта. Различные модули SIMM могут иметь разное число микросхем и разное число контактов. Важная характеристика модулей памяти - время доступа к данным, которое обычно составляет 60 - 80 наносекунд.

- Кэш-память

Кэш (англ. cache - тайник), или сверхоперативная память - очень быстрое ЗУ небольшого объёма, которое используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью.

Кэш-памятью управляет специальное устройство - контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как "попадания", так и "промахи". В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.

Кэш-память реализуется на микросхемах статической памяти SRAM (Static RAM), более быстродействующих, дорогих и малоёмких, чем DRAM.

Современные микропроцессоры имеют встроенную кэш-память, так называемый кэш первого уровня, имеющий объем порядка десятков килобайт. Кэш второго уровня находится либо в кристалле процессора, либо в том же узле, что м процессор, хотя и исполняется на отдельном кристалле. Кэш-память первого и второго уровней работает на частоте, согласованной с частотой ядра процессора. Ёмкость кэш-памяти второго уровня от 64 Кбайт до 256 Кбайт и выше. Кэш третьего уровня может достигать нескольких мегабайт, работает на частоте материнской платы.

- Специальная память

К устройствам специальной памяти относятся постоянная память (ROM), перепрограммируемая постоянная память (Flash Memory), память CMOS RAM, питаемая от батарейки, видеопамять и некоторые другие виды памяти.

Постоянная память (ПЗУ, англ. ROM, Read Only Memory - память только для чтения) - энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом «зашивается» в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.

Перепрограммируемая постоянная память (Flash Memory) - энергонезависимая память, допускающая многократную перезапись своего содержимого с дискеты.

Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.

Важнейшая микросхема постоянной или Flash-памяти - модуль BIOS.

BIOS (Basic Input/Output System - базовая система ввода-вывода) - совокупность программ, предназначенных для:

- автоматического тестирования устройств после включения питания компьютера;

- загрузки операционной системы в оперативную память.

Роль BIOS двоякая: с одной стороны это неотъемлемый элемент аппаратуры (Hardware), а с другой строны - важный модуль любой операционной системы (Software).

Разновидность постоянного ЗУ - CMOS RAM.

CMOS RAM - это память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы.

Содержимое CMOS изменяется специальной программой Setup, находящейся в BIOS (англ. Set-up - устанавливать, читается "сетап").

Для хранения графической информации используется видеопамять.

Видеопамять (VRAM) - разновидность оперативного ЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам - процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.

2.2.2 Внешняя память

Внешняя память (ВЗУ) предназначена для длительного хранения программ и данных, и целостность её содержимого не зависит от того, включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке:

В состав внешней памяти компьютера входят:

- накопители на жёстких магнитных дисках;

- накопители на гибких магнитных дисках;

- накопители на компакт-дисках;

- накопители на магнито-оптических компакт-дисках;

- накопители на магнитной ленте (стримеры);

- мобильные носители (USB Flash Drive, Flash-карты, мобильные жесткие диски) и др.

Накопители на гибких магнитных дисках

Гибкий диск, дискета (англ. floppy disk) - устройство для хранения небольших объёмов информации, представляющее собой гибкий пластиковый диск в защитной оболочке. Используется для переноса данных с одного компьютера на другой и для распространения программного обеспечения.

Дискета состоит из круглой полимерной подложки, покрытой с обеих сторон магнитным окислом и помещенной в пластиковую упаковку, на внутреннюю поверхность которой нанесено очищающее покрытие. В упаковке сделаны с двух сторон радиальные прорези, через которые головки считывания/записи накопителя получают доступ к диску.

Способ записи двоичной информации на магнитной среде называется магнитным кодированием. Он заключается в том, что магнитные домены в среде выстраиваются вдоль дорожек в направлении приложенного магнитного поля своими северными и южными полюсами. Обычно устанавливается однозначное соответствие между двоичной информацией и ориентацией магнитных доменов.

Информация записывается по концентрическим дорожкам (трекам), которые делятся на секторы. Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Ёмкость сектора постоянна и составляет 512 байтов.

На дискете можно хранить от 360 Килобайт до 2,88 Мегабайт информации.

В наибольшее распространение получили дискеты со следующими характеристиками: диаметр 3,5 дюйма (89 мм), ёмкость 1,44 Мбайт, число дорожек 80, количество секторов на дорожках 18.

Дискета устанавливается в накопитель на гибких магнитных дисках (англ. floppy-disk drive), автоматически в нем фиксируется, после чего механизм накопителя раскручивается до частоты вращения 360 мин-1. В накопителе вращается сама дискета, магнитные головки остаются неподвижными. Дискета вращается только при обращении к ней.

Накопитель связан с процессором через контроллер гибких дисков.

Накопители на жестких магнитных дисках

Если гибкие диски - это средство переноса данных между компьютерами, то жесткий диск - информационный склад компьютера.

Накопитель на жёстких магнитных дисках (англ. HDD - Hard Disk Drive) или винчестерский накопитель - это наиболее массовое запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины - платтеры, обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации - программ и данных.

Как и у дискеты, рабочие поверхности платтеров разделены на кольцевые концентрические дорожки, а дорожки - на секторы. Головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметически закрытый корпус, называемый модулем данных. При установке модуля данных на дисковод он автоматически соединяется с системой, подкачивающей очищенный охлажденный воздух.

Поверхность платтера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении платтера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

Винчестерские накопители имеют очень большую ёмкость: от сотен Мегабайт до сотен Гбайт. У современных моделей скорость вращения шпинделя достигает 7200 оборотов в минуту, среднее время поиска данных - 10 мс, максимальная скорость передачи данных до 40 Мбайт/с.

В отличие от дискеты, винчестерский диск вращается непрерывно.

Винчестерский накопитель связан с процессором через контроллер жесткого диска.

Все современные накопители снабжаются встроенным кэшем (64 Кбайт и более), который существенно повышает их производительность.

Накопители на компакт-дисках

CD-ROM состоит из прозрачной полимерной основы диаметром 12 см и толщиной 1,2 мм. Одна сторона покрыта тонким алюминиевым слоем, защищенным от повреждений слоем лака. Двоичная информация представляется последовательным чередованием углублений (pits - ямки) и основного слоя (land - земля).

На одном дюйме (2,54 см) по радиусу диска размещается 16 тысяч дорожек с информацией. Для сравнения - на дюйме по радиусу дискеты всего лишь 96 дорожек. Ёмкость CD до 780 Мбайт. Информация заносится на диск на заводе и не может быть изменена.

Достоинства CD-ROM:

- при малых физических размерах CD-ROM обладают высокой информационной ёмкостью, что позволяет использовать их в справочных системах и в учебных комплексах с богатым иллюстративным материалом; один CD, имея размеры примерно дискеты, по информационному объёму равен почти 500 таким дискетам;

- считывание информации с CD происходит с высокой скоростью, сравнимой со скоростью работы винчестера;

- CD просты и удобны в работе, практически не изнашиваются;

- CD не могут быть поражены вирусами;

- на CD-ROM невозможно случайно стереть информацию;

- стоимость хранения данных (в расчете на 1 Мбайт) низкая.

В отличие от магнитных дисков, компакт-диски имеют не множество кольцевых дорожек, а одну - спиральную, как у грампластинок. В связи с этим, угловая скорость вращения диска не постоянна. Она линейно уменьшается в процессе продвижения читающей магнитной головки к центру диска.

Для работы с CD ROM нужно подключить к компьютеру накопитель CD-ROM (CD-ROM Drive). Накопители CD-ROM называют приводами CD-ROM.

Записывающие оптические и магнитооптические накопители

- Накопитель на магнито-оптических компакт-дисках СD-MO (Compact Disk-Magneto Optical). Диски СD-MO можно многократно использовать для записи, но они не читаются на традиционных дисководах CD-ROM. Ёмкость от 128 Мбайт до 2,6 Гбайт.

- Записывающий накопитель CD-R (Compact Disk Recordable) способен, наряду с прочтением обычных компакт-дисков, записывать информацию на специальные оптические диски. Ёмкость 650 Мбайт.

- Накопитель WARM (Write And Read Many times), позволяет производить многократную запись и считывание.

- Накопитель WORM (Write Once, Read Many times), позволяет производить однократную запись и многократное считывание.

Накопители на магнитной ленте (стримеры) и накопители на сменных дисках

Стример (англ. tape streamer) - устройство для резервного копирования больших объёмов информации. В качестве носителя здесь применяются кассеты с магнитной лентой ёмкостью 1 - 2 Гбайта и больше.

Стримеры позволяют записать на небольшую кассету с магнитной лентой огромное количество информации. Встроенные в стример средства аппаратного сжатия позволяют автоматически уплотнять информацию перед её записью и восстанавливать после считывания, что увеличивает объём сохраняемой информации. Недостатком стримеров является их сравнительно низкая скорость записи, поиска и считывания информации.

В последнее время всё шире используются накопители на сменных дисках, которые позволяют не только увеличивать объём хранимой информации, но и переносить информацию между компьютерами. Объём сменных дисков - от сотен Мбайт до нескольких Гигабайт.

DVD (Digital Video Disc)

DVD-стандарт был реализован с учетом накопленного опыта по производству и распространению компакт-дисков и CD-устройств, требований и рекомендаций производителей компьютерной и киноиндустрии, а также предварительных разработок различных компаний. Новый стандарт базируется на следующих основных принципах:

- большая емкость и возможность ее дальнейшего наращивания;

- обратная совместимость с существующими CD;

- единая файловая система для всех приложений;

- единый интерактивный стандарт для компьютера и телевидения;

- надежность хранения данных и их последующего считывания;

- высокая производительность при записи и считывании данных как для последовательного, так и для произвольного доступа к данным;

- доступная цена.

Внешне конструкция DVD аналогична устройству традиционного компакт-диска - с теми же геометрическими размерами (диаметр - 120 мм, толщина - 1,2 мм), но содержательно она значительно сложнее. Для увеличения объема данных при сохранении тех же геометрических размеров диска, что и CD, были предприняты следующие шаги:

- уменьшение размеров углублений (питов) на DVD до 0,4 мкм;

- уменьшение расстояния между соседними дорожками (треками) до 0,74 мкм;

- размещение несущих информацию слоев в несколько этажей (до 8 пар, и это еще не предел).

DVD может быть как односторонним, так и двухсторонним. Конструктивно двухсторонний диск представляет собой два склеенных нерабочими поверхностями диска толщиной 0,6 мм каждый (модель, предложенная компанией Toshiba). Таким образом, емкость одностороннего однослойного диска в семь раз, а двухстороннего двухслойного - в двадцать шесть раз превышает емкость стандартного компакт-диска.

Flash-память

Электронная Flash-память позволяет переносить информацию с одной ЭВМ на другую. Flash-память представляет собой микросхему, которая подключается к компьютеру через порт. Отсутствие механических деталей (а значит высокая надежность), малые габариты и большие объемы памяти (от нескольких сотен мегабайт до нескольких гигабайт) делает этот вид памяти весьма популярным среди пользователей. Безусловным достоинством Flash-памяти является её энергонезависимость. Записанная информация может храниться в течение ста лет.

Технология Blu-Ray

Эволюция в области компьютерных технологий происходит быстрее, чем в остальных технических отраслях. С течением времени период, за который мощность компьютера удваивается, становится все меньше и меньше. До 1 ГГц процессоры шли 22 года, а до 2 ГГц - всего лишь полтора. Объем винчестера также очень быстро растет, 180-200 и более гигабайт - это уже обыденность. Миниатюризация, увеличение быстродействия, скорости передачи данных, увеличение плотности записи - вот что мы слышим каждый день. Объемы, скорости, частоты - все это удваивается, учетверяется, удесятеряется и все это никого уже не удивляет. Но в области сменных носителей информации до последнего времени царил, казалось бы, полный застой. В наш насыщенный информацией век объемы 650 Мб, 700 Мб, 4,7 Гб и т.д. становятся явно недостаточными.

Согласно объявленной спецификации Blu-Ray Disc - перезаписываемый диск следующего поколения со стандартным CD/DVD размером 12 см с максимальной емкостью записи на один слой и одну сторону до 27 Гб. Назвать Blu-Ray принципиально новым форматом нельзя - это скорее эволюция формата DVD. Как следует из названия в Blu-Ray для записи и воспроизведения диска вместо красного лазера, который используется в DVD и CD-ROM, применен синий лазер (blue-violet laser). У синего лазера длина волны составляет 405 нанометров, что значительно меньше длины волны красного лазера (650 нм). Меньшая длина волны - соответственно меньшая интерференция отраженного луча, соответственно можно сделать толщину дорожку данных тоньше, что приводит к значительному увеличению емкости носителя. Толщина дорожки у Blu-Ray диска в два раза меньше, чем у DVD. Единственно, что внушает опасение - тот факт, что энергетика синего лазера выше, чем у красного, что должно приводить к значительному разогреву поверхности диска. По-видимому, Blu-Ray приводы потребуют мощного охлаждения. Покрытие Blu-Ray на которое записываются данные (optical transmittance protection layer) очень тонкое - 0.1 мм. Из этого факта можно сделать 3 вывода. Первое - чем тоньше слой, тем меньше рассеяние отраженного луча и больше данных можно вместить на квадратный дюйм, то есть тонкий слой - это необходимость для достижения большой емкости диска. Второе - настолько тонкий слой позволит без проблем сделать диск многослойным (по крайне мере двухслойным, как DVD), так как уменьшается рефракция луча отраженного от более глубокого слоя. Третье - настолько тонкий слой легко повредить, следовательно Blu-Ray Disc потребует защиты, то есть будет упакован в пластиковую оболочку, наподобие MiniDisk от Sony. Последний факт, к сожалению, говоря о том, что цены на Blu-Ray приводы будут существенно выше, чем на DVD, так как, если бы Blu-Ray Disc оставался бы диском без упаковки, то производители смогли бы использовать корпуса и механику от DVD-приводов без переделки, сменив лишь лазер и декодирующую микросхему, а так придется начинать практически с нуля.

Возможен компромиссный вариант, когда односторонние диски относительно малой емкости (23-27 ГБ) будут производиться без упаковки и иметь соответствующие приводы, мало отличающиеся от DVD-приводов по внешнему виду и по цене, такие объемы для домашних мультимедийных компьютеров на первое время более чем достаточны, так как объем Blu-Ray диска в несколько раз превосходит DVD.

Достоинства Blu-Ray Disc состоят не только в огромной емкости, но и в том, что его разрабатывали и собираются производить более десяти крупнейших электронных корпораций, что должно застраховать пользователей от проблем несовместимости проводов. Недостатки Blu-Ray не очевидны и компенсируются достоинствами. Это предполагаемая высокая цена приводов и дисков и проблемы обратной совместимости с предыдущими носителями информации.

3. Основные тенденции развития аппаратного обеспечения компьютера

Развитие ЭВМ с момента их появления происходит быстрыми темпами. Модернизируются существующие устройства и разрабатываются новые, появляются более совершенные конструктивные решения для обеспечения взаимосвязи отдельных устройств между собой - т.е. архитектура ЭВМ постоянно совершенствуется. На смену большим ЭВМ пришли мини-ЭВМ, а затем и персональные компьютеры. Сохраняя общие принципы архитектуры, каждая новая модель компьютеров обладает определенными отличительными признаками.

Интеграция устройств. Например, если в первых моделях математический сопроцессор, кэш-память, таймер и ряд других устройств изготавливались и размещались на материнской плате как отдельные устройства, то в настоящее время они все чаще объединяются в одном кристалле с центральным процессором.

Расширение спектра периферийных устройств. В настоящее время пользователю предлагаются самые различные модели принтеров, дисплеев, клавиатур, несколько десятков видов манипуляторов, сенсорные системы и т.д.

Унификация портов - переход от специализированных портов для разных устройств (например, LPT - Line PrinTer - для подключения принтера и COM - communicate - для модема и т.п.) к универсальным портам - USB - universal serial bus (универсальная последовательная шина). К одному USB-порту можно подключить до 127 устройств разного назначения.

Унификация двоичного кодирования символов - переход от множества однобайтных таблиц кодировок (ASCII, КОИ-8,CP1251 и т.п.) к единой двухбайтной таблице Unicode, содержащей коды 216 = 65536 различных символов.

4. Магистрально-модульный принцип архитектуры персональных компьютеров

4.1 Магистрально-модульный принцип построения компьютера

Под архитектурой компьютера понимается его логическая организация, структура, ресурсы, т. е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени. Архитектура современных ПК основана на магистрально-модульном принципе, который позволяет потребителю самому комплектовать нужную ему конфигурацию и производить по необходимости ее модернизацию. Модульная организация системы опирается на магистральный (шинный) принцип обмена информации. В соответствии с этим принципом центральные устройства компьютера взаимодействуют между собой (обмениваются информацией) и с периферийными устройствами через системную магистраль (рис. 7). Центральные устройства подсоединены к шине непосредственно, а периферийные - через устройства сопряжения (контроллеры или адаптеры).

Рис. 7. Магистрально-модульное устройство компьютера

Магистраль или системная шина - это набор электронных линий, связывающих воедино по адресации памяти, передачи данных и служебных сигналов процессор, память и периферийные устройства.

Магистраль предназначена для передачи данных, адресов, команд управления, и потому включает в себя 3 многоразрядные шины: шину данных, шину адресов и шину управления, представляющие собой многопроводные линии.

Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, а на программном обеспечивается драйверами. Контроллер принимает сигнал от процессора и дешифрует его, чтобы соответствующее устройство смогло принять этот сигнал и отреагировать на него. За реакцию устройства процессор не отвечает - что функция контроллера. Внешние устройства ЭВМ заменяемы, и набор таких модулей произволен.

Данные по шине данных могут передаваться как от процессора к какому-либо устройству, так и в обратную сторону, т.е. шина данных является двунаправленной. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.

Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые могут обрабатываться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.

К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.

Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для ОЗУ - код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы передаются в одном направлении, от процессора к устройствам, т.е. эта шина является однонаправленной.

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении - от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

, где I - разрядность шины адреса.

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 64 бита. Таким образом, максимально возможное количество адресуемых ячеек памяти равно: .

По шине управления передаются сигналы, определяющие характер обмена информацией, и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией. Сигналы управления показывают, какую операцию - считывание или запись информации из памяти - нужно производить, синхронизируют обмен информацией между устройствами и так далее.

Внешние устройства к шинам подключаются посредством интерфейса. Под интерфейсом понимают совокупность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором. В случае несовместимости интерфейсов (например, интерфейс системной шины и интерфейс винчестера) используют контроллеры.

Чтобы устройства, входящие в состав компьютера, могли взаимодействовать с центральным процессором, в IBM-совместимых компьютерах предусмотрена система прерываний (Interrupts). Система прерываний позволяет компьютеру приостановить текущее действие и переключиться на другие в ответ на поступивший запрос, например, на нажатие клавиши на клавиатуре. Ведь с одной стороны, желательно, чтобы компьютер был занят возложенной на него работой, а с другой - необходима его мгновенная реакция на любой требующий внимания запрос. Прерывания обеспечивают немедленную реакцию системы.

Персональные компьютеры обычно проектируются на основе принципа открытой архитектуры.

Принцип открытой архитектуры заключается в следующем:

- Регламентируются и стандартизируются только описание принципа действия компьютера и его конфигурация (определенная совокупность аппаратных средств и соединений между ними). Т.о., компьютер можно собирать из отдельных узлов и деталей, разработанных и изготовленных независимыми фирмами-изготовителями.

- Компьютер легко расширяется и модернизируется за счёт наличия внутренних расширительных гнёзд, в которые пользователь может вставлять разнообразные устройства, удовлетворяющие заданному стандарту, и тем самым устанавливать конфигурацию своей машины в соответствии со своими личными предпочтениями.

Для того, чтобы соединить друг с другом различные устройства компьютера, нужно иметь одинаковый интерфейс.

Каждый из функциональных элементов (память, монитор или другое устройство) связан с шиной определённого типа - адресной, управляющей или шиной данных.

Для согласования интерфейсов периферийные устройства подключаются к шине не напрямую, а через свои контроллеры (адаптеры) и порты примерно по такой схеме:

Контроллеры и адаптеры представляют собой наборы электронных цепей, которыми снабжаются устройства компьютера с целью совместимости их интерфейсов. Контроллеры осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора.

Порты устройств представляют собой некие электронные схемы, содержащие один или несколько регистров ввода-вывода и позволяющие подключать периферийные устройства компьютера к внешним шинам микропроцессора. Портами также называют устройства стандартного интерфейса: последовательный, параллельный, игровой порты.

Последовательный порт обменивается данными с процессором побайтно, а с внешними устройствами - побитно. Параллельный порт получает и посылает данные побайтно. К последовательному порту подсоединяют медленно действующие или достаточно удалённые устройства, такие, как мышь и модем. К параллельному порту подсоединяют более "быстрые" устройства (принтер, сканер). Через игровой порт подсоединяется джойстик.

Основные электронные компоненты, определяющие архитектуру процессора, размещаются на основной плате компьютера, которая называется системной (материнской). Контроллеры и адаптеры дополнительных устройств, либо сами эти устройства, выполняются в виде плат расширения и подключаются к шине с помощью разъёмов расширения, называемых также слотами расширения (англ. slot - щель, паз).

4.2 Частота процессора системной шины и шин периферийных устройств

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате устанавливаются специальные микросхемы (чипсеты), включающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост) - рис. 8.

Рис. 8. Логическая схема системной платы

В качестве системной магистрали в современных ЭВМ используются [3]:

- шины расширений - шины общего назначения, позволяющие подключать большое число самых разнообразных устройств;

- локальные шины, специализирующиеся на обслуживании устройств определенного типа.

Северный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной шине. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, частота шины - 100 МГц).

К северному мосту подключается шина PCI (Peripherial Component Interconnect bus - шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. По своей сути это тоже интерфейс локальной шины, связывающей процессор с оперативной памятью, в которую врезаны разъемы для подключения внешних устройств. Шина может работать параллельно с шиной процессора, т.е. обмен данными процессор - память и, например, видеоадаптер - память может осуществляться параллельно. Шина PCI является синхронной 32-разрядной или 64-разрядной шиной, работающей на частоте 33 или 66 МГц. Шина PCI при частоте 33 МГц обеспечивает пропускную способность 132 Мбайт/с, при частоте до 66 МГц обеспечивают производительность 264 Мбайт/с для 32-разрядных данных и 528 Мбайт/с для 64-разрядных данных.

По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины, связывающей видеоплату с процессором и оперативной памятью, возрастают. Для подключения видеоплаты используется специальная шина AGP (Accelerated Graphic Port - ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI (скорость передачи данных по шине AGP 256 Мбайт/с). Режимы AGP 2х/4х/8х обеспечивают соответственно в 2, 4 и 8 раз большую скорость передачи. В настоящее время видеоадаптер подключается через шину PSI-express.

Южный мост обеспечивает обмен информацией между северным мостом и портами для подключения периферийного оборудования.

Устройства хранения информации (жесткие диски, CD-ROM, DVD-ROM) подключаются к южному мосту по шине UDMA (Ultra Direct Memory Access - прямое подключение к памяти) или SATA (Serial ATA) - локальный интерфейс передачи данных. Максимальная теоретическая скорость для SATA-I - 150 Мбайт, для SATA-II - 300 Мбайт/с.

IDE (Parallel ATA) - локальный интерфейс передачи данных. Используется в основном для обмена ПК с НЖМД, CD-ROM и DVD-ROM дисководами. Максимальная теоретическая скорость 133 Мбайт/с.

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают электрические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются последовательные порты как СОМ1 и COM2.

Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LPT.

В настоящее время через порт USB (Universal Serial Bus - универсальная последовательная шина) подключаются принтер, сканер, мышь, клавиатура и т.п. Шина USB обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств, а также их отключение от компьютера в «горячем режиме», т.е. не выключая компьютер. Максимальная заявленная скорость передачи данных - 800 Мбайт/с. Клавиатура обычно подключается с помощью порта PS/2.

5. Устройство персонального компьютера

Рассмотрим устройство персонального компьютера.

Персональным компьютером (ПК) называют сравнительно недорогой универсальный микрокомпьютер, рассчитанный на одного пользователя.

Современный персональный компьютер состоит из нескольких основных конструктивных компонент: системного блока; монитора; клавиатуры; манипуляторов.

В системном блоке размещаются: блок питания; накопитель на жёстких магнитных дисках; накопитель на гибких магнитных дисках; системная плата; платы расширения; накопитель CD-ROM; и др. (рис. 9). Корпус системного блока может иметь горизонтальную (DeskTop) или вертикальную (Tower - башня) компоновку.

Рис. 9.

1 - Системная плата.

2 - Разъём дополнительного 2 процессора.

3 - Центральный процессор с радиатором для отвода тепла.

4 - Разъёмы оперативной памяти.

5 - Накопитель на гибких магнитных дисках.

6 - Накопитель CD-ROM.

7 - Сетевая карта.

8 - Графический акселератор.

9 - Блок питания.

Блок питания содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока.

Системная плата

Системная плата является основной в системном блоке. Она содержит компоненты, определяющие архитектуру компьютера:

- центральный процессор;

- постоянную (ROM) и оперативную (RAM) память, кэш-память;

- интерфейсные схемы шин;

- гнёзда расширения;

- обязательные системные средства ввода-вывода и др.

Системные платы исполняются на основе наборов микросхем, которые называются чипсетами (ChipSets). Часто на системных платах устанавливают и контроллеры дисковых накопителей, видеоадаптер, контроллеры портов и др.

В гнёзда расширения системной платы устанавливаются платы таких периферийных устройств, как модем, сетевая плата, видеоплата и т.п.

Рис. 10. Системная плата компьютера класса Pentium

1 - Разъём под центральный процессор;

2 - Дополнительный кэш объёмом 256 Кбайт;

3 - Разъём под дополнительный кэш;

4 - Контроллеры внешних устройств;

5 - Разъёмы накопителей на жёстких магнитных дисках;

6 - Разъёмы под оперативную память, 4 планки;

7 - Коннектор (соединитель) клавиатуры и мыши;

8 - Микросхема, обслуживающая флоппи-дисковод, последовательные порты и параллельный порт;

9 - Разъёмы 32-битной шины (для видеокарты и др.);

10 - Перезаписываемая BIOS (Flash-память);


Подобные документы

  • Конструкция системного блока, монитора, клавиатуры и мыши персонального компьютера, как элементов его минимальной комплектации, а также их назначение, особенности работы и современные тенденции развития. Отрывки статей о новинках архитектуры компьютера.

    реферат [43,4 K], добавлен 25.11.2009

  • Магистрально-модульный принцип построения архитектуры современных персональных компьютеров. Рассмотрение основных микросхем чипсета: контроллер-концентратор памяти и ввода-вывода. Рассмотрение пропускной способности и разрядности системной шины памяти.

    презентация [2,3 M], добавлен 13.10.2015

  • Магистрально-модульный принцип построения компьютера. Виды системных шин: данных, адреса и управления. Аппаратное обеспечение компьютера: процессор, внутренние устройства, материнская плата, чипсет, память, жесткий диск, видео-, сетевая и звуковая карта.

    презентация [4,3 M], добавлен 08.12.2014

  • Роль информационных систем и технологий в жизни современного общества. Назначение и состав программного обеспечения персональных компьютеров. Использование технологий OLE. Операционные среды для решения основных классов инженерных и экономических задач.

    практическая работа [1,2 M], добавлен 27.02.2009

  • Магистрально-модульный принцип построения компьютера. Магистральный (шинный) принцип обмена информацией между устройствами. Внутреннее устройство персонального компьютера: состав и назначение основных блоков. Устройства ввода и вывода информации.

    реферат [475,6 K], добавлен 19.11.2009

  • Изучение особенности архитектуры современных персональных компьютеров, основанной на магистрально-модульном принципе. Характеристика режимов использования шины передачи данных. Подключение к магистрали: контроллер, драйвер. Быстродействие системы ПК.

    презентация [4,1 M], добавлен 18.04.2012

  • Понятие архитектуры персонального компьютера, компоновка частей компьютера и связи между ними. Составляющие системного блока ПК. Функции центрального процессора, системной платы, оперативного запоминающего устройства, видеокарты и жесткого диска.

    реферат [30,7 K], добавлен 28.01.2014

  • Архитектура современного персонального компьютера. Виды и характеристики центральных и внешних устройств ЭВМ. Структурная и функциональная схемы персонального компьютера. Устройства для ввода информации в системный блок и для отображения информации.

    курсовая работа [592,5 K], добавлен 18.01.2012

  • Устройство персонального компьютера: системный блок, система охлаждения, материнская плата, процессор, видеокарта, звуковая карта. Память, устройство хранения информации. Устройство ноутбука Asus N53SM: клавиатура и тачпад, технические характеристики.

    реферат [41,3 K], добавлен 05.12.2012

  • Сущность глобальной компьютеризации и ее распространенность на современном этапе. Основные характеристики персонального компьютера и требования к нему, главные критерии выбора и оценка ассортимента. Порядок выбора конфигурации персонального компьютера.

    реферат [398,1 K], добавлен 31.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.