Технология ЖК мониторов
Исследование и описание уже существующих видов ЖК мониторов. Новые перспективные технологии. Принцип работы и технические характеристик ЖК мониторов. Принцип работы различных типов матриц. Время отклика. Яркость и контрастность. Цветопередача.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 27.11.2008 |
Размер файла | 657,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
23
Министерство образования культуры и спорта
Калужской области
Государственное образовательное учреждение
НПО «Профессиональный лицей №16» г.Калуга
Технология ЖК мониторов
Дипломная работа.
Калуга 2008 г.
Содержание.
Введение……………………………………………………………………3
Глава1. технические характеристики…………………………………….4
1.1.Общее описание………………………………………………………..4
1.2.Время отклика………………………………………………………….6
1.3.Углы обзора…………………………………………………………...11
1.4.Яркость контрастность……………………………………………….16
1.5.Цветопередача………………………………………………………...23
1.7.безопасность…………………………………………………………..30
1.8.Плазменные мониторы……………………………………………….33
1.9.Пластиковые мониторы…………………………………………….35
Глава 2 Практическая часть………………………………………….....36
2.1.стандарты безопасности…………………………………………….36
2.2.TN+Film-матрицы…………………………………………………...37
2.4.IPS-матрицы…………………………………………………………43
2.5.MVA-матрицы……………………………………………………….46
2.6.PVA-матрицы………………………………………………………..50
Экономическая часть…………………………………………………...53
Охрана труда и техники безопасности………………………………...55
Заключение………………………………………………………………59
Список используемой литературы……………………………………...61
Введение.
Данную тему я выбрал т. к. монитор - устройство вывода графической и текстовой информации в форме, доступной пользователю. Мониторы входят в состав любой компьютерной системы. Они являются визуальным каналом связи со всеми прикладными программами и стали жизненно важным компонентом при определении общего качества и удобства эксплуатации всей компьютерной системы. В настоящее время развитие компьютерных технологий требует разработки новых мониторов, большего размера и новых возможностей. Создаваемые новые программы по работе с трехмерной графикой уже не могут нормально воспроизводиться на старых мониторах. Все это привело компаний-разработчиков к усовершенствованию тех технологий в области воспроизведения информации, которые имеют место быть, поэтому эта проблема и стала одной из важных в компьютерной технике.
Целью дипломной работы - исследовать и описать уже существующие виды ЖК мониторов, ознакомиться с новыми перспективными технологиями, разработать учебное пособие.
Задачи:
1.Изучить принцип работы и технические характеристик ЖК мониторов;
2. Технически обосновать принцип работы различных типов матриц
Глава1. технические характеристики
1.1 Общее описание.
Достаточно качественный ЭЛТ-монитор, то он будет пригоден для любых задач без оговорок - для работы с текстом, для обработки фотографий, для игр и так далее; в то же время среди ЖК-мониторов можно выделить модели, подходящие для игр - но они непригодны для работы с фотографиями, можно выделить модели, имеющие прекрасную цветопередачу - но они плохо подходят для динамичных игр, и так далее.Казалось бы, формально практически все последние модели мониторов имеют параметры, позволяющие использовать их в любой области - производители заявляют углы обзора 160 градусов, контрастность 500:1 и достоверное отображение всех положенных 16 миллионов цветов, причем разница между заявленными параметрами разных моделей, казалось бы, невелика - ну разве заметит обычный человек без измерительных приборов отличие углов обзора 160 градусов у хорошей TN+Film матрицы и 170 градусов у PVA, MVA или IPS? Однако, как говорится, разница между теорией и практикой на практике значительно больше, чем в теории - и если поставить рядом два монитора, скажем, один на базе TN+Film матрицы, а другой на базе IPS-матрицы, то даже человек, ранее никогда не работавший с ЖК-мониторами, легко обнаружит, что реальные их параметры очень сильно отличаются.
Дело здесь не в том, что производители сознательно завышают параметры своих изделий, тем самым преднамеренно вводя покупателей в заблуждение (хотя, конечно, и такое встречается, но достаточно редко), а в том, что они понимают под тем или иным заявленным параметром, и как они его измеряют.
К сожалению, даже многие авторы различных обзоров, следуя наметившейся в последнее время тенденции к получению объективных параметров мониторов вместо субъективной оценки, забывают про это простое правило, в результате чего становятся жертвами одной из двух наиболее распространенных ошибок - либо получившееся число (я сознательно говорю "число", а не "результат", ибо число станет результатом только после четкого указания всех перечисленных в предыдущем параграфе пунктов), ошибочно выдаваемое за какой-либо параметр ЖК-монитора, на самом деле им не является, либо же второстепенные параметры, оказывающие на интересующую автора комплексную характеристику (например, "качество цветопередачи" - это комплексная характеристика, так как она не может быть описана одним параметром) незначительное влияние, выдвигаются на первый план.
Первая ошибка обычно бывает следствием того, что на первый план выходят какие-то побочные факторы, специфичные для данного способа измерения и вытесняющие собственно измеряемую величину на второй план, а вторая - того, что используемое измерительное оборудование по какой-либо причине попросту не позволяет измерить наиболее существенные параметры, в результате чего автор пытается строить какие-либо предположения, основываясь на параметрах второстепенных.
Примером первого случая может быть, скажем, попытка измерить контрастность монитора при помощи цифрового фотоаппарата - без учета собственного шума матрицы фотоаппарата, производимой им гамма-коррекции (а она производится при сохранении в любой формат, кроме RAW), шума за счет фоновой засветки и прочих факторов, результат такого измерения получится заведомо неверным. В качестве же примера второго случая можно привести попытку сравнить скорость мониторов по измерению времени отклика на переходах с черного на белый - даже при совершенно корректно проведенных измерениях этой величины на практике результат оказывается бесполезным, ибо первостепенную роль играет время отклика при переходах между оттенками серого, а не между двумя крайними состояниями.
Таким образом, для того, чтобы сравнивать различные мониторы по заявленными производителем или же полученным в результате каких-либо экспериментов числам, необходимо прежде всего понимать, что эти числа означают, а также каким методом и в каких условиях они были получены.
1.2. Время отклика
Пожалуй, время отклика является наиболее "популярной" характеристикой любого ЖК-монитора - популярной в том смысле, что именно на него в первую очередь обращают внимание покупатели при выборе монитора.
Как известно, состояние пиксела в ЖК-панели меняется за счет изменения угла поворота жидких кристаллов под действием приложенного к ним электрического поля. Однако жидкие кристаллы - вещество сравнительно вязкое, поэтому поворот происходит не мгновенно, а за достаточно большое время порядка единиц или даже десятков миллисекунд. На графике это выглядит так (по горизонтальной оси отложено время в миллисекундах, по вертикальной - некий условный уровень яркости пиксела, пиксел меняет свое состояние с полностью закрытого на полностью открытое):
Традиционно производители матриц и мониторов измеряют время отклика как суммарное время переключения пиксела с черного на белый и обратно, причем измеряется время изменения яркости пиксела от 10% до 90% (такое определение, вопреки распространенному мнению, является не уловкой производителей панелей, а скорее необходимостью - дело в том, что момент точного начала загорания пиксела и момент точного достижения им яркости 100% принципиально невозможно определить из-за наличия шумов и конечной точности измерительного оборудования, а потому имеет смысл говорить лишь о вхождении яркости пиксела в некоторый интервал, который в данном случае определяется как 10%):
К сожалению, такое измерение на самом деле не дает полного представления о том, как будет себя вести монитор при работе с динамичной графикой - дело в том, что измеренное таким образом время отклика является минимальным, какое вообще может показать матрица. Допустим, нас интересует переключение пиксела не с черного на белый, а с черного на темно-серый (такая ситуация в жизни встречается, например, во многих "темных" игрушках). Тогда, с одной стороны, кристаллам надо повернуться на меньший угол, но, с другой стороны, скорость их поворота пропорциональна напряженности приложенного электрического поля, а именно им и определяется угол поворота - чем меньший угол нам нужен, тем меньше должно быть электрическое поле. Таким образом, у нас есть две противоборствующие тенденции - уменьшается не только угол поворота, но и его скорость, так что на практике время поворота кристалла (то есть время отклика монитора) будет зависеть от соотношения этих тенденций. Как показывают измерения, время отклика всегда будет больше, чем при переключении с черного на белый, а насколько больше - зависит от типа матрицы (подробнее это будет рассмотрено ниже, при описании различных типов матриц). К сожалению, в абсолютном большинстве случаев производители матриц и мониторов такой информации не предоставляют. Для примера ниже приведен график времени зажигания пиксела (вертикальная ось) при переходах с черного на различные уровни серого (горизонтальная ось) для 25 мс TN+Film матрицы:
В первую очередь эта особенность ЖК-матриц будет сказываться в динамичных играх с недостаточно контрастным изображением - смазывание в них может оказаться более чем заметным, хотя формально для данной матрицы может быть заявлено и весьма малое время отклика.
Кроме того, даже время переключения с черного на белый не является в общем случае неким абсолютным показателем - на практике оно зависит от установленной на мониторе контрастности и, в некоторых случаях, яркости. Вообще говоря, яркость конкретного пиксела L определяется как L = B + x*C, где B - величина, напрямую зависящая от положения регулятора "Brightness" монитора, C - величина, зависящая от положения регулятора "Contrast", а x - сигнал, подаваемый на данный пиксел с компьютера (x=0 соответствует черному цвету, а максимальное значение x - белому; гамма-коррекцию, о которой будет сказано ниже, я здесь не учитываю). Регулировка контрастности осуществляется достаточно просто - приходящий с видеокарты сигнал x не подается напрямую на матрицу, а сначала умножается на коэффициент C, после чего уже подается на матрицу. Таким образом, очевидно, что тот самый белый цвет, соответствующий максимальному углу поворота кристаллов, на самом деле достигается только при максимальной контрастности; если же она ниже максимума, то кристаллы поворачиваются на меньший угол, а потому, в связи с написанным выше, время этого поворота больше заявленного производителем. Говоря коротко, снижение контрастности всегда ведет к увеличению времени отклика монитора.
Несколько лучше дела обстоят с регулировкой "Brightness" - в большинстве мониторов она реализована изменением яркости ламп подсветки, а потому не связана с матрицей и никак не влияет на время отклика. Тем не менее, есть и мониторы, в которых яркость регулируется матрицей - например, в моделях от Sony существует отдельная регулировка "Backlight", изменяющая яркость ламп подсветки и регулировка "Brightness", управляющая матрицей. В случае использования последней, очевидно, время отклика также зависит от положения регулятора - как показывают измерения, при низких установленных значениях оно может очень сильно увеличиваться.
Также стоит обратить внимание на несимметричность времени отклика - иначе говоря, на разницу между временем зажигания и временем гашения пиксела. Например, если мы возьмем два монитора с временем отклика 30 мс, но у первого из них соотношение времени зажигания и гашения будет составлять 25/5 мс (типичная ситуация для TN-матриц), а у второго - 15/15 мс (а это уже типично для MVA и PVA-матриц), то движущиеся объекты на них будут выглядеть по-разному - например, тонкие черные линии при движении на белом фоне у первого монитора будут выглядеть значительно тоньше, чем они должны быть, в то время как у второго они будут сохранять свою толщину, становясь лишь несколько светлее, что воспринимается глазом значительно лучше, а потому, скажем, при прокручивании текста MVA-матрица субъективно будет казаться быстрее TN-матрицы с тем же полным временем отклика. Это еще одна причина, по которой некорректно сравнивать разные типы матриц по одному только суммарному времени отклика - как минимум, надо еще знать, как это время делится на время зажигания и время гашения пиксела.
Очень часто пользователи задают один и тот же вопрос - как измерить время отклика без использования какого-либо специального оборудования? Увы, это невозможно - как максимум, можно лишь субъективно оценить его в категориях "меня устраивает" или "меня не устраивает", запустив какую-нибудь динамичную игру. Пользователи же, пытающиеся оценить время отклика по специальным тестам, в которых обычно используется бегающий на черном фоне белый квадратик (например, Passmark Monitor Test), делают как минимум одну ошибку - по смазыванию этого квадратика можно оценить только время переключения с черного на белый и обратно, а как я уже говорил выше, реальное быстродействие матрицы в большинстве случаев определяет не оно. Кроме того, часто пользователи переносят на ЖК-мониторы опыт тестирования ЭЛТ-мониторов, оценивая время отклика по тянущемуся за бегающим квадратиком шлейфу. На ЭЛТ-мониторах, действительно, в силу их специфики (практически мгновенное зажигание пиксела и экспоненциальный график при его гашении) бегающий квадратик будет иметь четкие края и слабо светящийся сравнительно длинный шлейф ("хвост" экспоненциальной функции, описывающей гашение пиксела); на ЖК-мониторах такой шлейф будет далеко не всегда, ибо на многих матрицах график имеет совершенно иной вид, без длинного "хвоста" - многие делают из этого вывод, что современные ЖК-мониторы уже превзошли ЭЛТ. Обращать же внимание надо на размытие передней и задней граней квадратика - именно они демонстрируют время отклика матрицы. Ниже на рисунке показана типичная картина для белого квадратика, движущегося по черному фону слева направо: вверху изображена картинка с ЭЛТ-монитора (четкие края, но длинный слабо светящийся шлейф), а внизу - с типичного ЖК-монитора (отсутствие заметного шлейфа, но сильно размытые края):
1.3. Углы обзора
Другой традиционной проблемой ЖК-мониторов являются углы обзора - если изображение на ЭЛТ практически не страдает даже при взгляде почти параллельно плоскости экрана, то на многих ЖК-матрицах даже небольшое отклонение от перпендикуляра приводит к заметному падению контрастности и искажению цветопередачи.В то же время все производители на данный момент заявляют, казалось бы, более чем достаточные углы обзора - у большинства моделей мониторов они составляют не менее 160 градусов как по вертикали, так и по горизонтали. Проблема здесь, как и с временем отклика, в том, как эти углы измеряются.
Согласно текущим стандартам, производители матриц определяют угол обзора как угол относительно перпендикуляра к центру матрицы, при наблюдении под которым контрастность изображения в центре матрицы падает до 10:1.
Во-первых, считается, что искажения изображения становятся легко заметны при падении контрастности уже в несколько раз, то есть примерно до 100:1 - иначе говоря, используемый производителями критерий весьма и весьма мягок, и уже, поэтому в большинстве случаев к заявленным углам обзора стоит относиться скептически, ибо на практике Вы заметите, что картинка отличается от идеальной при намного меньших углах. Более того, некоторые производители указывают углы обзора для предельной контрастности не 10:1, а вдвое меньше - 5:1, в результате чего на свет "легким движением руки" недорогая TN+Film-матрица с углами обзора 150/140 градусов превращается в матрицу с углами уже 160/160 градусов. Очевидно, что с точки зрения пользователя от такой "модернизации" ничего не меняется - матрица-то остается та же самая, а вот с точки зрения заявленных характеристик на первый взгляд все выглядит так, будто производитель монитора начал устанавливать новые матрицы, с увеличенным углом обзора, и лишь в сноске мелкими буквами написано, что изменился-то только метод измерения.Во-вторых, измерения контрастности проводятся в центре экрана, в то время как человек, находящийся перед монитором, видит края экрана под другим углом, нежели центр. Например, на приведенной ниже фотографии изображен монитор Greenwood LC521FT, причем камера смотрит на него чуть снизу, под небольшим углом:
Если Вы думаете, что фоном на экране монитора градиентная заливка от черного в верхней части до серого в нижней - Вы ошибаетесь. На мониторе абсолютно равномерный серый фон (RGB:{128; 128; 128}), а такой сильный перепад яркости между верхом и низом экрана возникает из-за недостаточно большого угла обзора по вертикали. Тем не менее, яркость в центре экрана существенно ближе к идеалу, чем в верхней его части (которая выглядит практически черной), а потому стандартный метод измерения углов обзора покажет достаточно большую контрастность, чтобы не считать вертикальный угол обзора в 25 градусов (а примерно под таким углом камера смотрит на экран) предельным.В-третьих, на примере этой фотографии также можно проиллюстрировать еще одну особенность заявляемых производителями углов - как правило, указывается суммарный угол в обе стороны от нормали (то есть, в случае с вертикальным углом обзора - суммируются предельные углы при взгляде на матрицу сверху и при взгляде снизу), в то время как для данного монитора (впрочем, как и для других моделей на TN+Film матрицах) угол обзора сверху существенно больше, да и эффект там проявляется другой - при взгляде сверху нижняя часть изображения сначала выцветает, а потом, по мере увеличения угла, инвертируется (белый цвет приобретает характерный синеватый оттенок и становится темнее светлых оттенков серого). В результате в паспортных характеристиках мы получаем достаточно большой угол обзора по вертикали, в реальности же малейшее отклонение экрана монитора назад приводит к более чем заметному потемнению верхней части экрана.В-четвертых, с углами обзора также возникает ситуация, похожая на описанную выше в главе про время отклика, измеряемое только в предельном случае переключения с черного на белый и обратно - да, производитель указывает контрастность, наблюдаемую при взгляде строго перпендикулярно экрану, да, он также указывает, под каким углом эта контрастность упадет до 10:1, но мы ничего не знаем о том, как она изменяется между этими двумя точками. Ниже на графике приведен пример зависимости контрастности от угла для двух разных матриц (это чисто теоретический пример, данный для наглядности, а не результаты каких-либо измерений):
Как Вы видите, матрицы с такими кривыми будут иметь совершенно идентичные паспортные характеристики - максимальная контрастность составляет 400:1, угол обзора (измеренный по падению контрастности до 10:1) равен 160 градусам (по 80 градусов в обе стороны). В то же время, если посмотреть на матрицы под углом, скажем, 40 градусов - то одна из них будет иметь вдвое большую контрастность, чем другая; иначе говоря, с точки зрения покупателя у одной матрицы будут большие углы обзора, нежели у другой, в то время как их паспортные характеристики совершенно идентичны.В-пятых, при измерении углов обзора учитывается только падение контрастности, но не искажение цветопередачи. Например, на фотографии ниже запечатлен монитор Greenwood LC521FT, на экране которого - чистое белое поле.
Как Вы видите, помимо потемнения белого цвета при взгляде сбоку, он также приобретает сильный желтовато-коричневый оттенок - таким образом, в некоторых случаях изменение цвета может быть даже заметнее, чем падение контрастности, однако при измерении углов обзора производителем это не учитывается.И, наконец, в-шестых, производители указывают только вертикальные и горизонтальные углы обзора, в то время как, очевидно, на монитор можно посмотреть и, скажем, справа сверху. Ниже приведен график зависимости контрастности от обоих углов обзора (по данным компании Fujitsu):
Таким образом, получается, что углы обзора по вертикали и горизонтали (то есть именно те углы, которые указываются в спецификациях) как раз максимальны, в то время как "диагональные" углы обзора существенно меньше.
Итак, паспортный параметр монитора "углы обзора", вообще говоря, достаточно мало говорит о том, как будет выглядеть изображение на этом мониторе. Более того, с ним связано такое количество оговорок и специфических особенностей различных типов матриц, что для объективной оценки реальных углов обзора требуется достаточно большое исследование, а потому единственный практически пригодный для покупателя способ оценки качества монитора - это посмотреть на различные мониторы вживую, не полагаясь на скупые паспортные характеристики.
1.4. Яркость контрастность
Строго говоря, писать "яркость и контрастность монитора", говоря о заявленных производителем этого монитора паспортных параметрах, некорректно - дело в том, что в качестве таковых производители мониторов в абсолютном большинстве случаев заявляют паспортные параметры матрицы, предоставленные им производителями этих матриц. И, если в случае с временем отклика и углами обзора электроника монитора не оказывает существенного влияния на параметры матрицы, то в случае с яркостью и контрастностью это совсем не так.Однако давайте сначала определимся с терминологией: под яркостью понимается яркость белого цвета (то есть на матрицу подается максимальный сигнал) в центре экрана, под контрастностью - отношение уровня белого цвета к уровню черного, также в центре экрана.
Проблема с контрастностью принципиальна для ЖК-матриц в силу самого их принципа действия. В отличие от абсолютного большинства электронных устройств отображения информации (ЭЛТ, электролюминесцентные и светодиодные табло, OLED и так далее), по отношению к свету матрица является не активным, а пассивным элементом - иначе говоря, она не способна излучать свет, а лишь способна модулировать проходящий через нее. Поэтому позади ЖК-матрицы всегда размещается модуль подсветки, а матрица лишь управляет своей прозрачностью, ослабляя свет от модуля подсветки в заданное количество раз. Регулировка прозрачности осуществляется за счет поворота плоскости поляризации - жидкие кристаллы расположены между двумя сонаправленными поляризаторами: сонаправленность означает, что если свет между ними не изменил свою плоскость поляризации, то он проходит через второй поляризатор без потерь. Если же плоскость поляризации была повернута жидкими кристаллами, то второй поляризатор задержит световой поток, и соответствующая ячейка будет выглядеть черной. Однако по различным причинам - из-за неидеальности поляризаторов, не идеально точного расположения кристаллов и так далее - задержать весь свет невозможно, а потому какой-то его процент всегда будет проходить через матрицу, слегка "подсвечивая" черный цвет монитора.
Как я уже отметил выше, эти измерения производятся производителем матрицы, а не монитора, а потому делаются на специальном стенде, где матрица подключается к источнику тестового сигнала, а лампы подсветки питаются током определенной величины - таким образом получаются некие эталонные значения. В реальном же мониторе добавляется влияние его электроники, которая, во-первых, отлична от лабораторного генератора сигналов, во-вторых, еще и в некоторой степени управляется пользователем, регулирующим яркость, контрастность, цветовую температуру и другие параметры, а потому и реальные параметры монитора очень часто не соответствуют заявленным. Например, если электроника монитора дает небольшую "подсветку" черного цвета (разумеется, это дефект, однако на некоторых недорогих моделях он достаточно распространен), то реальная контрастность окажется значительно ниже заявленной.
При этом даже заявляемая многими производителями матриц для своих изделий контрастность 500...700:1, несмотря на кажущуюся высокой цифру, на самом деле все еще далека от идеала - фактически при такой контрастности монитор все еще не может обеспечить действительно глубокого черного цвета, если посмотреть на экран при неярком внешнем освещении, то он будет выглядеть темно-серым, но не черным. При реальной контрастности же 200...300:1 заметить, что сквозь черный цвет просвечивают лампы подсветки, и вовсе не составляет никакого труда.
Как бы в оправдание производителей ЖК-мониторов иногда встречается мнение, что слишком большая контрастность матриц негативно влияет на зрение, излишне утомляя глаза. Это в корне неверно - "слишком низкого" уровня черного не бывает, ибо в идеале он должен быть не просто низким, а нулевым, и именно это будет означать, что монитор может воспроизвести настоящий черный цвет, без каких-либо оговорок. Паспортная контрастность при этом, очевидно, будет бесконечно велика (разумеется, так как поверхность экрана не является абсолютно черным телом, то она будет в той или иной мере отражать падающий на нее внешний свет, однако в данном случае я говорю именно о паспортной контрастности, при измерении которой внешней засветки нет). Существует и еще один миф, пущенный чьей-то легкой рукой и заключающийся в том, что производители увеличивают паспортную контрастность матриц, увеличивая яркость белого цвета при неизменной яркости черного, что приводит к тому, что паспортная-то контрастность увеличивается, а вот реальная - нет, ибо пользователь работает при той яркости, которая для него наиболее комфортна, а не при максимально возможной. Очевидно, что в силу принципа действия ЖК-матриц увеличить яркость можно только увеличением интенсивности подсветки. Пусть яркость подсветки у нас равна L, тогда уровень белого цвета будет равен , где - коэффициент пропускания открытого пиксела (он чуть меньше единицы, так как часть света при проходе через кристаллы и поляризаторы все же теряется), а уровень черного цвета, соответственно, , где - коэффициент пропускания закрытого пиксела (он немногим больше нуля). Соответственно, контрастность будет равна , причем коэффициенты пропускания открытого и закрытого пикселов зависят только от характеристик самой матрицы, но никоим образом не от яркости подсветки, а потому и паспортная контрастность матрицы от яркости подсветки никак не зависит и определяется только внутренними характеристиками самой матрицы. Таким образом, увеличение яркости никак не поможет производителю поднять заявленную контрастность матрицы, а распространенное мнение об обратном не имеет под собой никаких фактических оснований.
Иногда в оправдание существования этого мифа приводят мнение, что в реальных условиях также будет играть роль внешняя засветка матрицы, иногда - например, при нормальном дневном освещении помещения - дающая заметный вклад в уровень черного (в таком случае "визуальная" контрастность будет равна , где - внешняя засветка; в этом выражении, очевидно, с увеличением L увеличивается и ), однако я еще раз подчеркну, что речь идет о паспортной контрастности матриц, которая измеряется их производителями без учета какой-либо внешней засветки. Помимо того, что контрастность матрицы измеряется в условиях специального тестового стенда, а не готового монитора (то есть без учета особенностей электроники этого монитора), пользователь может сам регулировать яркость и контрастность, что также влияет на многие параметры изображения, причем как именно влияет - зависит от реализации этих регулировок опять же в конкретной модели монитора.
Во-первых, не совсем корректно говорить, что пользователь меняет яркость и контрастность ручками "Brightness" и "Contrast" соответственно, ибо сразу же возникает вопрос - яркость чего он регулирует, и за счет чего меняется контрастность. Как я уже отмечал выше, в идеале яркость пиксела L определяется как L = B + x*C, где B - величина, напрямую зависящая от положения регулятора "Brightness" монитора, C - величина, зависящая от положения регулятора "Contrast", а x - сигнал, подаваемый на данный пиксел с компьютера (x=0 соответствует черному цвету, а максимальное значение x - белому). Отсюда очевидно, что регулировкой "Contrast" пользователь меняет яркость белого цвета (а точнее говоря, и всех оттенков серого, но вот черный цвет остается неизменным), а регулировкой "Brightness" - яркость как черного, так и белого одновременно.
В большинстве мониторов регулировка "Brightness" реализована изменением яркости ламп подсветки - впрочем, это весьма очевидный способ. Используемые в мониторах лампы дневного света с холодным катодом (CCFL - Cold Cathode Fluorescent Lamp) позволяют это делать двумя способами - либо регулируя ток разряда в лампе, либо (так как первый способ позволяет регулировать яркость лишь в сравнительно небольших пределах, при сильном уходе тока от номинала теряется стабильность разряда в лампе) с помощью широтно-импульсной модуляции питания лампы на сравнительно небольшой частоте (сравнительно - потому что она достаточно мала с точки зрения физики разряда в лампе, но при этом достаточно велика, чтобы глаз не замечал мерцания подсветки; на практике частота составляет обычно от 200 до 500Гц). Широтно-импульсная модуляция - это очень распространенный способ регулировки напряжений и токов, заключающийся в том, что в зависимости от нужного напряжения регулируется ширина подаваемых импульсов при их неизменной частоте и амплитуде - и среднее напряжение как раз оказывается пропорционально этой ширине. На практике процесс регулировки показан на осциллограммах ниже:
Этот сигнал снят не с цепей питания ламп, а с помощью фотодатчика уже с экрана монитора, поэтому импульсы сильно сглажены за счет послесвечения люминофора ламп, и на анимированной картинке отчетливо видно, как растет средняя яркость. При этом расстояния между пиками не меняются с изменением яркости, а потому очевидно, что используется именно широтно-импульсная модуляция.Также встречается регулировка яркости с помощью матрицы - при увеличении яркости пользователем монитор добавляет к подаваемому на матрицу сигналу постоянную составляющую. При таком способе регулировки, увы, заметно страдает контрастность - ведь лампы подсветки всегда работают на мощности, необходимой для обеспечения максимально возможной для монитора яркости, а потому при работе на небольшой яркости, даже если добавляемая к сигналу постоянная составляющая будет уже равняться нулю, такой монитор покажет заведомо более высокий уровень черного, чем модель с регулировкой яркости с помощью ламп подсветки - пусть у нас яркость черного равна , где L - яркость подсветки, а - коэффициент пропускания пиксела в закрытом состоянии. Пусть также у наших мониторов одинаковые матрицы с максимальной яркостью 250 кд/кв.м (соответственно, числа у них также одинаковы), а мы хотим получить яркость экрана 100 кд/кв.м - тогда в мониторе с регулировкой яркости лампами подсветки L снизится в 2,5 раза по сравнению с максимумом, а в мониторе с регулировкой яркости с помощью матрицы она останется неизменной. Очевидно, уровень черного на мониторе с регулировкой яркости лампами подсветки также окажется в 2,5 раза ниже, чем на мониторе с регулировкой матрицей.
О самой же величине яркости можно сказать лишь то, что она зависит от конкретных задач и внешнего освещения - если для работы с текстом яркость экрана должна составлять примерно от 70 до 130 кд/кв.м, то для игр и просмотра фильмов комфортная яркость может доходить до 200 кд/кв.м и даже выше. Если сравнивать ЖК-мониторы с ЭЛТ, то у последних типичная рабочая яркость составляет 80...100 кд/кв.м (у моделей, выпускающихся в последние пару лет, есть режимы повышенной яркости - они появились после того, как удалось добиться приемлемой фокусировки луча в таких режимах; впрочем, они все равно по большому счету пригодны только для фильмов и игр - с этой точки зрения ЖК-панели, имеющие идеальную четкость изображения при любой яркости, давно их превзошли), контрастность же хорошего ЭЛТ-монитора легко превышает 1000:1, оставаясь недостижимой для большинства ЖК-мониторов.
Итак, если делать краткий вывод из сказанного выше, то он в общем-то будет сводиться к тому же, к чему сводились выводы и в предыдущих разделах - если сравнивать два монитора на матрицах одинакового типа по паспортному значению контрастности можно (монитор с большей заявленной контрастностью, как правило, будет иметь и большую реальную контрастность), то сравнивать мониторы на разных типах матриц, а уж тем более делать какие-то выводы о реальной абсолютной (а не относительной, то есть в категориях "лучше-хуже") контрастности по одним только заявленным производителем монитора цифрам, вряд ли стоит.
1.5. Цветопередача
С точки зрения цветопередачи производители обычно указывают лишь одну цифру - количество цветов, которое традиционно равняется 16,2 млн. или 16,7 млн. Впрочем, даже здесь уже есть подвох - дело в том, что очень многие из выпускаемых сейчас матриц (а из "быстрых" матриц - все поголовно) не умеют отображать более 262 тысяч цветов (что соответствует 18 битам, или по 6 бит на каждый из трех базовых цветов).
Изображение на 18-битной матрице без дополнительных мер выглядит весьма грустно - фактически такая матрица годится только для офисной работы да еще (и то - в некоторой степени) для игр. По этой причине производители матриц реализуют в них так называемый FRC (Frame Rate Control) - метод эмуляции недостающих цветов, при котором цвет пиксела меняется с каждым кадром в небольших пределах. Допустим, нам надо вывести цвет RGB:{154; 154; 154}, который наша матрица физически не поддерживает, однако она поддерживает два соседних цвета - RGB:{152; 152; 152} и RGB:{156; 156; 156}. Если теперь поочередно (с частотой кадровой развертки) выводить эти два цвета, то, в результате близости их цветов и инерционности как человеческого глаза (очевидно, не воспринимающего мерцание на частоте 60Гц), так и самой матрицы ("сглаживающей" момент переключения цветов) мы будем видеть некий усредненный цвет, то есть искомый RGB:{154; 154; 154}. Разумеется, это все же эмуляция, не дотягивающая до полноценной "true color" цветопередачи, а потому в описаниях мониторов с такими матрицами обычно указывают, что он воспроизводит 16,2 млн. цветов - иначе говоря, указание такого количества цветов однозначно говорит о том, что у монитора 18-битная матрица. К сожалению, указание, что монитор воспроизводит 16,7 млн. цветов, еще ни о чем не говорит - многие производители так маркируют модели с теми же 18-битными матрицами.
На практике могут применяться более сложные механизмы FRC, работающие в сочетании с более привычным для пользователей дизерингом (когда нужный цвет формируется несколькими расположенными рядом пикселами с немного различающимися цветами), то есть меняющие на каждом кадре цвет не одного пиксела, а, скажем, группы из четырех пикселов - это позволяет более точно передавать недоступные матрице оттенки цвета, однако суть от этого в общем-то не меняется - "полноцветными" такие матрицы можно называть лишь условно.
Соответственно, качество цветопередачи таких матриц во многом определяется качеством реализации FRC. В основном, встречаются две проблемы - во-первых, это поперечные полосы на плавных цветовых градиентах, в наиболее плачевных случаях выглядящие так, как будто в матрице и нет никакого FRC. Впрочем, этот недостаток скорее относится к первому поколению "быстрых" матриц и на последних моделях мониторов встречается редко, хотя легкая "полосатость" градиентов иногда все же проявляется. Во-вторых, на некоторых сложных картинках (например, на однопиксельной сеточке, а уж тем более если она сочетается с плавным градиентом) алгоритмы FRC могут давать сбои, приводящие к мерцанию изображения - от едва заметного до очень сильного, делающего невозможной работу за монитором. Впрочем, последнее на современных мониторах тоже встречается достаточно редко и обычно оказывается уделом совсем недорогих моделей производителей. Также стоит помнить, что качество работы FRC (и, соответственно, связанные с ним побочные эффекты) может зависеть от установленной на мониторе контрастности и яркости (в случае, если последняя регулируется матрицей, а не лампами подсветки) - в такой ситуации мерцание картинки может возникать только на определенных настройках монитора. Впрочем, во всех случаях мерцание, как правило, возникает только на достаточно специфичных изображениях, не мешая обычной работе с монитором.
Следующая после разрядности матрицы проблема обеспечения качественной цветопередачи - это гамма-компенсация. Выше, говоря про яркость и контрастность, я для простоты писал, что зависимость между входным сигналом и яркостью пиксела линейная (), но на самом деле это не так - зависимость эта степенная и выглядит как , где gamma - некоторое число.
Можно сказать, что гамма-компенсация появилась и существует более по историческим причинам, нежели по техническим - дело в том, что электронно-лучевые трубки сами по себе имеют передаточную характеристику (то есть зависимость между входным и выходным сигналами), близкую к степенной, с показателем около 2,5. На операционных системах для PC долгое время не было никаких средств управления цветом (CMS - Color Management System), а потому gamma=2,5 традиционно считается стандартным значением для Wintel-платформы. На Apple Macintosh, традиционно использовавшихся для полиграфии, обработки фотоизображений, цветокоррекции и подобных задач, значение gamma частично корректировалось - оно уменьшалось до 1,8. Разумеется, чтобы пользователь видел на экране неискаженную картинку, она должна быть предварительно обработана функцией , где i - итоговая яркость, I - исходная яркость картинки, а gamma - то же самое число gamma, как и на системе, для просмотра на которой эта картинка обрабатывается; тогда для пользователя картинка будет описываться формулой , то есть он увидит оригинал I, скорректированный лишь с учетом контрастности C и яркости B монитора. Так как значение gamma отличается для разных платформ, то и изображения требовалось компенсировать по-разному, а потому, например, изображение, подготовленное для Mac'а, на PC выглядело слишком темным, а подготовленное для PC - наоборот, выглядело слишком светлым на Mac'е. Поэтому около десяти лет тому назад при активном участии Microsoft и HP был разработан стандарт sRGB "A Standard Default Color Space for the Internet", в котором значение gamma было определено равным 2,2 (точнее говоря, в sRGB гамма-кривая составлена из двух независимых функций, но она достаточно точно описывается и одной функцией при gamma=2,2) - таким образом, подготовленные в соответствии с sRGB изображения одинаково хорошо (или, как предпочитают говорить скептики, одинаково плохо) выглядели как на Mac'ах, так и на старых PC с gamma=2,5. На данный момент sRGB является стандартом как de jure, так и de facto, и современные мониторы в большинстве своем изначально калибруются на gamma=2,2.
Разумеется, возникает вопрос, а зачем нужна гамма-компенсация с технической точки зрения? Обычно в обоснование необходимости компенсации говорят, что она позволяет увеличить точность передачи темных оттенков (разумеется, за счет уменьшения точности передачи светлых) - ведь человеческий глаз имеет логарифмическую характеристику чувствительности, то есть он намного легче замечает изменение темных тонов, чем такое же по величине изменение светлых, а потому точностью передачи светлых тонов можно и пожертвовать. Теоретический расчет показывает, что при gamma=2,2 точность, эквивалентная 9-битному кодированию, достигается только для 7% наиболее темных оттенков, а эквивалентная 10-битному - лишь для 3% (очевидно, что смысла говорить об 11-битной точности передачи темных оттенков уже нет - те цвета, для которых она достигается, практически неотличимы от черного), но при этом для 75% светлых оттенков точность цветопередачи падает - это сравнимо с потерями при сохранении в JPEG со средним качеством (если, конечно, не учитывать то, что JPEG привносит еще и геометрические артефакты, а не только ухудшение цветопередачи). Казалось бы, все хорошо, и с учетом вышеупомянутых особенностей зрения можно возрадоваться тому, что мы улучшили точность передачи темных цветов и не обращать внимание на ухудшение качества светлых, но, увы, на практике все далеко не так хорошо. Во-первых, изображения имеют не идеальное качество - они ограничены возможностями фотоаппарата (сканера, et cetera), с помощью которого они были получены; если говорить о темных тонах, то точность их передачи в первую очередь определяется уровнем шума CCD или CMOS-матрицы камеры (причин шума может быть много - фотонный дробовой шум, шум считывания, темновой ток матрицы и так далее). Так вот, отношение сигнал-шум даже для высококачественных камер с охлаждаемыми матрицами, применяемыми в научных целях (в астрономии, спектроскопии, микробиологии и так далее), для очень хорошей камеры составляет 60...65 дБ (для достижения таких цифр применяется как минимум двухступенчатое охлаждение элементами Пельтье с активным воздушным охлаждением их радиаторов и итоговой температурой CCD-матрицы порядка -10...-40 градусов) - что соответствует точности около 10 бит (1 бит = 6,2 дБ); обычные же фотокамеры, вплоть до профессиональных, обеспечивают отношение сигнал-шум в лучшем случае 40...50 дБ, что соответствует точности всего лишь 7...8 бит. Иначе говоря, какой смысл в дополнительных битах точности, если даже при стандартной 8-битной точности младший бит фактически передает только шум матрицы?
Еще одним параметром, в некоторой степени определяющим качество цветопередачи, является так называемый цветовой охват. Как известно, человеческий глаз воспринимает свет в диапазоне длин волн примерно от 390 нм до 760 нм, воспринимая различные длины волны как различные цвета - от фиолетового до красного. В то же время различные устройства отображения информации, как правило, воспроизводят существенно меньший диапазон цветов. Наиболее удобно это наблюдать на так называемой цветовой диаграмме CIE. В цветовом пространстве CIE нужный тон задается тремя координатами - две из них задают цвет, а третья - яркость; на диаграмме же присутствуют только две координаты, определяющие цвет, причем там же выделяется пространство цветов, видимое человеческим глазом (границам этого пространства соответствуют чистые цвета, которые можно создать монохроматическим источником света, внутренней области - цвета с более сложным спектром):
На этой диаграмме белым треугольником выделена область, соответствующая цветопередаче устройств, соответствующих стандарту sRGB, а белым кружком в его центре - точка белого цвета при цветовой температуре 6500К. Как видите, диапазон цветов sRGB весьма мал по сравнению с видимым глазом диапазоном, а потому многие цвета на этапе получения изображения оказываются за его пределами (например, sRGB монитор в принципе не способен воспроизвести ни один действительно чистый цвет) - в таком случае они заменяются цветами, лежащими на границе описывающего sRGB треугольника. В некоторых случаях это, разумеется, приводит к достаточно заметным артефактам.
Помимо sRGB, есть также другие цветовые пространства, описывающие значительно больший диапазон цветов - это, в первую очередь, AdobeRGB и NTSC (как наиболее часто встречающиеся при обсуждении мониторов). Если пространство sRGB охватывает всего лишь 35% видимых человеком цветов, то у пространства AdobeRGB этот показатель составляет 50,6%, а у NTSC - 54,2%. Впрочем, на данный момент практически все мониторы соответствуют стандарту sRGB, причем, благодаря тому, что цветовой охват определяется фактически только характеристиками ламп подсветки и цветовых фильтров панели у ЖК-мониторов и характеристиками люминофоров у ЭЛТ, различия между разными моделями (вплоть до различий между ЭЛТ и ЖК-мониторами) не столь велики, чтобы заметно влиять на цветопередачу - ее качество в первую очередь ограничивается другими факторами.
Исключение из этого правила составляют некоторые ЭЛТ-мониторы профессионального уровня - так, не столь давно компания NEC-Mitsubishi представила модель 22-дюймового монитора RDF225WG, имеющую цветовой охват 97,6% от AdobeRGB, за счет улучшенного зеленого люминофора (как видно из приведенной выше диаграммы, именно зеленый цвет является наиболее проблематичным). Впрочем, в следующем году ожидается появление и ЖК-мониторов с цветовым охватом, даже немного превышающим AdobeRGB (правда, всего на 1%) - в отличие от вышеупомянутого ЭЛТ, в них это достигается за счет применения белой светодиодной подсветки вместо привычных ртутных ламп дневного света с холодным катодом. Дело в том, что лампы имеют очень неровный спектр излучения, состоящий из нескольких пиков и полос, в то время как у светодиодов он весьма равномерен и очень хорошо вписывается в полосы пропускания светофильтров матрицы, что и позволяет существенно улучшить изображение. На данный момент такие мониторы находятся в стадии разработки. И, разумеется, это в первую очередь будут профессиональные мониторы с соответствующими ценами - хотя со временем светодиодная подсветка скорее всего доберется и до домашних мониторов, если только раньше ЖК-матрицы не сдадут свои позиции OLED-матрицам, которым подсветка не требуется вообще. Впрочем, я не стал бы придавать этому слишком большого внимания - тот факт, что первый ЭЛТ-монитор с цветовым охватом, приближающимся к AdobeRGB, был выпущен лишь этой весной, в то время как индустрия цветокоррекции существует уже не первое десятилетие, достаточно наглядно свидетельствует, что цветовой охват не является определяющим параметром цветопередачи.
Как видите, обеспечение качественной цветопередачи - весьма сложная и комплексная задача, и если в случае с контрастностью, углами обзора или временем отклика можно было сказать, что заявляемая производителем одна цифра описывает лишь часть характеристик, то здесь же одна, лишь надпись "16,7 millions of colors" не говорит вообще практически ни о чем.
1.7. Безопасность
Еще одной расхожей темой при сравнении ЖК и ЭЛТ мониторов является их безопасность для здоровья. Несмотря на то, что эта тема напрямую не связана с качеством изображения, я все же рассмотрю ее. Впрочем, речь пойдет не столько о том, насколько безопасны ЖК-мониторы, сколько о том, опасны ли их собратья на ЭЛТ.
Во-первых, монитор может представлять опасность с точки зрения излучений. В различных дискуссиях мне доводилось встречать утверждения о наличии у ЭЛТ-мониторов самых разнообразных их видов, от альфа-частиц до гамма-излучения. Давайте рассмотрим их по очереди... Альфа-излучение представляет собой поток ядер гелия-четыре - так как изначально в электронно-лучевой трубке гелия нет, то может это излучение взяться разве что за счет протекания в ней ядерных реакций, что, очевидно, невозможно. Следующее излучение - бета-излучение, которое представляет собой поток электронов; внутри электронно-лучевой трубки действительно присутствует поток электронов, разгоняющихся до энергий порядка 25 кэВ (так как рабочее напряжение кинескопа составляет порядка 25 кВ), однако между ним и пользователем находится стекло почти сантиметровой толщины, преодолеть которое не в состоянии ни один электрон.Ударяясь в люминофор и тормозя в нем, электроны лишь часть своей энергии передают ему (собственно говоря, за счет этой энергии люминофор и светится), другая же часть энергии уходит в так называемое тормозное излучение, возникающее при торможении заряженной частицы в поле электронной оболочки неподвижного атома. Спектр тормозного излучения простирается от нуля до максимальной энергии тормозящих частиц - то есть максимальная его энергия может составлять 25 кэВ, что соответствует очень мягкому рентгену (мягким называется излучение с энергией квантов до сотни килоэлектронвольт из-за сравнительно небольшой проникающей способности - для сравнения, в современной рентгенографии верхняя граница энергетического спектра излучения может превышать 150 кэВ).
Следом за рентгеновским излучением следует гамма-излучение с энергиями квантов в десятки мегаэлектронвольт, а возникает оно либо при переходах между разными энергетическими уровнями ядерного ядра после реакции ядерного распада, либо как тормозное напряжение при бомбардировке мишени частицами с энергиями в десятки МэВ. Очевидно, что ядерные реакции в мониторе не идут, и миллионовольтных напряжений в нем нет, а потому гамма-излучение он испускать не может.
Итак, из излучений остался только мягкий рентген с энергией порядка 25 кэВ. Для борьбы с ним во всех без исключения кинескопах переднее стекло трубки (а тормозное излучение всегда направлено вперед, по направлению движения вызвавших его частиц) содержит в себе свинец и ряд других тяжелых металлов (добавление одного только свинца приводит к помутнению стекла со временем), а потому более чем эффективно задерживает это излучение. Таким образом, рентгеновское излучение монитора изначально имеет весьма мягкий спектр, а после прохождения через свинцовое стекло трубки его уровень не превышает обычного природного фонового уровня излучения.
Во-вторых, помимо излучений, старые мониторы могли представлять собой некоторую не то что опасность, но скорее неприятность из-за наличия мощного электростатического поля на передней поверхности трубки, однако абсолютно все мониторы, соответствующие стандарту MPR-II (не говоря уж о серии стандартов TCO), имеют на трубке заземленное проводящее покрытие, снижающее электростатическое поле до приемлемых величин.
В-третьих, отклоняющая система монитора излучает сравнительно мощное электромагнитное поле. Однако отклоняющая система расположена на горловине трубки, то есть сравнительно далеко от пользователя, к тому же в хороших современных мониторах она еще и закрыта защитным металлическим экраном - иначе говоря, нанести себе какой-либо вред за ее счет можно разве что, если долгими днями сидеть, прислонив голову к задней или боковой стенкам монитора, но никак не в метре перед экраном.
Таким образом, получается, что в современном ЭЛТ-мониторе нет ничего опасного для здоровья - все приписываемые ему излучения либо вообще отсутствуют, либо же подавляются до безопасного уровня. Более того, если обратить внимание на жалобы пользователей на наносимый их здоровью ущерб, то в первую очередь выделяются жалобы на головную боль, усталость глаз и ухудшение зрения. Однако я позволю себе заметить, что после воздействия такой дозы рентгеновского излучения, которая вызывала бы головную боль и покраснение глаз, уже надо срочно решать вопрос с завещанием, а не с заменой монитора.
Подобные документы
История развития дисплеев. Основные принципы работы СRT-мониторов, LCD-мониторов. Различные виды сенсорных экранов и современные типы мониторов. Сравнение характеристик мониторов LCD над CRT. Сенсорные экраны на поверхностно-акустических волнах.
реферат [1,2 M], добавлен 15.06.2016Принцип работы мониторов на основе электронно-лучевой трубки, оценка их параметров. Подключение мониторов к персональному компьютеру и их настройка. Неисправности и методы их устранения. Меры предосторожности и безопасности при обслуживании компьютера.
курсовая работа [5,6 M], добавлен 07.12.2011Основы методологии мониторов и устройства жесткого диска. Планирование работы дисков с использованием мониторов. Теоретические основы параллельного программирования. Микропроцессорная реализация параллельных процессов на основе технологии мониторов.
дипломная работа [3,5 M], добавлен 08.07.2012Характеристика разных типов мониторов, которые являются неотъемлемой частью компьютерного оборудования, различаются по типичным значениям видимого размера диагонали и площади экрана. Потребляемая мощность и допустимые углы обзора разных видов мониторов.
контрольная работа [44,5 K], добавлен 05.01.2011Характеристика монитора - устройства для вывода на экран текстовой и графической информации, его основные параметры, принцип работы. Схема электронно-лучевой трубки. Мониторы с теневой маской. Особенности и преимущества жидкокристаллических мониторов.
презентация [705,0 K], добавлен 10.08.2013Процесс изготовления, преимущества и недостатки ЖК-панелей. Типы матриц с компенсацией времени отклика, используемые в мониторах, их характеристики. Технология OLED и LEP: перспективы и развитие. Плазменные панели. Электронная бумага. Сенсорные дисплеи.
доклад [3,2 M], добавлен 12.02.2009История создания жидкокристаллического дисплея. Виды ЖК мониторов, их классификация по рабочему разрешению. Характеристика цифрового интерфейса DVI, типы и особенности матриц. Методики измерения яркости и контрастности монитора, время реакции пикселя.
курсовая работа [500,2 K], добавлен 01.05.2011Классификация и отличительные особенности мониторов, размер рабочей области экрана, частота вертикальной и горизонтальной развертки. Типы подключения монитора к компьютеру, средства управления и регулирования. Перспективы развития и применения мониторов.
контрольная работа [88,7 K], добавлен 23.06.2010Классификация и характеристика мониторов. Основные виды мониторов, их достоинства и недостатки. Мониторы с электронно-лучевой трубкой, жидкокристаллические, плазменные и лазерные мониторы. Стандарты безопасности и эргономические стандарты для мониторов.
презентация [2,1 M], добавлен 04.04.2019Классификация мониторов по виду выводимой информации, размерности отображения, типу экрана, типу интерфейсного кабеля. Физические характеристики мониторов. Процентное изменение полезной площади экрана разных типоразмеров. Антибликовая обработка экрана.
реферат [185,3 K], добавлен 18.01.2012