Информация и способы ее получения
Об информатике как науке о законах и методах накопления, обработки передачи информации. Способы представления, измерения, классификации информации, природа информации. Дискретность информации. Многообразие представлений информации о массе тела.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 22.10.2008 |
Размер файла | 26,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2
Информация и способы ее представления
Информатика - наука о законах и методах накопления, обработки и передачи информации. В наиболее общем виде понятие информации можно выразить так:
Информация - это отражение предметного мира с помощью знаков и сигналов.
Принято говорить, что решение задачи на ЭВМ, в результате чего создается новая информация, получается путем вычислений. Потребность в вычислениях связана с решением задач: научных, инженерных, экономических, медицинских и прочих.
Каким образом отыскивается решение задачи?
Задача становится разрешимой, если найдено правило, способ получения результата. В информатике такое правило называют алгоритмом.
Содержание алгоритма - составляющие его действия и объекты, над которыми эти действия выполняются, - определяют средства, которые должны присутствовать в машине, предназначенной для исполнения алгоритма.
При решении задачи ЭВМ вводит в себя необходимую информацию и через какое-то время выводит (печатает, рисует) результаты - информацию, для получения которой и была создана. Таким образом, работа ЭВМ - это своеобразные манипуляции с информацией. И, следовательно, ЭВМ - это техническое средство информатики.
Что такое информация? Какова ее природа?
В обыденной жизни под информацией понимают всякого рода сообщения, сведения о чем-либо, которые передают и получают люди.
Сами по себе речь, текст, цифры - не информация. Они лишь носители информации. Информация содержится в речи людей, текстах книг, колонках цифр, в показаниях часов, термометров и других приборов. Сообщения, сведения, т.е. информация, являются причиной увеличения знаний людей о реальном мире. Значит, информация отражает нечто, присущее реальному миру, который познается в процессе получения информации: до момента получения информации что-то было неизвестно, или, иначе, не определено, и благодаря информации неопределенность была снята, уничтожена.
Рассмотрим пример. Пусть нам известен дом, в котором проживает наш знакомый, а номер квартиры неизвестен. В этом случае местопребывание знакомого в какой-то степени не определено. Если в доме всего две квартиры, степень неопределенности невелика. Но если в доме 200 квартир - неопределенность достаточно велика.
Этот пример наталкивает на мысль, что неопределенность связана с количеством возможностей, т.е. с разнообразием ситуаций. Чем больше разнообразие, тем больше неопределенность.
Информация, снимающая неопределенность, существует постольку, поскольку существует разнообразие. Если нет разнообразия, нет неопределенности, а, следовательно, нет и информации.
Итак, информация - это отражение разнообразия, присущего объектам и явлениям реального мира. И, таким образом, природа информации объективно связана с разнообразием мира, и именно разнообразие является источником информации.
Каковы формы представления информации?
Информация - очень емкое понятие, в которое вмещается весь мир: все разнообразие вещей и явлений, вся история, все тома научных исследований, творения поэтов и прозаиков. И все это отражается в двух формах - непрерывной и дискретной. Обратимся к их сущности.
Объекты и явления характеризуются значениями физических величин. Например, массой тела, его температурой, расстоянием между двумя точками, длиной пути (пройденного движущимся телом), яркостью света и т.д. Природа некоторых величин такова, что величина может принимать принципиально любые значения в каком-то диапазоне. Эти значения могут быть сколь угодно близки друг к другу, исчезающе малоразличимы, но все-таки, хотя бы в принципе, различаться, а количество значений, которое может принимать такая величина, бесконечно велико.
Такие величины называются непрерывными величинами, а информация, которую они несут в себе, непрерывной информацией.
Слово "непрерывность" отчетливо выделяет основное свойство таких величин - отсутствие разрывов, промежутков между значениями, которые может принимать величина. Масса тела - непрерывная величина, принимающая любые значения от 0 до бесконечности. То же самое можно сказать о многих других физических величинах - расстоянии между точками, площади фигур, напряжении электрического тока.
Кроме непрерывных существуют иные величины, например, количество людей в комнате, количество электронов в атоме и т.д. Такого рода величины могут принимать только целые значения, например, 0, 1, 2, ..., и не могут иметь дробных значений. Величины, принимающие не всевозможные, а лишь вполне определенные значения, называют дискретными. Для дискретной величины характерно, что все ее значения можно пронумеровать целыми числами 0,1,2,...
Примеры дискретных величин:
* геометрические фигуры (треугольник, квадрат, окружность);
* буквы алфавита;
* цвета радуги;
Можно утверждать, что различие между двумя формами информации обусловлено принципиальным различием природы величин. В то же время непрерывная и дискретная информация часто используются совместно для представления сведений об объектах и явлениях.
Пример. Рассмотрим утверждение "Это окружность радиуса 8,25".
Здесь:
* "окружность"- дискретная информация, выделяющая определенную геометрическую фигуру из всего разнообразия фигур;
* значение "8,25" - непрерывная информация о радиусе окружности, который может принимать бесчисленное множество значений.
Что объединяет непрерывные и дискретные величины?
В качестве простого примера, иллюстрирующего наши рассуждения, рассмотрим пружинные весы. Масса тела, измеряемая на них, - величина непрерывная по своей природе. Представление о массе (информацию о массе) содержит в себе длина отрезка, на которую перемещается указатель весов под воздействием массы измеряемого тела. Длина отрезка - тоже непрерывная величина.
Чтобы охарактеризовать массу, в весах традиционно используется шкала, отградуированная, например, в граммах. Пусть, например, шкала конкретных весов имеет диапазон от 0 до 50 граммов.
При этом масса будет характеризоваться одним из 51 значений: 0, 1, 2, ..., 50, т.е. дискретным набором значений. Таким образом, информация о непрерывной величине, массе тела, приобрела дискретную форму.
Любую непрерывную величину можно представить в дискретной форме. И механизм такого преобразования очевиден.
Зададимся вопросом, можно ли по дискретному представлению восстановить непрерывную величину. И ответ будет таким: да, в какой-то степени можно, но сделать это не так просто, и восстанавливаемый образ может отличаться от подлинника.
Как представлять непрерывную информацию?
Для представления непрерывной величины могут использоваться самые разнообразные физические процессы.
В рассмотренном выше примере весы позволяют величину "масса тела" представить "длиной отрезка", на который переместится указатель весов (стрелка). В свою очередь, механическое перемещение можно преобразовать, например, в "напряжение электрического тока". Для этого можно использовать потенциометр, на который подается постоянное напряжение, например, 10 вольт, от источника питания. Движок потенциометра можно связать с указателем весов. В таком случае изменение массы тела от 0 до 50 граммов приведет к перемещению движка в пределах длины потенциометра (от 0 до L миллиметров) и, следовательно, к изменению напряжения на его выходе от 0 до 10 вольт.
Такое преобразование можно изобразить следующим образом:
Масса Длина Напряжение
0 - 50 [г] 0 - L [мм] 0 - 10 [в]
Выводы
1. Информация о массе тела может представляться, вообще говоря, многими способами.
2. В качестве носителей непрерывной информации могут использоваться любые физические величины, принимающие непрерывный "набор" значений (правильнее было бы сказать принимающие любое значение внутри некоторого интервала).
Отметим, что физические процессы (перемещение, электрический ток и др.) могут существовать сами по себе или использоваться, например, для передачи энергии. Но в ряде случаев эти же процессы применяются в качестве носителей информации. Чтобы отличить одни процессы от других, введено понятие "сигнал".
Если физический процесс, т.е. какая-то присущая ему физическая величина, несет в себе информацию, то говорят, что такой процесс является сигналом. Именно в этом смысле пользуются понятиями "электрический сигнал", "световой сигнал" и т.д. Таким образом, электрический сигнал - не просто электрический ток, а ток, величина которого несет в себе какую-то информацию.
Как представлять дискретную информацию?
Как уже говорилось, дискретность - это случай, когда объект или явление имеет конечное (счетное) число разнообразий. Чтобы выделить конкретное из всего возможного, нужно каждому конкретному дать оригинальное имя (иначе, перечислить). Эти имена и будут нести в себе информацию об объектах, явлениях и т. п.
В качестве имен часто используют целые числа 0, 1, 2,... Так именуются (нумеруются) страницы книги, дома вдоль улицы, риски на шкалах измерительных приборов. С помощью чисел можно перенумеровать все "разнообразия" реального мира. Именно такая цифровая форма представления информации используется в ЭВМ.
В обыденной жизни, тем не менее, цифровая форма представления информации не всегда удобна. Первенство принадлежит слову ! Традиционно информация об объектах и явлениях окружающего мира представляется в форме слов и их последовательностей.
Основной элемент в этой форме - слово. Слово - имя объекта, действия, свойства и т.п., с помощью которого выделяется именуемое понятие в устной речи или в письменной форме.
Слова строятся из букв определенного алфавита (например, А, Б, ... , Я). Кроме букв используются специальные символы - знаки препинания, математические символы +, -, знак интеграла, знак суммы и т.п. Все разнообразие используемых символов образует алфавит, на основе которого строятся самые разные объекты:
· из цифр - числа;
· из букв - собственно слова,
· из цифр, букв и математических символов - формулы и т.д.
И все эти объекты несут в себе информацию :
числа - информацию о значениях;
слова - информацию об именах и свойствах объектов;
формулы - информацию о зависимостях между величинами и т.д.
Эта информация (и это очевидно) имеет дискретную природу и представляется в виде последовательности символов. О такой информации говорят как об особом виде дискретной информации и называют этот вид символьной информацией.
Наличие разных систем письменности, в том числе таких, как иероглифическое письмо, доказывает, что одна и та же информация может быть представлена на основе самых разных наборов символов и самых разных правил использования символов при построении слов, фраз, текстов.
Из этого утверждения можно сделать следующий вывод:
Разные алфавиты обладают одинаковой "изобразительной возможностью", т.е. с помощью одного алфавита можно представить всю информацию, которую удалось представить на основе другого алфавита. Можно, например, ограничиться алфавитом из десяти цифр - 0, 1, ..., 9 и с использованием только этих символов записать текст любой книги или партитуру музыкального произведения. При этом сужение алфавита до десяти символов не привело бы к каким-либо потерям информации. Более того, можно использовать алфавит только из двух символов, например, символов 0 и 1. И его "изобразительная возможность" будет такой же.
Итак, символьная информация может представляться с использованием самых различных алфавитов (наборов символов) без искажения содержания и смысла информации: при необходимости можно изменять форму представления информации - вместо общепринятого алфавита использовать какой-либо другой, искусственный алфавит, например, двухбуквенный.
Форма представления информации, отличная от естественной, общепринятой, называется кодом. Коды широко используются в нашей жизни: почтовые индексы, телеграфный код Морзе и др. Широко применяются коды и в ЭВМ и в аппаратуре передачи данных. Так, например, широко известно понятие "программирование в кодах".
Кроме рассмотренных существуют и другие формы представления дискретной информации. Например, чертежи и схемы содержат в себе графическую информацию.
Как измерить информацию?
Как уже говорилось в примере с номером квартиры, одни сведения могут содержать в себе мало информации, а другие - много. Разработаны различные способы оценки количества информации. В технике чаще всего используется способ оценки, предложенный в 1948 году основоположником теории информации Клодом Шенноном. Как было отмечено, информация уничтожает неопределенность. Степень неопределенности принято характеризовать с помощью понятия "вероятность".
Вероятность - величина, которая может принимать значения в диапазоне от 0 до 1. Она может рассматриваться как мера возможности наступления какого-либо события, которое может иметь место в одних случаях и не иметь места в других.
Если событие никогда не может произойти, его вероятность считается равной 0. Так, вероятность события "Завтра будет 5 августа 1832 года" равна нулю в любой день, кроме 4 августа 1832 года. Если событие происходит всегда, его вероятность равна 1.
Чем больше вероятность события, тем выше уверенность в том, что оно произойдет, и тем меньше информации содержит сообщение об этом событии. Когда же вероятность события мала, сообщение о том, что оно случилось, очень информативно.
Количество информации I, характеризующей состояние, в котором пребывает объект, можно определить, используя формулу Шеннона:
I = -(p[1]*log(p[1])+p[2]*log(p[2])+...+p[n]*log(p[n])) ,
здесь
n - число возможных состояний;
p[1],...p[n] - вероятности отдельных состояний;
log( ) - функция логарифма при основании 2.
Знак минус перед суммой позволяет получить положительное значение для I, поскольку значение log(p[i]) всегда не положительно.
Единица информации называется битом. Термин "бит" предложен как аббревиатура от английского словосочетания "Binary digiT", которое переводится как "двоичная цифра".
1 бит информации - количество информации, посредством которого выделяется одно из двух равновероятных состояний объекта.
Рассмотрим пример
Пусть имеется два объекта. С каждого из них в определенные мо-менты времени диспетчеру передается одно из двух сообщений: включен или выключен объект. Диспетчеру известны типы сообщений, но неизвестно, когда и какое сообщение поступит.
Пусть также, объект А работает почти без перерыва, т.е. вероятность того, что он включен, очень велика (например, р_А_вкл=0,99 и р_А_выкл=0,01, а объект Б работает иначе и для него р_Б_вкл=р_Б_выкл=0,5).
Тогда, если диспетчер получает сообщение том, что А включен, он получает очень мало информации. С объектом Б дела обстоят иначе.
Подсчитаем для этого примера среднее количество информации для указанных объектов, которое получает диспетчер:
* Объект А : I = -(0,99*log(0,99)+0,01*log(0,01))=0,0808.
* Объект Б : I = -(0,50*log(0,50)+0,50*log(0,50))=1.
Итак, каждое сообщение объекта Б несет 1 бит информации.
Формула Шеннона, в принципе, может быть использована и для оценки количества информации в непрерывных величинах.
При оценке количества дискретной информации часто используется также формула Хартли:
I = log(n) ,
где n - число возможных равновероятных состояний;
log() - функция логарифма при основании 2.
Формула Хартли применяется в случае, когда вероятности состоя-ний, в которых может находиться объект, одинаковые.
Приведем пример. Пусть объект может находиться в одном из восьми равновероятных состояний. Тогда количество информации, поступающей в сообщении о том, в каком именно он находится, будет равно
I = log(8) = 3 [бита].
Оценим количество информации в тексте.
Точно ответить на вопрос, какое количество информации содержит 1 символ в слове или тексте, достаточно сложное дело. Оно требует исследования вопроса о частотах использования символов и всякого рода сочетаний символов. Эта задача решается криптографами. Мы же упростим задачу. Допустим, что текст строится на основе 64 символов, и частота появления каждого из них одинакова, т.е. все символы равновероятны.
Тогда количество информации в одном символе будет равно
I = log(64) = 6 [бит].
Из двух символов данного алфавита может быть образовано n=64*64=4096 различных сочетаний. Следовательно, два символа несут в себе I=log(4096)=12 бит информации.
Оценим количество информации, содержащейся в числах.
Если предположить, что цифры 0, 1, ..., 9 используются одинаково часто (равновероятны), то
* одна цифра содержит I = log(10) = 3,32 [бит];
* четырехзначное число из диапазона [0..9999], если все его значения равновероятны, содержит
I = log(10000)=13,28 [бит];
* а восьмиразрядное число - I=log(100000000)=26,56 [бита].
Итак, количество информации в сообщении зависит от числа разнообразий, присущих источнику информации и их вероятностей.
Повторим основные положения, рассмотренные выше.
1. Информация - отражение предметного или воображаемого мира с помощью знаков и сигналов.
2. Информация может существовать либо в непрерывной, либо в дискретной формах.
3. Информация о чем-либо может быть представлена многими способами. В качестве носителей информации могут использоваться разнообразные физические величины такой же природы (для непрерывной информации - непрерывные физические величины, для дискретной - дискретные).
4. Физический процесс является сигналом, если какая-либо присущая ему физическая величина несет в себе информацию.
5. Чтобы представить дискретную информацию, надо перечислить (поименовать) все разнообразия, присущие объекту или явлению (цвета радуги, виды фигур и др.).
Дискретная информация представляется:
* числами (как цифровая),
* символами некоторого алфавита (символьная),
* графическими схемами и чертежами (графическая).
6. Дискретная информация может использоваться и для представления непрерывной. Удобной формой дискретной информации является символьная.
7. Разные алфавиты обладают одинаковой "изобразительной силой": с помощью одного алфавита можно представить всю информацию, которую удавалось представить на основе другого алфавита. А значит, информацию обо всем окружающем человека мире можно представить в дискретной форме с использованием алфавита, состоящего только из двух символов (т.е. с использованием двоичной цифровой формы).
8. Форма представления информации, отличная от естественной, общепринятой, называется кодом.
Широко известны такие коды, как почтовые индексы, нотная за-пись музыки, телеграфный код Морзе, цифровая запись программ для ЭВМ (программирование в кодах), помехозащищенные коды в системах передачи данных.
9. Информация уничтожает неопределенность знаний об окружающем мире. Степень неопределенности принято характеризовать с помощью понятия "вероятность".
Вероятность - величина, которая может принимать значения в диапазоне [0,1] и которая может рассматриваться как мера возможности наступления какого-либо события. Если событие никогда не может произойти, его вероятность считается равной 0, а если событие происходит всегда, его вероятность равна 1.
Для оценки количества информации в технике чаще всего используется способ, предложенный Клодом Шенноном. Для случая, когда все состояния, в которых может находиться объект, равновероятны, применяют формулу Хартли. Одна единица информации называется битом.
Подобные документы
Сущностные характеристики информации. Классификация информации по форме представления, области возникновения, способу передачи и восприятия и способам кодирования. Анализ основных единиц измерения информации, служащих для измерения объёма информации.
реферат [77,6 K], добавлен 04.10.2011Важнейшие стороны обеспечения информационной безопасности. Технические средства обработки информации, ее документационные носители. Типовые пути несанкционированного получения информации. Понятие об электронной подписи. Защита информации от разрушения.
реферат [138,5 K], добавлен 14.07.2015Характеристика информации. Перевод числа из двоичной системы в десятичную, шестнадцатеричную и восьмеричную. Способы оценки количества информации. Технические средства обработки информации. Принцип работы, история изобретения струйного принтера.
контрольная работа [1016,6 K], добавлен 22.10.2012Понятие информации как одно из фундаментальных в современной науке и базовое для информатики. Дискретизация входной информации как условие пригодности для компьютерной обработки. Понятия, виды, свойства информации, ее классификация. Информация и рынок.
курсовая работа [31,0 K], добавлен 12.10.2009Виды информации, с которыми работают современные компьютеры. Понятие "информация": в физике, в биологии, в кибернетике. Представление информации. Кодирование и каналы передачи информации. Локальные компьютерные сети. Хранение информации в файлах.
контрольная работа [26,4 K], добавлен 13.01.2008Механизм передачи информации, ее количество и критерии измерения. Единицы информации в зависимости от основания логарифма. Основные свойства и характеристики количества информации, ее энтропия. Определение энтропии, избыточности информационных сообщений.
реферат [33,9 K], добавлен 10.08.2009Изучение сущности информации - сведений, знаний, которые получаются, передаются, преобразуются, регистрируются с помощью некоторых знаков. Способы передачи информации электрическими, магнитными и световыми импульсами. Программное обеспечение компьютеров.
контрольная работа [18,6 K], добавлен 27.02.2011Способы передачи и хранения информации наиболее надежными и экономными методами. Связь между вероятностью и информацией. Понятие меры количества информации. Энтропия и ее свойства. Формула для вычисления энтропии. Среднее количество информации.
реферат [99,7 K], добавлен 19.08.2015Информатика - техническая наука, определяющая сферу деятельности, связанную с процессами хранения, преобразования и передачи информации с помощью компьютера. Формы представления информации, ее свойства. Кодирование информации, единицы ее измерения.
презентация [117,7 K], добавлен 28.03.2013Информация и информационные процессы в природе, обществе, технике. Информационная деятельность человека. Кодирование информации. Способы кодирования. Кодирование изображений. Информация в кибернетике. Свойства информации. Измерение количества информации.
реферат [21,4 K], добавлен 18.11.2008