Компьютерные сети

Понятие компьютерной сети. Передача данных по сети. Топология сети. Топология типа "шина", "кольцо", "звезда". Взаимодействие компьютеров. Передача, отражение сигнала. Нарушение целостности сети. Расширение ЛВС. Передача маркера. Сети на основе сервера.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 07.10.2008
Размер файла 33,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Компьютерные сети

Понятие компьютерной сети

Компьютерная сеть - это совокупность ПК и других устройств (концентраторов, принтеров, модемов и т. д.), объединяемых вместе с помощью сетевых кабелей. Устройства сети могут взаимодействовать друг с другом с целью совместного использования информации и ресурсов.

Принципы сетевого взаимодействия не зависят от количества компьютеров. Чтобы понять принципы общения сотен компьютеров достаточно понять, как это делает пара.

Сеть, которая организует взаимодействие в ограниченной области, называется локальной вычислительной сетью (ЛВС, LAN). Достаточно часто ЛВС размещается в одном месте (например, в офисе). Глобальная вычислительная сеть (ГВС, WAN) - это группа устройств или ЛВС, которые располагаются в разных удаленных друг от друга местах и связываются между собой телефонными каналами, высокоскоростными выделенными линиями, оптоволоконными и спутниковыми каналами. Компьютеры в ГВС могут находиться на расстоянии десятков километров. Но подобное разделение достаточно условно - одни и те же технологии могут применяться и в пределах одного офиса, и в пределах города, и для связи между городами. Самый известный пример ГВС - Internet.

Передача данных по сети

Передача данных может осуществляться последовательно или параллельно. При параллельной передаче биты данных передаются одновременно по нескольким проводникам (по шине).

Напротив, последовательное соединение подразумевает передачу данных по очереди бит за битом. В сетях чаще всего используется именно этот способ.

При передаче используют три различных метода, обозначаемых разными терминами: симплексный (simplex), дуплексный(duplex) и полудуплексный(half-duplex). При симплексном методе данные предаются только в одном направлении. При полудуплексном - в обоих направлениях, но в разное время, а в дуплексном - одновременно в обоих направлениях.

Коммутируемые сети

Коммутация, или переключение соединения позволяет аппаратным средствам использовать один и тот же физический канал для соединения со множеством устройств. Этот принцип лежит в основе телефонной сети общего пользования (ТФОП). При отсутствии механизма коммутации, вам необходимо иметь тысячу соединительных линий чтобы позвонить тысяче абонентов. Используя механизм коммутации можно обойтись одной единственной линией. По этой же причине коммутация используется в компьютерных сетях. Существует два вида коммутации: коммутация цепей и коммутация пакетов.

Переключение цепей создает единое непрерывное соединение между двумя сетевыми устройствами. Пока эти устройства взаимодействуют, другие не могут воспользоваться этим соединением. Т.е. устройства делят между собой физический канал связи и вынуждены ждать, пока он не освободится. В телефонной сети используют именно этот способ коммутации.

Переключение пакетов позволяет не поддерживать постоянный физический канал между двумя устройствами. Информация при этом способе коммутации делится на части, называющиеся пакетами, и каждый пакет передается отдельно, по свободным в данный момент каналом связи. При этом каждый пакет может проходить по своему маршруту.

Топология сети

Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология -- это стандартный термин, который используется при описании основной компоновки сети. Если Вы поймете, как используются различные топологии, Вы сумеете понять, какими возможностями обладают различные типы сетей.

Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель. Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, не достаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров. Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки. Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.

Базовые топологии

Все сети строятся на основе трех базовых топологий:

? шина (bus);

? звезда (star);

? кольцо (ring).

Если компьютеры подключены вдоль одного кабеля [сегмента (segment)], топология называется шиной.

В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой.

Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология носит название кольца.

Хотя сами по себе базовые топологии несложны, в реальности встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.

Топология типа «шина»

Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети (рис. 1.1).

Взаимодействие компьютеров

В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов. Чтобы понять процесс взаимодействия компьютеров по шине, Вы должны уяснить следующие понятия:

? передача сигнала;

? отражение сигнала; терминатор.

Передача сигнала

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу. Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

? характеристики аппаратного обеспечения компьютеров в сети;

? частота, с которой компьютеры передают данные;

? тип работающих сетевых приложений;

? тип сетевого кабеля;

? расстояние между компьютерами в сети.

Шина -- пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают заглушки (терминаторы, terminators), поглощающие эти сигналы. Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору -- для увеличения длины кабеля. К любому свободному -- неподключенному -- концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Нарушение целостности сети

Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает». Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Расширение ЛВС

Увеличение участка, охватываемого сетью, вызывает необходимость ее расширения. В сети с топологией ``шина'' кабель обычно удлиняется двумя способами.

Для соединения двух отрезков кабеля можно воспользоваться баррел-коннектором (barrel connector). Но злоупотреблять ими не стоит, так как сигнал при этом ослабевает. Лучше купить один длинный кабель, чем соединять несколько коротких отрезков. При большом количестве ``стыковок'' нередко происходит искажение сигнала.

Для соединения двух отрезков кабеля служит репитер (repeater). В отличие от коннектора, он усиливает сигнал перед передачей его в следующий сегмент. Поэтому предпочтительнее использовать репитер, чем баррел-коннектор или даже один длинный кабель: сигналы на большие расстояния пойдут без искажений.

Топология типа «кольцо»

При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо (рис.1.2). Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Передача маркера

Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает адрес получателя в данные и посылает их по кольцу.

Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных. После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получим подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть.

На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается практически со скоростью света. В кольце диаметром 200 метров маркер может циркулировать с частотой 10 000 оборотов в секунду.

Топология типа «звезда»

При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (рис. 1.3). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованны. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети. А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.

Сетевые устройства

Повторитель (repeater)

Усиливает сигнал сетевого кабеля, который затухает на расстоянии более 100 м. Он работает на физическом уровне стека протоколов, не требует программного обеспечения и представляет собой обычно автономное устройство, не дающее непроизводительных издержек при передаче данных. Таким образом, с помощью наращивания сегментов общая протяженность сети может достигать 500 м. Компьютеры, связанные повторителем считаются принадлежащими одному сегменту. Количество компьютеров в сегменте не должно превышать 50.

Мост

Это устройство уровня связи данных, объединяющее две или более сети с одной или разной топологией. Обычно это компьютер с несколькими сетевыми платами, к каждой из которых подсоединен свой сегмент ЛВС. Основной задачей моста служит обеспечение прозрачной связи между абонентами различных сетей.

Коммутатор (коммутирующий концентратор, switch)

Сочетают в себе функции многопортового повторителя и высокоскоростного моста. Их упрощенной «неинтеллектуальной» версией исполнения являются концентраторы (хабы), которые просто на физическом уровне соединяют сегменты сети «звездой» и рассылают все пакеты на все порты.

Маршрутизатор

Требует более высокого уровня протоколов архитектуры связи, чем мост или коммутатор. Он связывает сегменты сети через сетевой уровень. Например, инструкции по маршрутизации пакетов содержатся в сетевом уровне IP. Маршрутизатор отличается от моста тем, что он может считывать адрес рабочей станции и адрес ЛВС в пакете. Благодаря этому маршрутизатор может фильтровать пакеты и перенаправлять их по наилучшему маршруту, который определяет по таблице маршрутизации.

Шлюз

Обычно работает на самом высоком уровне стека протоколов и обеспечивают взаимодействие систем и сетей, которые используют несовместимые протоколы. Примерами межсистемных продуктов являются пакеты электронной почты. Они позволяют обмениваться почтовыми файлами пользователей на самых различных системах.

Сетевой адаптер

PC подключается к сети с помощью сетевой карты, которая устанавливается в один из свободных слотов материнской платы. Сетевые карты являются посредниками между PC и сетью и передают данные по системе шин к CPU и RAM сервера или рабочей станции. Большинство сетевых карт имеют гнездо для установки микросхемы ПЗУ удаленной загрузки (Remote Boot ROM), что необходимо для бездисковых станций.

Выпускаются 16- и 32-разрядные сетевые карты для различных компьютерных архитектур: ISA, EISA, PCI, MCA.

На внешней стороне карты имеются разъемы для подключения кабелей:

? BNC - разъем для подключения тонкого коаксиального кабеля Ethernet (RG-58) (сетевая среда 10Base2)

? AUI - разъем для подключения толстого кабеля Ethernet (сетевая среда 10Base5)

? RJ-45 (UTP) - разъем для подключения витой пары (сетевая среда 10BaseT, 100BaseTX)

? ST - разъем для подключения оптоволоконного кабеля (сетевая среда 10BaseFX, 100BaseFX)

Сетевые карты бывают 16- и 32-разрядными и имеют исполнение для различных компьютерных архитектур: ISA, EISA, PCI, MCA.

Кабели

В сети данные передаются по кабелям, соединяющим отдельные компьютеры различным образом в зависимости от топологии и вида сети (Ethernet, Arcnet, Token Ring). Витая пара - это два изолированных медных провода, скрученных между собой. Для Ethernet используется 8-жильный кабель, т.е. состоящий физически из 4-х витых пар. При этом различают неэкранированный (UTP) и экранированный (STP) кабели. Разъем соответствует стандарту RJ-45.

Коаксиальный кабель состоит из центрального проводника (одножильного или многожильного) и внешней экранирующей оплетки. Для Ethernet применяют кабель с волновым сопротивлением 50 Ом. Существуют два варианта реализации Ethernet на коаксиальном кабеле: на тонком кабеле и на толстом. Для Ethernet на тонком кабеле рекомендуется использовать кабель RG-50. Толстый кабель "Yellow Ethernet" по своим показателям значительно превосходит тонкий.

Оптоволоконный кабель (ВОК), проводящий световые волны, состоит из двух проводов, причем каждый из них может передавать данные только в одном направлении. Этот кабель изготовлен из стекла (или пластика), покрытого материалом, отражающим свет, и оболочкой из различных термопластических материалов. ВОК может быть одномодовым и многомодовым. Лазер или светодиод испускает пульсирующий пучок света в торец стеклянного сердечника, расположенного на одном конце кабеля.

Этот пучок распространяется по кабелю в одномодовом или многомодовом режиме, который зависит от физических свойств ВОК. Оптическое волокно одномодового кабеля имеет сечение от 8 до 10 мкм, многомодового - 62,5 мкм, может варьироваться в пределах от 50 до 100 мкм. На другом конце кабеля установлен приемник, преобразующий импульсы света в электрический сигнал. Такие кабели обладают многими замечательными свойствами: они невосприимчивы к электромагнитному радиочастотному излучениям, позволяют передавать данные с очень высокой скоростью. Однако ВОК все еще значительно дороже медного кабеля, а установка требует участия специалистов очень высокой квалификации.

Максимальная длина сегмента кабеля

? Витая пара - 100 м;

? Тонкий коаксиальный кабель - 185 м (максимальная длина кабелей всей сети при использовании дополнительного оборудования может достигать 925 м);

? Толстый коаксиальный кабель - 500 м (общая длина кабелей сети при использовании специальных усилителей может составлять 2500 м);

? Оптоволоконный кабель одномодовый -10 км;

? Оптоволоконный кабель многомодовый - 2 км

Одноранговые сети

В одноранговой сети все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного (dedicated) сервера. Как правило, каждый компьютер функционирует и как клиент, и как сервер; иначе говоря, нет отдельного компьютера, ответственного за администрирование всей сети. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать общедоступными по сети.

Одноранговые сети называют также рабочими группами. Рабочая группа -- это небольшой коллектив, поэтому в одноранговых сетях чаще всего не более 20 компьютеров.

Одноранговые сети относительно просты. Поскольку каждый компьютер является одновременно и клиентом, и сервером, нет необходимости в мощном центральном сервере или в других компонентах, обязательных для более сложных сетей.

Одноранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных (и более дорогих) компьютеров.

В одноранговой сети требования к производительности и к уровню защиты для сетевого программного обеспечения, как правило, ниже, чем в сетях с выделенным сервером.

Выделенные серверы функционируют исключительно в качестве серверов, но не клиентов или рабочих станций (workstation).

В такие операционные системы, как Microsoft Windows NT Workstation, Microsoft Windows 9Х, Microsoft Windows 2000/XP, встроена поддержка одноранговых сетей. Поэтому, чтобы установить одноранговую сеть, дополнительного программного обеспечения не требуется.

Реализация и целесообразность применения

Одноранговая есть характеризуется рядом стандартных решений:

? компьютеры расположены на рабочих столах пользователей;

? пользователи сами выступают в роли администраторов и обеспечивают защиту информации;

? для объединения компьютеров в сеть применяется простая кабельная система.

Одноранговая сеть вполне подходит там, где:

? количество пользователей не превышает 20 человек;

? пользователи расположены компактно;

? вопросы зашиты данных не являются критичными;

? в обозримом будущем не ожидается значительного расширения фирмы и, следовательно, сети.

Если эти условия выполняются, то, вероятнее всего, выбор одноранговой сети будет правильным. Поскольку в одноранговой сети каждый компьютер функционирует и как клиент, и как сервер, пользователи должны обладать достаточным уровнем знаний, чтобы работать и как пользователи, и как администраторы своего компьютера.

Сети на основе сервера

Если к сети подключено более 20 пользователей, то одноранговая сеть, где компьютеры выступают в роли и клиентов, и серверов, может оказаться недостаточно производительной. Поэтому большинство сетей использует выделенные серверы. Выделенным называется такой сервер, который функционирует только как сервер (исключая функции клиента или рабочей станции). Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом, и именно они будут приводиться обычно в качестве примеров.

С увеличением размеров сети и объема сетевого трафика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться самым эффективным способом из всех возможных.

Специализация серверов

Круг задач, которые должны выполнять серверы, многообразен и сложен. Чтобы приспособиться к возрастающим потребностям пользователей, серверы в больших сетях стали специализированными (specialized). Например, в сети Windows 2003 Server существуют различные типы серверов.

Файл-серверы и принт-серверы.

Файл-серверы и принт-серверы управляют доступом пользователей соответственно к файлам и принтерам. Например, чтобы работать с текстовым процессором, Вы прежде всего должны запустить его на своем компьютере. Документ текстового процессора, хранящийся на файл-сервере, загружается в память Вашего компьютера, и, таким образом, Вы можете работать с этим документом на своем компьютере. Другими словами, файл-сервер предназначен для хранения файлов и данных.

Серверы приложений.

На серверах приложений выполняются прикладные части клиент-серверных приложений, а также находятся данные, доступные клиентам. Например, чтобы упростить извлечение данных, серверы хранят большие объемы информации в структурированном виде. Эти серверы отличаются от файл- и принт-серверов. В последних файл или данные целиком копируются на запрашивающий компьютер. А в сервере приложений на запрашивающий компьютер пересылаются только результаты запроса. Приложение-клиент на удаленном компьютере получает доступ к данным, хранимым на сервере приложений. Однако вместо всей базы данных на Ваш компьютер с сервера загружаются только результаты запроса.

Почтовые серверы.

Почтовые серверы управляют передачей электронных сообщений между пользователями сети.

Факс-серверы.

Факс-серверы управляют потоком входящих и исходящих факсимильных сообщений через один или несколько факс-модемов.

Коммуникационные серверы.

Коммуникационные серверы управляют потоком данных и почтовых сообщений между этой сетью и другими сетями, мэйнфреймами или удаленными пользователями через модем и телефонную линию.

Служба каталогов в Windows 2000/2003 (Active Directory)

Позволяет организовывать центральное управление всеми объектами сети, объединяя домены компьютеров, интегрируясь с DNS, обеспечивая полнофункциональную систему защиты.

В расширенной сети использование серверов разных типов приобретает особую актуальность. Необходимо поэтому учитывать все возможные нюансы, которые могут проявиться при разрастании сети, с тем, чтобы изменение роли определенного сервера в дальнейшем не отразилось на работе всей сети.

Преимущества сетей на основе сервера

? Разделение ресурсов - сервер спроектирован так, чтобы предоставлять доступ к множеству файлов и принтеров, обеспечивая при этом высокую производительность и защиту. Администрирование и управление доступом к данным осуществляется централизованно. Ресурсы, как правило, расположены также централизованно, что облегчает их поиск и поддержку.

? Резервное копирование данных - поскольку жизненно важная информация расположена централизованно, т.е. сосредоточена на одном или нескольких серверах, нетрудно обеспечить ее регулярное резервное копирование (backup).

? Избыточность - благодаря избыточным системам данные на любом сервере могут дублироваться в реальном времени, поэтому в случае повреждения основной области хранения данных информация не будет потеряна -- легко воспользоваться резервной копией.

? Количество пользователей - сети на основе сервера способны поддерживать тысячи пользователей. Сетями такого размера, будь они одноранговыми, было бы невозможно управлять.

? Аппаратное обеспечение компьютеров пользователей - так как компьютер пользователя не выполняет функций сервера, требования к его характеристикам зависят от потребностей самого пользователя.

Введение в стандарт Ethernet.

Стандарты Ethernet

Ethernet Fast Ethernet Gigabit Ethernet

10Base2 - сетевая среда с использованием тонкого коаксиального кабеля, однополосный режим, скорость передачи данных 10 Мбит/с, топология - шина 100BaseTX - сетевая среда с использованием неэкранированной витой пары 5 кат, скорость передачи данных 100 Мбит/с, топология -звезда

1000Base-SX 850 nm лазерный источник и многомодовое оптоволокно (не более 300 м (волокно 62,5 мкм) и 550 м (волокно 50 мкм)).

10Base5 - сетевая среда с использованием толстого коаксиального кабеля, однополосный режим, скорость передачи данных 10 Мбит/с, топология - шина

1000Base-LX 1300 nm лазерный источник и одномодовое оптоволокно (не более 3000 м)

10BaseT - сетевая среда с использованием неэкранированной витой пары 3,4,5 кат., однополосный режим, скорость передачи данных 10 Мбит/с, топология -звезда 100BaseFX - сетевая среда с использованием волоконно-оптического кабеля, скорость передачи данных 100 Мбит/с, топология - звезда

1000Base-CX двухпроводный экранированный кабель STP (Экранированная витая пара), (не более 25 м)

10BaseFL - сетевая среда с использованием волоконно-оптического кабеля, однополосный режим, скорость передачи данных 10 Мбит/с, топология - звезда

Ethernet на тонком кабеле (10Base2)

Для Ethernet на тонком кабеле максимальная длина сегмента составляет 185 м. К сегменту должно быть подключено не более 30 компьютеров. При необходимости охватить локальной сетью расстояние большее, чем это позволяет кабельная система, применяются дополнительные устройства - репитеры (Repeater), или повторители. Традиционный репитер имеет 2-портовое исполнение, т.е. он может объединить 2 сегмента по 185 м. Репитер может находиться в любом месте сегмента, не обязательно в конце. В сети может быть не больше 4 репитеров. Это позволяет получить сеть максимальной протяженностью 925 м. При использовании многопортовых репитеров общее их число в сети может быть больше 4, но надо подключить их по такой схеме, чтобы между любыми двумя рабочими станциями не оказалось более 4 репитеров. Из пяти последовательных сегментов компьютеры должны находиться только на трех. Запомните правило 5-4-3: 5 сегментов, 4 репитера, 3 сегмента для подключения рабочих станций.

Ethernet на толстом кабеле (10Base5)

Длина сегмента для Ethernet на толстом кабеле составляет 500 м, к одному сегменту можно подключить до 100 рабочих станций. Для подключения узла сети к толстому кабелю используется дополнительное устройство, называемое трансивером. Трансивер подсоединяется к главному кабелю сети при помощи специальной иглы ("зуб вампира"). От него к компьютеру идет специальный трансиверный кабель, максимальная длина которого составляет 50 м, Минимальное расстояние между трансиверами 2.5 м. На обоих его концах находятся AUI-разъемы. Правила использования репитеров для Ethernet на толстом кабеле аналогичны правилам для Ethernet на тонком кабеле.

Ethernet на витой паре (10BaseT)

Основным узлом сети Ethernet на витой паре является концентратор (hub). Каждый PC должен быть подключен к нему с помощью сегмента кабеля. Длина каждого сегмента не должна превышать 100 м., минимальная длина кабеля - 2.5 м. Концентраторы выпускаются на разное количество портов, соответственно, к нему можно подключить такое же количество PC. Концентраторы можно объединять, подключая друг к другу через кроссовер-порт и получая сложную каскадную структуру. При этом надо придерживаться некоторых правил:

? Не должно быть закольцованных путей;

? Между любыми двумя станциями должно быть не более 4 концентраторов;

Некоторые концентраторы имеют дополнительные разъемы для подключения тонкого и/или толстого кабеля Ethernet (BNC- и AUI-разъемы). Это позволяет объединять витую пару с коаксиальными сегментами. На одном концентраторе должен быть задействован только один из двух коаксиальных разъемов (или BNC, или AUI). Активные концентраторы регенерируют и передают сигналы дальше так же, как это делают репитеры. Коммутаторы (switches) направляют пакеты по оптимальному на данный момент маршруту между источником и получателем с целью достижения наиболее эффективного использования имеющейся полосы пропускания. Сети с коммутацией пакетов обладают очень высокой производительностью.

Ethernet на витой паре (100BaseTX)

Сеть строится также по топологии "звезда", аналогично спецификации 10BaseT, Также основой сети является концентратор, к которому PC подключаются кабелями с максимальной длинной 100м. Однако, при каскадировании концентраторов Fast Ethernet, расстояние между ними должно быть не более 5м (при использовании концентраторов класса II). Таким образом, расстояние между двумя наиболее удаленными компьютерами будет составлять не более 205м. Решить эту проблему можно используя коммутаторы (Switching hub). Коммутирующий концентратор делит сеть на несколько доменов коллизий и таким образом позволяет подключать "uplink" длиной до 100м

Gigabit Ethernet 1000Base-Х

Дальнейшее свое развитие Ethernet получает в новой спецификации 1000Base-X. Применение таких устройств в локальной сети позволит получить 100 кратное увеличение скорости передачи данных по сравнению с классическим Ethernet. При этом гарантируется совместимость с существующим оборудованием Fast Ethernet и Ethernet, так как новая технология использует тот же формат передачи данных, что и Ethernet. Сегменты Gigabit Ethernet найдут применение там, где необходимо существенно увеличить полосу пропускания с учетом минимизации затрат. Это может быть канал связи с сервером или магистраль сети. Согласно данной спецификации, топология построения сети - "точка-точка".

Модель OSI

Проблемы совмещения различных элементов ВС привели Международную организацию стандартизации OSI к созданию эталонной модели архитектуры ВС OSI. В модели OSI принят принцип слоистой архитектуры, в которой все функции сети разделены на уровни таким образом, что вышележащие уровни используют услуги по переносу информации, предоставляемые нижележащими уровнями, т. е. взаимодействуют через интерфейс, который должен сохраняться, а сами уровни могут быть заменены в любой момент. Единственной проблемой может служить тот факт, что некоторые фирмы производители к тому времени уже разработали и внедрили свой стандарт, который может вписываться, а может несколько отличаться от модели OSI

Итак, эта эталонная модель распределяет сетевые функции по семи уровням:

? Уровень 7. Прикладной

? Уровень 6. Представления данных

? Уровень 5. Сеансовый

? Уровень 4. Транспортный

? Уровень 3. Сетевой

? Уровень 2. Канальный

? Уровень 1. Физический

При передаче информации в модели OSI используется 3 типа адресов:

? Физический адрес или MAC-адрес, который записывается изготовителем на сетевой плате и однозначно определяет физическое устройство.

? Сетевой (логический) адрес, который определяет сегмент сети, к которому присоединено устройство и его логический порядковый номер в сегменте

? Служебный (логический) адрес, определяющий порт или сокет для служб провайдера или сервера.

На физическом уровне определяются характеристики электрических сигналов, напряжения, механические свойства кабелей и разъемов. На этом уровне определяется физическая топология сети, способ кодирования информации и общей синхронизации битов. Данные на этом уровне рассматриваются как прозрачный поток битов.

Физический уровень определяет, что вся информация в сетях передается виде пакетов, т.е. частей одного сообщения. Между пакетами посылается служебная информация и пакеты других сообщений.

Канальный уровень определяет правила совместного использования узлами сети физического уровня. Протоколы этого уровня определяют, каким образом биты информации организуются в логические последовательности (кадры, фреймы), и расположение и вид контрольной информации (заголовки и концевики). Этот уровень структурирован по двум подуровням: управлению доступом к среде - MAC (Media Access Control) и управлению логической связью - LLC (Logical Link Control).

МАС-подуровень поддерживает множественный доступ к каналу связи, осуществляет прием и передачу информационных и управляющих кадров, обнаруживает ошибки по проверочной последовательности кадров либо по его длине. Физический MAC-адрес сетевой карты помещается в заголовок кадра и используется для идентификации приемника и/или источника.

На подуровне LLC определяется класс обслуживания, осуществляется контроль ошибок передачи, синхронизация кадров.

Сетевой уровень определяет, как передаются данные (пакеты). Как правило, протоколы этого уровня дейтаграммные, но обеспечивающие высокую производительность сети. Прежде всего, они используются для получения служебной информации, такой как адреса для маршрутизации сообщений в многосегментной ЛВС, так как маршрутизаторы работают на сетевом уровне.

Транспортный уровень обеспечивает наивысший уровень управления процессом перемещения данных из одной системы в другую. С помощью обнаружения и коррекции ошибок транспортный уровень обеспечивает качественную и точную доставку. Этот уровень обеспечивает получение всех данных и правильную очередность следования пакетов. На этом уровне между системами устанавливается виртуальная связь. Во время сеанса передачи две системы сами поддерживают передачу данных.

Уровень сеанса координирует обмен информацией между системами. Этот уровень называется так по устанавливаемому и завершаемому сеансу коммуникации. Если одна система работает медленнее другой или пакеты передаются не в том порядке, то требуется координация. На уровне сеанса к пакетам добавляется информация, которую используют коммуникационные протоколы и которая служит для поддержания сеанса до завершения передачи.

Уровень представления. Протоколы на уровне представления являются частью операционной системы и приложений, которые пользователь выполняет на компьютере. На этом уровне ин¬формация форматируется для вывода на экран и печати, также происходит кодирование данных, форматирование, сжатие и так далее. Прикладной уровень обслуживает запро¬сы пользователей сети на совместно используемые услуги (элек¬тронная почта, файлы и печать, базы данных и т. д.), организует санкционированный доступ к запрашиваемым ресурсам, защища¬ет сеть от вторжения нарушителей. Пользователи дают команды запроса на сетевые устройства, которые оформляются в пакеты и передаются по сети с помощью протоколов более низкого уровня.

Протоколы WAN

Протоколы ГВС позволяют связывать между со¬бой на больших расстояниях не только отдельные компьютеры, но и ЛВС.

SLIP

Протокол для последовательных линий SLIP был спроектирован для обеспечения связи с сетями ТСР/IP через публичную телефонную сеть. В настоящее время этот протокол используется для связи по телефону с Интернет-провайдером в Unix-системах.

SLIP действует на физическом уровне модели OSI. Несмотря на простоту реализации, этот протокол обладает рядом недостатков:

- поддерживает только IP в качестве транспорта;

- не поддерживает согласование IP-адресов;

- не обеспечивает аутентификацию.

РРР

Протокол соединения РРР точка-точка используется как альтернатива SLIP. Он обладает рядом возможностей физиче¬ского и канального уровней. К его достоинствам относятся:

? контроль ошибок;

? поддержка транспортов TCP/IP, IPX/SPX, NetBIOS;

? согласование адреса IP поддержкой протокола динамической конфигурации узла DHCP;

? пароль для регистрации входа.

Протокол РРР наиболее популярен для телефонного доступа в Интернет.

Х.25

Протоколы Х.25, предназначенные только для передачи данных, описывают взаимодействие на физическом, канальном и сетевом уровнях, отличаются повышенной надежностью и используются, в основном, в банковских сетях.

Frame Relay

Сеть с ретрансляцией кадров Frame Relay исполь¬зует установление постоянного виртуального канала PVC между конечными точками для переноса данных. Сеть действует на скоростях от 56 Кбит/с до 1,544 Мбит/с.

Линии T1 и ТЗ

Цифровая линия Т1 представляет собой двух¬точечную технологию передачи, которая состоит из 24 каналов по 64 Кбит/с каждый, т. е. 1,5 Мбит/с общей пропускной способ¬ностью. Более быстрая линия называется ТЗ и представляет собой эквивалент 28 линий Т1 с общей скоростью передачи данных и голоса 44,736 Мбит/с. Расходы по ежемесячному обслуживанию таких линий доста¬точно высоки, поэтому возможна аренда только части полосы пропускания в виде нескольких каналов.

ISDN

Интегрированные службы цифровых сетей ISDN пред¬назначены для комбинированной передачи голоса и данных через цифровые телефонные линии и специальные ISDN-модемы. ISDN описывает взаимодействие на физическом, канальном и сетевом уровнях и использует мультиплексирование с разделени¬ем времени (TDM) для преобразования аналоговых сигналов в цифровые.

ATM

Технология асинхронной передачи ATM использует протокол коммутации пакетов, который пересылает данные в ло¬кальных и глобальных сетях фрагментами (cells) по 53 байта со скоростью до 622 Мбит/с.


Подобные документы

  • Сущность и классификация компьютерных сетей по различным признакам. Топология сети - схема соединения компьютеров в локальные сети. Региональные и корпоративные компьютерные сети. Сети Интернет, понятие WWW и унифицированный указатель ресурса URL.

    презентация [96,4 K], добавлен 26.10.2011

  • Классификация компьютерных сетей в зависимости от удалённости компьютеров и масштабов. Топология сети как физическая конфигурация сети в совокупности с ее логическими характеристиками. Основные базовые топологии сети, многозначность понятия топология.

    контрольная работа [1,2 M], добавлен 12.07.2010

  • Выбор локальной вычислительной сети среди одноранговых и сетей на основе сервера. Понятие топологии сети и базовые топологии (звезда, общая шина, кольцо). Сетевые архитектуры и протоколы, защита информации, антивирусные системы, сетевое оборудование.

    курсовая работа [3,4 M], добавлен 15.07.2012

  • Назначение и классификация компьютерных сетей. Обобщенная структура компьютерной сети и характеристика процесса передачи данных. Управление взаимодействием устройств в сети. Типовые топологии и методы доступа локальных сетей. Работа в локальной сети.

    реферат [1,8 M], добавлен 03.02.2009

  • Схема соединения компьютеров в локальной сети: линейная шина, звезда, кольцо. Аппаратное обеспечение: адаптер для передачи и према информации. Создание всемирной компьютерной сети Интернет. Базовые и прикладные протоколы. Способы подключения к интернету.

    презентация [153,4 K], добавлен 27.04.2015

  • Понятие информационной технологии. Обобщенная структура компьютерной сети. Разработка программы, позволяющей передавать звук по локальной сети и по глобальной сети Интернет в реальном времени. Создание собственной Интернет-радиостанции с помощью Delphi.

    курсовая работа [376,0 K], добавлен 02.07.2010

  • Историческая справка о глобальной информационной сети Internet. Основные типы конечных узлов глобальной сети: отдельные компьютеры, локальные сети, маршрутизаторы и мультиплексоры. Физическая структуризация сети. Навигация и передача данных в интернете.

    контрольная работа [31,5 K], добавлен 27.10.2013

  • Сетевая топология как способ описания конфигурации сети, схема расположения и соединения сетевых устройств; ее виды и характеристики. Рассмотрение основных достоинств и недостатков таких кабельных соединений компьютеров как шина, кольцо и звезда.

    статья [780,3 K], добавлен 15.04.2014

  • Службы работающие в локальной сети. Подборка программного обеспечения. Логическая топология сети. Физическая реализация локальной сети. Схема размещения серверного оборудования в 19 дюймовой стойке. Обеспечение электробезопасности и сохранности данных.

    курсовая работа [2,0 M], добавлен 27.11.2013

  • Анализ топологии сети физического уровня. Проблемы физической передачи данных по линиям связи. Сравнительная характеристика топологии сети. Устройства передачи данных. Концепция топологии сети в виде звезды. Рекомендации по решению проблем топологии сети.

    курсовая работа [224,7 K], добавлен 15.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.