Термодинамические циклы машин
Вычисление работы и коэффициента полезного действия в термодинамическом цикле. Описание цикла Карно. Определение количества теплоты, полученного рабочим телом от нагревателя при изотермическом расширении. Основные процессы идеального цикла Брайтона.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 24.02.2023 |
Размер файла | 194,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Областное государственное автономное профессиональное образовательное учреждение
«Новгородский химико-индустриальный техникум»
15.02.7 Автоматизация технологических процессов и производств
Реферат
По дисциплине: «Технологическое автоматизирование оборудования предприятий машиностроения»
На тему: «Термодинамические циклы машин»
Студент гр. 0АТП
Костюк Дмитрий Владимирович
Руководитель работы:
Гулецкий Евгений Николаевич
Великий Новгород 2022
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
Термодинамические циклы -- круговые процессы в термодинамике, то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия), совпадают.
Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла в механическую работу.
Компонентами любой тепловой машины являются рабочее тело, нагреватель и холодильник (с помощью которых меняется состояние рабочего тела).
Обратимым называют цикл, который можно провести как в прямом, так и в обратном направлении в замкнутой системе. Суммарная энтропия системы при прохождении такого цикла не меняется. Единственным обратимым циклом для машины, в которой передача тепла осуществляется только между рабочим телом, нагревателем и холодильником, является Цикл Карно. Существуют также другие циклы (например, цикл Стирлинга и цикл Эрикссона), в которых обратимость достигается путём введения дополнительного теплового резервуара -- регенератора. Общим (т.е. указанные циклы частный случай) для всех этих циклов с регенерацией является Цикл Рейтлингера. Можно показать, что обратимые циклы обладают наибольшей эффективностью.
1. ОСНОВНЫЕ ПРИНЦИПЫ
Прямое преобразование тепловой энергии в работу запрещается постулатом Томсона. Поэтому для этой цели используются термодинамические циклы.
Для того, чтобы управлять состоянием рабочего тела, в тепловую машину входят нагреватель и холодильник. В каждом цикле рабочее тело забирает некоторое количество теплоты () у нагревателя и отдаёт количество теплоты холодильнику. Работа, совершённая тепловой машиной в цикле, равна, таким образом,
,
так как изменение внутренней энергии в круговом процессе равно нулю (это функция состояния).
Напомним, что работа не является функцией состояния, иначе суммарная работа за цикл также была бы равна нулю.
При этом нагреватель потратил энергию . Поэтому тепловой, или, как его ещё называют, термический или термодинамический коэффициент полезного действия тепловой машины (отношение полезной работы к затраченной тепловой энергии) равен
.
2. ВЫЧИСЛЕНИЕ РАБОТЫ И КПД В ТЕРМОДИНАМИЧЕСКОМ ЦИКЛЕ
Работа в термодинамическом цикле, по определению, равна
,
где -- контур цикла.
C другой стороны, в соответствии с первым началом термодинамики, можно записать
.
Аналогичным образом, количество теплоты, переданное нагревателем рабочему телу, равно
.
Отсюда видно, что наиболее удобными параметрами для описания состояния рабочего тела в термодинамическом цикле служат температура и энтропия.
3. ЦИКЛ КАРНО
Цикл Карно - это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу за счёт обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой -- холодильником.
Поскольку идеальные процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному процессу Карно только с большей или меньшей степенью точности.
Коэффициент полезного действия (КПД) любой тепловой машины не может превосходить КПД идеальной тепловой машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника. По этой причине, позволяя оценить верхний предел КПД тепловой машины, цикл Карно важен для теории тепловых машин. В то же время КПД цикла Карно настолько чувствителен к отклонениям от идеальности (потерям на трение), что данный цикл никогда не применяли в реальных тепловых машинах.
4. ОПИСАНИЕ ЦИКЛА КАРНО
Пусть тепловая машина состоит из нагревателя с температурой {\displaystyle T_{H}}Тн, холодильника с температурой {\displaystyle T_{X}}Тх и рабочего тела.
Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две -- при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T{\displaystyle T} (температура) и S{\displaystyle S} (энтропия).
1. Изотермическое расширение (на рисунке 1 -- процесс A>B). В начале процесса рабочее тело имеет температуру Тн {\displaystyle T_{H}}, то есть температуру нагревателя. При расширении рабочего тела его температура не падает за счет передачи от нагревателя количества теплоты Qн {\displaystyle Q_{H}}QQQQQ, то есть расширение происходит изотермически (при постоянной температуре) . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает. термодинамический теплота нагреватель изотермический
2. Адиабатическое расширение (на рисунке 1 -- процесс B>C). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника Тх{\displaystyle T_{X}}, тело совершает механическую работу, а энтропия остаётся постоянной.
3. Изотермическое сжатие (на рисунке 1 -- процесс C>D). Рабочее тело, имеющее температуру {\displaystyle T_{X}} Тх, приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты Qх{\displaystyle Q_{X}}. Над телом совершается работа, его энтропия уменьшается.
4. Адиабатическое сжатие (на рисунке 1 -- процесс D>A). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.
Рисунок 1. Цикл Карно в координатах T-S.
5. ОБРАТНЫЙ ЦИКЛ КАРНО
В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно, состоящий из следующих стадий: адиабатического сжатия за счёт совершения работы (на рисунке 1 -- процесс C>B); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рисунке 1 -- процесс B>A); адиабатического расширения (на рисунке 1 -- процесс A>D); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рисунке 1 -- процесс D>C).
Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно:
Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику:
Отсюда коэффициент полезного действия тепловой машины Карно равен:
6. ТЕОРЕМЫ КАРНО
Из последнего выражения следует, что КПД тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника, но не зависит ни от устройства машины, ни от вида или свойств её рабочего тела. Этот результат составляет содержание первой теоремы Карно. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.
Поэтому максимальный КПД любой тепловой машины не может превосходить КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Это утверждение называется второй теоремой Карно. Оно даёт верхний предел КПД любой тепловой машины и позволяет оценить отклонение реального КПД от максимального, то есть потери энергии вследствие неидеальности тепловых процессов.
Рисунок 2. Цикл Карно на термодинамической поверхности идеального газа.
7. СВЯЗЬ МЕЖДУ ОБРАТИМОСТЬЮ ЦИКЛА И КПД
Для того чтобы цикл был обратимым, в нём должна быть исключена передача теплоты при наличии разности температур, иначе нарушается условие адиабатичности процесса. Поэтому передача теплоты должна осуществляться либо в изотермическом процессе (как в цикле Карно), либо в эквидистантном процессе (обобщённый цикл Карно или, для примера, его частный случай Цикл Брайтона). Для того чтобы менять температуру рабочего тела от температуры нагревателя до температуры холодильника и обратно, необходимо использовать либо адиабатические процессы (они идут без теплообмена и, значит, не влияют на энтропию), либо циклы с регенерацией тепла при которых нет передачи тепла при разности температур. Мы приходим к выводу, что любой обратимый цикл может быть сведён к циклу Карно.
Примером обратимого цикла, не являющегося циклом Карно, но интегрально совпадающим с ним, является идеальный цикл Стирлинга: в двигателе Стирлинга добавлен регенератор, обеспечивающий полное приближение цикла к циклу Карно с достижением обратимости и тех же величин КПД. Возможны и другие идеальные циклы, в которых коэффициент полезного действия определяется по той же формуле, что и для циклов Карно и Стирлинга, например цикл Эрикссона, состоящий из двух изобар и двух изотерм.
Если же в цикле возникает передача теплоты при наличии разности температур, а таковыми являются все технические реализации термодинамических циклов, то цикл утрачивает свойство обратимости. Иначе говоря, посредством отведённой в цикле механической работы становится невозможным получить исходную теплоту. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.
8. ЦИКЛ БРАЙТОНА
Цикл Брайтона - термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутреннего сгорания, а также газотурбинных двигателей внешнего сгорания с замкнутым контуром газообразного (однофазного) рабочего тела.
Цикл назван в честь американского инженера Джорджа Брайтона, который изобрёл поршневой двигатель внутреннего сгорания, работавший по этому циклу.
Иногда этот цикл называют также циклом Джоуля -- в честь английского физика Джеймса Джоуля, установившего механический эквивалент тепла.
Идеальный цикл Брайтона состоит из процессов
1--2 Изоэнтропическое сжатие.
2--3 Изобарическое расширение (подвод теплоты).
3--4 Изоэнтропическое расширение.
4--1 Изобарическое сжатие (отвод теплоты).
С учётом отличий реальных адиабатических процессов расширения и сжатия от изоэнтропических, строится реальный цикл Брайтона (1--2p--3--4p--1 на T-S диаграмме)
Термический КПД идеального цикла Брайтона принято выражать формулой:
,
где - степень повышения давления в процессе изоэнтропийного сжатия (1--2); k - показатель адиабаты (для воздуха равный 1,4).
Рисунок 3. P -- V диаграмма цикла Брайтона.
Рисунок 4. I -- S (T -- S) диаграмма цикла Брайтона: идеального (1--2--3--4--1); реального (1--2p--3--4p--1)
Обратный цикл брайтона
Если обойти цикл Брайтона в обратном направлении -- (1--4--3--2--1) получится цикл холодильной машины, называемый также циклом Белла Колемана.
Поскольку согласно второму началу термодинамики непосредственная теплопередача от тела с более низкой температурой к телу с более высокой невозможна, холодильный цикл Брайтона осуществим только при условии, что температура холодильника не ниже {\displaystyle T_{4}}T4 , а температура нагревателя не выше {\displaystyle T_{2}}T2.
Холодильные установки с замкнутым контуром газообразного однофазного рабочего тела, работающие по обратному циклу Брайтона, применяются на практике.
Рисунок 5. Схема газовой турбины, работающей по открытому циклу: S -- компрессор; KS -- камера сгорания; T -- турбина; G -- электрический генератор.
Рисунок 6. Схема газовой турбины, работающей по закрытому циклу Брайтона: C -- компрессор; T -- турбина; W -- нагреватель (им может быть, в том числе, и ядерный реактор), M -- холодильник, ~ подключённый электрогенератор.
ЗАКЛЮЧЕНИЕ
В данном реферате было рассмотрено понятие термодинамических циклов, а также были подробно рассмотрены основные принципы термодинамических циклов, циклы и обратные Карно и Брайтона.
СПИСОК ЛИТЕРАТУРЫ
1. Агеев, Е.П. Неравновесная термодинамика в вопросах и ответах. - М.: изд-во "Ленанд", 2019.
2. Базаров, И.П. Термодинамика: Учебник. - СПб.: изд-во "Лань", 2010.
Размещено на Allbest.ru
Подобные документы
История открытия цикла Карно, его физическое описание. Особенности прямого и обратного цикла Карно. Экспериментальное определение коэффициента полезного действия лабораторной установки, демонстрирующей цикл Карно. Примеры применения цикла Карно.
реферат [85,8 K], добавлен 14.05.2014Принципиальная схема двигателя внутреннего сгорания и его характеристика. Определение изменения в процессах цикла внутренней энергии и энтропии, подведенной и отведенной теплоты, полезной работы. Расчет термического коэффициента полезного действия цикла.
курсовая работа [209,1 K], добавлен 01.10.2012Содержание и основные этапы теоретического цикла Карно, Ренкина. с промперегревом. Влияние повышения давления на влажность в последней ступени. Определение эффективности теплоэлектрической установки. Пути совершенствования термодинамического цикла.
презентация [2,8 M], добавлен 08.02.2014Устройство и принцип работы теплового газотурбинного двигателя, его схема, основные показатели во всех основных точках цикла. Способ превращения теплоты в работу. Определение термического коэффициента полезного действия через характеристики цикла.
курсовая работа [232,8 K], добавлен 17.01.2011Расчет параметров состояния в контрольных точках цикла Брайтона без регенерации тепла. Изучение конца адиабатного процесса сжатия. Нахождение коэффициента теплоемкости при постоянном объеме и при постоянном давлении. Вычисление теплообменного аппарата.
курсовая работа [902,9 K], добавлен 01.04.2019Определение основных параметров состояния рабочего тела в характерных точках цикла. Вычисление удельной работы расширения и сжатия, количества подведенной и отведенной теплоты. Изменение внутренней энергии, энтальпии и энтропии в процессах цикла.
курсовая работа [134,6 K], добавлен 20.10.2014Характеристика основных типов идеального газа. Описание изохорического, изобарического и изотермического процессов. Изучение первого и второго законов термодинамики. Принцип действия тепловых машин. Описание цикла Карно. Расчет сил Ван-дер-Ваальса.
реферат [255,0 K], добавлен 25.10.2015Расчет термодинамических параметров быстроходного автомобильного дизельного двигателя со смешанным теплоподводом в узловых точках. Выбор КПД цикла Карно в рабочем интервале температур. Вычисление значений термического коэффициента полезного действия.
курсовая работа [433,2 K], добавлен 13.07.2011Удельная теплоемкость - отношение теплоты, полученной единицей количества вещества, к изменению температуры. Зависимость количества теплоты от характера процесса, а теплоемкости - от условий его протекания. Термодинамические процессы с идеальным газом.
реферат [81,5 K], добавлен 25.01.2009Газовые смеси, теплоемкость. Расчет средней молярной и удельной теплоемкости. Основные циклы двигателей внутреннего сгорания. Термический коэффициент полезного действия цикла дизеля. Водяной пар, паросиловые установки. Общее понятие о цикле Ренкина.
курсовая работа [396,8 K], добавлен 01.11.2012