Бета-спектроскопия: регистрация спектров бета-частиц, прохождение бета-частиц через вещество
знакомство с бета-радиоактивностью и основными закономерностям бета-распада. Исследование методики регистрации энергетических спектров бета-частиц с помощью предварительно откалиброванного по гамма-линиям спектрометра со сцинтилляционным детектором.
Рубрика | Физика и энергетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 24.02.2023 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
ИНСТИТУТ ГЕОЛОГИИ И НЕФТЕГАЗОВЫХ ТЕХНОЛОГИЙ
Лабораторная работа
Бета-спектроскопия: регистрация спектров бета-частиц, прохождение бета-частиц через вещество
Казань -- 2022
Введение
Цель настоящей работы - знакомство с бета-радиоактивностью и основными закономерностям бета-распада. Практическая часть работы включает в себя знакомство с техникой и методикой регистрации энергетических спектров бета-частиц на примере регистрации бета-спектра препарата 90Sr с помощью предварительно откалиброванного по гамма-линиям 60Co спектрометра со сцинтилляционным детектором. После этого предлагается пронаблюдать взаимодействие бета частиц с веществом посредством регистрации спектров бета-частиц 90Sr для различных толщин алюминиевого поглотителя.
Описание установки
1 - унифицированный узел сбора данных CassyLab2;
2 - модуль многоканального анализатора;
3 - радиационная защита (Pb, ~1 см);
4 - сцинтилляционный детектор;
5 - высоковольтный источник питания ФЭУ сцинтилляционного детектора;
6 - держатель бета-радиоактивного источника
Ход работы
Включила ноутбук, источник питания CassyLab2, высоковольтный источник питания ФЭУ детектора. Запустила программное обеспечение CassyLab2. В окне «Cassy» выберала в качестве «measurement channel» верхний квадрат левого. В окне «Cassy» выберала «Show Measuring Parameters». Установила время измерения 10 минут с шагом времени в 1 секунду, напряжение на высоковольтном источнике питания ФЭУ 500В.
Попросила лаборанта установить калибровочный гамма-источник. На вкладке главного меню «Measurement» выберала пункт «Start/stop Measurement». Отрегулировала высокое напряжение питания ФЭУ таким образом, чтобы спектр калибровочного источника максимально покрывал измерительную шкалу, т.е. чтобы он не обрывался справа и не был чрезмерно сжат в течение всех 10 минут. Остановила измерения. По окончании выбора рабочего напряжения ФЭУ выполнила регистрацию калибровочного спектра в течение 10 минут. Выполнила калибровку энергетической шкалы по зарегистрированному спектру. Попросила лаборанта убрать калибровочный источник и установить бета-источник 90Sr. Зарегистрировала спектр бета-частиц без поглотителя. Поместила алюминиевую пластину на торец сцинтилляционного детектора и зарегистрировала спектр с поглотителем.
Повторила предыдущий шаг с другой толщиной поглотителя. На измеренных спектрах определила Em как точку пересечения спектра и оси абсцисс
Результаты
Форма бета-спектра
Рисунок 2 - Бета-спектр 90Sr без поглотителя (чёрная кривая) и с алюминиевым поглотителем различной толщины (цветные кривые)
Обработка результатов
Определение удельных потерь энергии
Построили график зависимости Em от толщины поглотителя. На нем показана зависимость максимальной энергии бета-частиц от толщины алюминиевого поглотителя. Наклон прямой линии, аппроксимирующий экспериментальную зависимость, показывает потери энергии на единицу длины пути бета-частиц в алюминии:
График зависимости макс энергии бета-частиц Е от толщины поглотителя d
бета радиоактивность спектр
Определение энергии распада
Алюминиевая защита сцинтилляционного детектора (d0 = 0.4 мм) приводит к дополнительным потерям энергии бета-частиц:
Вывод
Измеренная величина потери энергии на единицу длины пути бета-частиц в алюминии (385,37) оказывается несколько меньшей из методички для чистого алюминия (410), поскольку алюминий, выпускаемый промышленным способом, всегда содержит небольшое количество примесей с большим атомным номером. Оценила толщину поглотителя, необходимую для полного поглощения бета-частиц 90Sr 4,95мм. С поправкой на потери в защите измеренная максимальная энергия бета- частиц, покидающих источник, составляет E = 1909 кэВ + 154 кэВ = 2063 кэВ. Энергия распада для перехода 90Y в 90Zr E = 2274 кэВ, что на 111 кэВ выше измеренной в эксперименте величины. Это различие вызвано наличием герметизирующего радиоактивный источник материала и потерями в нём (фольга Au-Pd толщиной 0.15 мм).
Размещено на Allbest.ru
Подобные документы
Виды бета-распад ядер и его характеристики. Баланс энергии при данном процессе. Массы исходного и конечного атомов, их связь с массами их ядер. Энергетический спектр бета-частиц, роль нейтрино. Кулоновское взаимодействие между конечным ядром и электроном.
контрольная работа [133,4 K], добавлен 22.04.2014Взаимодействие заряженных частиц и со средой. Детектирование. Определение граничной энергии бета-спектра методом поглощения. Взаимодействие заряженных частиц со средой. Пробег заряженных частиц в веществе. Ядерное взаимодействие. Тормозное излучение.
курсовая работа [1,1 M], добавлен 06.02.2008Общие сведения о бета-спектрометрическом комплексе "ПРОГРЕСС". Сравнение спектрометрического и радиохимического методов анализа при оценке вклада 137Cs и 40К на суммарную бета-активность 90Sr в почве, отобранной на СИП с активностью менее 2000 Бк/кг.
дипломная работа [4,4 M], добавлен 24.07.2010Поняття радіоактивності. Різниця між радіоактивністю і розпадом "компаунд"-ядер, утворених дією деяких елементарних частинок на стабільні ядра. Закономірності "альфа" і "бета" розпаду. Гамма-випромінювання ядер не є самостійним видом радіоактивності.
реферат [154,4 K], добавлен 12.04.2009Сведения о радиоактивных излучениях. Взаимодействие альфа-, бета- и гамма-частиц с веществом. Строение атомного ядра. Понятие радиоактивного распада. Особенности взаимодействия нейтронов с веществом. Коэффициент качества для различных видов излучений.
реферат [377,6 K], добавлен 30.01.2010Методы наблюдения и регистрации элементарных частиц; газоразрядный счетчик Гейгера и камера Вильсона. Открытие радиоактивности; исследование альфа-, бета- и гамма-излучения. Рассмотрение биологического действия радиоактивных излучений на живые организмы.
презентация [2,2 M], добавлен 03.05.2014Характеристика корпускулярного, фотонного, протонного, рентгеновского видов излучения. Особенности взаимодействия альфа-, бета-, гамма-частиц с ионизирующим веществом. Сущность комптоновского рассеивания и эффекта образования электронно-позитронной пары.
реферат [83,8 K], добавлен 08.11.2010Радиоактивные излучения, их сущность, свойства, единицы измерения, физическая доза и мощность. Газоразрядные счётчики ионизирующих частиц. Конструкция и принципы работы счётчиков Гейгера с высоковольтным питанием, СТС-5 и слабого бета-излучения СТБ-13.
курсовая работа [3,8 M], добавлен 05.11.2009Ядерно-физические свойства и радиоактивность тяжелых элементов. Альфа- и бета-превращения. Сущность гамма-излучения. Радиоактивное превращение. Спектры рассеянного гамма-излучения сред с разным порядковым номером. Физика ядерного магнитного резонанса.
презентация [1,0 M], добавлен 15.10.2013Лучи Беккереля действуют на фотопластинку, проходят через чёрную бумагу и слои металла небольшой толщины. Различие между лучами Рентгена и Беккереля. О свойствах радиоактивного излучения. Энергия, излучаемая радием. Альфа-, бета- и гамма- лучи.
реферат [845,5 K], добавлен 19.03.2008