Законы термодинамики
Изучение общих свойств макроскопических систем с позиций термодинамических законов. Характеристика термодинамических законов как обобщения опытных данных. Анализ законов (начал) термодинамики, которые были открыты в период создания тепловых машин.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.02.2023 |
Размер файла | 40,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН
АЛМАЛЫКСКИЙ ФИЛИАЛ
ТАШКЕНТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА ИМЕНИ ИСЛАМА КАРИМОВА
САМОСТОЯТЕЛЬНАЯ РАБОТА
На тему «Законы термодинамики»
Выполнил: Аминов А.Х.
Алмалык 2021
Содержание
Введение
Первый закон термодинамики
Термодинамические процессы
Энтропия
Второй и третий законы термодинамики
Основные формулы термодинамики
Список использованной литературы и источников
Введение
Термодинамикой называется раздел физики, в котором изучаются общие свойства макроскопических систем с позиций термодинамических законов. Сами термодинамические законы являются обобщением опытных данных. В термодинамике не учитывается молекулярная структура вещества, и ее выводы справедливы для всех макроскопических систем.
В основе термодинамики лежат три закона (начала) термодинамики. Они были открыты в период создания тепловых машин и имеют различные формулировки.
Первый закон термодинамики
Первый закон термодинамики: сообщенное системе количество теплоты расходуется на совершение системой работы против внешних сил и изменение внутренней энергии системы. Если работу совершают внешние по отношению к системе тела, то работа газа считается отрицательной, работа внешних тел положительной и А = - A/
Тогда первый закон термодинамики лучше написать в виде ?U = Q + А.
Первый закон термодинамики представляет собой закон сохранения энергии, сформулированный для термодинамической системы. Термодинамические законы часто называют началами термодинамики.
Теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил.
.
Здесь Q - количество тепла, сообщаемое системе, А - работа, производимая системой, ДU=U2 - U1 - изменение энергии системы. Отсюда видно, что теплота, энергия и работа имеют одинаковые размерности. Они измеряются в джоулях (Дж). Отметим, что при открытии первого закона термодинамики закон сохранения энергии еще не был известен, а для работы и количества тепла использовали различные единицы измерения (джоуль и калорию). Схематически первый закон термодинамики можно изобразить так, как показано на рисунке.
Если рассматривать бесконечно малые величины, то первый закон термодинамики принимает вид
Можно показать, что при этом и являются малыми величинами, а dU - полный дифференциал.
Рассмотрим периодическую термодинамическую систему, т.е. такую, которая после совершения термодинамического цикла может возвращаться в исходное состояние. Для такой системы имеем
.
Следовательно и все тепло переходит в работу. После многочисленных попыток создать машину, производящую работы больше, чем количество получаемого тепла, была дана другая формулировка первого закона термодинамики:
Нельзя построить вечный двигатель первого рода, т.е. такой двигатель, который выполнял бы больше работы, чем получал тепла.
Выразим входящие в уравнение величины через параметры уравнения состояния. Для этого рассмотрим работу, совершаемую системой при изменении объема. Для простоты найдем выражение для работы, рассматривая движение поршня
Используя принятое в механике выражение для работы, получим
Полную работу получим, интегрируя это выражение
Формула для работы справедлива для любых термодинамических систем с известной зависимостью . Для определения энергии используем представления идеального газа. Средняя энергия одной молекулы определяется выражением
.
Для энергии одного моля можно записать
,
для н молей
.
Термодинамические процессы
Понятие термодинамического процесса характеризует термодинамическую систему с точки зрения ее энергетического взаимодействия с окружающей средой.
Термодинамическим процессом называется процесс изменения состояния термодинамического тела (системы), не находящегося в термодинамическом равновесии с внешней средой и не изолированный от нее. При этом наблюдается энергетическое взаимодействие между телом и окружающей средой, сопровождающееся изменением параметров тела.
Строго говоря, только для процессов, происходящих очень медленно, с малыми отклонениями промежуточных параметров (квазистатические равновесные процессы) можно воспользоваться уравнениями состояния, а сам процесс геометрически представить в виде непрерывной кривой на термодинамической поверхности. Графическое изображение действительных неравновесных процессов, протекающих с конечной скоростью, имеет условный характер. Понятие равновесности характеризует поведение параметров внутри и на границах тел при процессах, но не затрагивает превращения форм энергии и распределение ее в системе. Для характеристики процессов с точки зрения превращения и распределения энергии между всеми телами, участвующими в процессе, вводится понятие обратимости процессов.
Обратимыми называются процессы, которые могут быть проведены в прямом и обратном направлениях таким образом, что все тела, участвующие в процессе, проходят через одни и те же промежуточные равновесные состояния (но в обратной последовательности), а после проведения прямого и обратного процессов все тела системы возвращаются в первоначальное состояние, и, следовательно, распределение энергии между ними оказывается прежним.
Процессы, не отвечающие поставленным условиям, называются необратимыми.
Все неравновесные процессы необратимы. Так, при неравенстве давления в рабочем теле и внешнего давления, рабочее тело расширяется или сжимается, в результате возникают вихревые движения, которые со временем успокаиваются, а их энергия переходит в энергию теплового движения частиц. В этом случае наблюдается переход механической работы в теплоту, в результате чего для возврата системы в первоначальное состояние потребуется дополнительное количество механической работы.
При отсутствии термического равновесия процесс также необратим. Теплота самопроизвольно переходит от тела, более нагретого к телу менее нагретому, и обратный переход теплоты возможен только при наличии дополнительного источника теплоты.
Необратимость процессов подразделяется на:
- внешнюю необратимость, вызванную разностью температур при теплообмене между телами;
- внутреннюю необратимость, вызванную наличием трения. В прямом и обратном процессах в этом случае имеется работа, затрачиваемая на трение, она превращается в теплоту.
Всякая необратимость связана с уменьшением возможной работы системы, эта потеря является мерой необратимости процесса. Процессы с полной потерей возможной работы называются предельно необратимыми. Примерами предельно-необратимых процессов могут служить: расширение газа в вакуум, дросселирование газов и паров, рассеяние теплоты горячего тела в окружающую среду и т.п.
При термодинамических исследованиях процессов обычно не касаются внешней необратимости, обусловленной разностью температур при теплообмене, сами же процессы принимаются (естественно условно) внутренне равновесными. Такие процессы легко поддаются термодинамическому анализу, так как они могут изображаться графически в виде сплошных линий на диаграммах параметров состояния.
макроскопический термодинамический закон
Энтропия
Энтропия-- это сокращение доступной энергии вещества в результате передачи энергии. Первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Второй закон термодинамики гласит, что коэффициент полезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу.
Термодинамическая энтропия{\displaystyle S}, часто именуемая просто энтропией, физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин; энтропия и температура -- сопряжённые термодинамические величины, необходимые для описания термических свойств системы и тепловых процессов в ней. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической (анализ работы тепловых машин и холодильных установок) и химической (расчёт равновесий химических реакций).
Утверждение о существовании энтропии и перечисление её свойств составляют содержание второго и третьего начал термодинамики. Значимость данной величины для физики обусловлена тем, что наряду с температурой её используют для описания термических явлений и термических свойств макроскопических объектов. Качественные представления о термическом состоянии системы связаны с тепловыми ощущениями, выражаемыми понятиями «теплее», «холоднее», «нагрев», «охлаждение», «степень нагретости». К термическим относят свойства, характеризующие поведение вещества при его нагреве или охлаждении: термические коэффициенты, теплоёмкость и другие калорические коэффициенты, постоянную Кюри, показатели термостойкости, пределы огнестойкости и т. д.; примерами термических явлений служат термическое расширение, пироэлектричество, электрокалорический эффект, теплопроводность, изменение агрегатного состояния -- кристаллизация и замерзание, плавление и таяние, испарение, кипение, сублимация (возгонка), конденсация и другие процессы.
Второй и третий законы термодинамики
Второй закон термодинамики является фундаментальным законом природы, не имеющим аналога в механике и связан с тем, что статистический ансамбль состоит из большого числа частиц. Второе начало термодинамики имеет вероятностный характер и имеет несколько различных формулировок. Приведем эти формулировки и обсудим их.
1. Любой необратимый процесс в системе происходит так, что энтропия системы при этом возрастает. С вероятностных позиций это означает, что система переходит из менее вероятного состояния в более вероятное.
2. Невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в работу (Клаузиус). По-другому: тепло передается от более нагретого тела к менее нагретому.
3. Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому. По-другому: не существует вечного двигателя второго рода.
Существуют и другие формулировки второго закона термодинамики. Проанализируем приведенные формулировки. Введем понятия вечного двигателя первого и второго рода.
Вечным двигателем первого рода называется замкнутая система, которая может неограниченно производить энергию и передавать ее наружу.
Такой двигатель противоречит закону сохранения энергии и в природе существовать не может
Вечным двигателем второго рода называется двигатель, который совершает работу только за счет охлаждения источника теплоты.
Здесь закон сохранения энергии не нарушается, однако, многочисленные попытки построить такой двигатель заканчивались неудачей. Позже в рамках статистической физики выяснилось, что создание двигателя второго рода эквивалентно самопроизвольному переходу неупорядоченной системы в упорядоченное состояние, и такие процессы практически неосуществимы.
Аналогично можно показать, что самопроизвольная передача теплоты от менее нагретого тела к более нагретому позволила бы построить вечный двигатель второго рода. Существование вечного двигателя второго рода позволило бы иметь практически неисчерпаемый источник энергии, отбирая, например, теплоту из океанов.
Первый и второй законы термодинамики можно представить, как невозможность построить вечные двигатели первого и второго рода.
Третий закон термодинамики: Энтропия равновесной термодинамической системы стремится к нулю при нулевой абсолютной температуре
.
Этот закон называют теоремой Нернста. Его можно доказать в рамках статистической физики.
Используя третий закон термодинамики, можно записать
.
В частности при изобарном процессе и
.
Основные формулы термодинамики
1. Первый закон термодинамики
.
2. Работа, совершаемая термодинамической системой
.
3. Теплоемкость
.
4. Изохорическая молярная теплоемкость идеального газ
.
5. Формула Майера
.
6. Уравнение адиабаты
, где
.
7. Уравнение политропы
, где .
8. КПД кругового цикла
.
Энтропия
.
Изменение энтропии
.
Формула Больцмана для энтропии
.
Список использованной литературы и источников
Трофимова Т.И. Курс физики, М.: Высшая школа, 1998, 478 с.
Трофимова Т.И. Сборник задач по курсу физики, М.: Высшая школа, 1996, 304с
Волькенштейн В.С. Сборник задач по общему курсу физики, СПб.: "Специальная литература", 1999, 328 с.
Трофимова Т.И., Павлова З.Г. Сборник задач по курсу физики с решениями, М.: Высшая школа, 1999, 592 с.
Все решения к "Сборнику задач по общему курсу физики" В.С. Волькенштейн, М.: Аст, 1999, книга 1, 430 с., книга 2, 588 с.
Красильников О.М. Физика. Методическое руководство по обработке результатов наблюдений. М.: МИСиС, 2002, 29 с.
Супрун И.Т., Абрамова С.С. Физика. Методические указания по выполнению лабораторных работ, Электросталь: ЭПИ МИСиС, 2004, 54 с.
Размещено на Allbest.ru
Подобные документы
Термодинамика - раздел физики об общих свойствах макроскопических систем с позиций термодинамических законов. Три закона (начала) термодинамики в ее основе. Теплоемкость газа, круговые циклы, энтропия, цикл Карно. Основные формулы термодинамики.
реферат [1,7 M], добавлен 01.11.2013История развития термодинамики, ее законы. Свойства термодинамических систем, виды основных процессов. Характеристика первого и второго законов термодинамики. Примеры изменения энтропии в системах, принцип ее возрастания. Энтропия как стрела времени.
реферат [42,1 K], добавлен 25.02.2012История развития термодинамики. Свойства термодинамических систем, виды процессов. Первый закон термодинамики, коэффициент полезного действия. Содержание второго закона термодинамики. Сущность понятия "энтропия". Особенности принципа возрастания энтропии.
реферат [21,5 K], добавлен 26.02.2012Характеристика основных типов идеального газа. Описание изохорического, изобарического и изотермического процессов. Изучение первого и второго законов термодинамики. Принцип действия тепловых машин. Описание цикла Карно. Расчет сил Ван-дер-Ваальса.
реферат [255,0 K], добавлен 25.10.2015Основные понятия. Температура. Первый закон термодинамики. Термохимия. Второй закон термодинамики. Равновесие в однокомпонентных гетерогенных системах. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.
лекция [202,7 K], добавлен 03.12.2003Первое начало термодинамики. Однозначность внутренней энергии как функции термодинамического состояния. Понятие энтропии. Второе начало термодинамики для равновесных систем. Третье начало термодинамики.
лекция [197,4 K], добавлен 26.06.2007Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.
курс лекций [1,0 M], добавлен 13.10.2011Понятие открытых систем. Основные отклонения термодинамических параметров от их равновесных значений. Термодинамика открытых систем и подход к живым системам. Термодинамика неравновесных процессов. Приращение энтропии системы в единицу времени.
реферат [20,1 K], добавлен 24.01.2012Изучение сути законов сохранения (вещества, импульса) - фундаментальных физических законов, согласно которым при определенных условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.
контрольная работа [374,1 K], добавлен 26.08.2011Предмет технической термодинамики. Свойства термодинамической системы. Основные термодинамические процессы: изохорный, изотермический, изобарный и адиабатный. Использование таблиц и диаграмм для термодинамических расчетов. Цикл Ренкина на перегретом паре.
реферат [231,1 K], добавлен 01.02.2012