Основные принципы и понятия голографии
Суть явления голографии. Интерференция как способ сравнения пространственной структуры двух пучков света. Восстановление изображения предмета. Регистрирующие среды и их применение. Регистрируемые параметры объектной волны. Классификация голограмм.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 05.02.2023 |
Размер файла | 267,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Суть явления голографии
1.1 Голографирование. Восстановление изображения предмета
2. Классификация голограмм
2.1 Регистрирующие среды и их применение
2.2 Регистрируемые параметры объектной волны
2.3 Модулируемые параметры
2.4 Регистрирующий материал и конфигурация
3. Свойства источников
4. Некоторые виды голограмм
4.1 Мультикомплексные голограммы
Заключение
Литература
Введение
Примерно до середины XX столетия казалось, что оптика как наука закончила развитие. Однако в последние десятилетия в этой области физики произошли революционные изменения, связанные как с открытием новых закономерностей (принципы квантового усиления, лазеры), так и с развитием идей, основанных на классических и хорошо проверенных представлениях. Здесь прежде всего имеется в виду голография, которая значительно расширяет область практического использования волновых явлений и дает толчок теоретическим исследованиям.
Для того чтобы получить качественное изображение пространственного предмета, надо возможно более точно воспроизвести рассеянное им волновое поле. Чем с большими подробностями оно будет воспроизведено, тем больше гарантия, что глаз наблюдателя увидит изображение предмета, ничем не отличающееся от оригинала. Для этого нужно каким-то образом записать волновое поле, образованное световыми волнами, рассеянными освещенным или светящимся предметом, а затем нужно воссоздать изображение предмета при помощи обычного видимого света.
1. Суть явления голографии
Согласно принципу Гюйгенса - Френеля, можно восстановить картину волнового поля, образованного электромагнитной волной, в любой момент времени и в любой точке пространства. Для этого надо записать распределение амплитуд и фаз волн (в данном случае световых) на произвольной поверхности или ее части, охватывающей источник волн. Иными словами, чтобы "заморозить" электромагнитные волны во всем пространстве, достаточно "заморозить" их только на некоторой поверхности.
Как восстановить в пространстве световую волну, т. е. "разморозить" ее? Для этого надо задать параметры, характеризующие среду. Предположим, нужно восстановить плоскую волну. Для этого мы должны задать для любой плоскости равномерно распределенные источники колебаний с определенной начальной фазой. Элементарные источники колебаний должны находиться на поверхности, перпендикулярной направлению распространения волн. Но это те обязательно. Все будет зависеть от типа волн. Возьмем для примера сферические волны, излучаемые точечным источником. Зададим в качестве поверхности, на которой "замораживаются" волны, сферу с центром в источнике. Амплитуды и фазы элементарных источников волн будут одинаковыми для всей поверхности. В случае с круговыми волнами при "замораживании" световых волн надо расположить элементарные источники колебаний с одинаковой фазой и амплитудой на концентрических окружностях.
Иными словами, мы должны зарегистрировать на некоторой поверхности мгновенные картины линий постоянной фазы в виде чередующихся прозрачных и непрозрачных областей. В этом нам помогает интерференция: мы получаем интерференционную картину, состоящую из светлых, (прозрачных) и темных (непрозрачных) полос. Интерференция и есть способ сравнения пространственной структуры двух пучков света. Вначале происходит их сравнение, а затем - регистрация их на фотопластинку.
Опыт Габора. Когда один пучок отражался от освещенного предмета и падал на фотопластинку. Он являл собой определенную комбинацию волн, конфигурация которых зависела от формы предмета. Она могла быть как очень простой, так и очень сложной. Другой пучок имел простую конфигурацию. Чаще всего он состоял из плоских волн. Создавался он когерентным источником света и назывался опорной волной. Второй пучок служил в качестве эталона. Он также падал на фотопластинку.
Оба световых пучка пересекались вблизи этой пластинки. При пересечении они интерферировали между собой, образуя области усиления или ослабления, чередующиеся по определенному закону во времени и пространстве. В результате интерференции получалась интерферограмма в виде чередующихся светлых и темных полос-- неподвижная интерференционная картина.
Неподвижность интерференционной картины в пространстве обеспечивалась опорной (эталонной) волной. Это она "останавливала" ("замораживала") световую волну.
Чтобы восстановить изображение предмета, достаточно осветить голограмму только опорным пучком, используемым при записи. Как только мы направляем на голограмму опорную волну, использованную при записи, за голограммой восстанавливается ("размораживается") исходное волновое поле предмета. Согласно принципу Гюйгенса - Френеля, восстановлением мы обязаны эквивалентным источникам, образованным светлыми местами интерференционной картины. По этой причине волны "размораживаются", и наблюдатель видит пространственное изображение предмета.
1.1 Голографирование. Восстановление изображения предмета
Уширенный с помощью простого оптического устройства пучок лазера (рис.1) одновременно направляется на исследуемый объект и на зеркало. Отраженная от зеркала опорная волна и рассеянная объектом световая волна падают на обычную фотопластинку, где происходит регистрация возникшей сложной интерференционной картины. После соответствующей экспозиции фотопластинку проявляют, в результате чего получается так называемая голограмма - зарегистрированная на фотопластинке интерференционная картина, полученная при наложении опорной и предметной волн. Голограмма внешне похожа на равномерно засвеченную пластинку, если не обращать внимания на отдельные кольца и пятна, возникшие вследствие дифракции света на пылинках и не имеющие отношения к информации об объекте.
Для восстановления волнового поля предмета, тем самым для получения его объемного изображения, голограмму помещают в то место, где была расположена фотопластинка при фотографировании, и затем освещают голограмму световым пучком того же лазера под тем же углом, под которым было осуществлено экспонирование. При этом происходит дифракция опорной волны на голограмме и мы видим объемное со всеми присущими самому объекту свойствами (в нем сохраняется также распределение освещенности, как и в объекте) "мнимое" изображение. Оно кажется нам настолько реальным, что даже иной раз появляется желание потрогать предмет. Разумеется, это невозможно, так как в данном случае изображение образовано голографической копией волны, рассеянной предметом во время записи голограммы. От голограммы в глаз попадает точно такая же волна, какая попала бы от самого предмета. Кроме мнимого изображения получается также действительное изображение объекта, имеющее рельеф, противоположный рельефу самого объекта, (рис. 1, а), если наблюдение ведется справа от голограммы, как показано на рис. 1, б. В этом случае трудно наблюдать действительное изображение невооруженным глазом. Если осветить голограмму с обратной стороны обращенным опорным пучком так, чтобы все лучи пучка были направлены противоположно лучам первоначального опорного пучка, то в месте первоначального расположения предмета возникает действительное изображение, доступное наблюдению невооруженным глазом. Его можно зарегистрировать на фотопластинку без применения линз.
Рис.1
2. Классификация голограмм
2.1 Регистрирующие среды и их применение
Важным моментом является не сама величина толщины регистрирующей среды, а влияние, которое она оказывает; даже если среда толстая, но запись по глубине не используется, результат оказывается таким же, как от тонкой среды. Мы имеем толстую, или объемную, голограмму в том случае, когда трехмерная интерференционная картина регистрируется и используется по всей глубине слоя среды. Именно использование объема регистрирующей среды позволяет нам восстанавливать только одно изображение вместо основного и сопряженного ему изображений.
Между отражением и пропусканием имеется относительно простое различие. В одном случае свет, используемый для освещения голограммы при восстановлении волнового фронта, отражается от среды в виде волнового фронта изображения, а в другом свет проходит через голограмму. В случае работы на отражение теряется обычно меньше света.
При синтезе голограмм в компьютер вводятся параметры, описывающие объект, и она вычисляет объектную волну. Опорная волна может складываться с объектной математически, и результат, получаемый на графопостроителе, должен быть аналогом оптической записи. В общем случае этого не делается, но голограмма, синтезированная на ЭВМ, будучи воспроизведенной на графопостроителе, представляет собой систему прозрачных апертур, закодированную таким образом, чтобы дать искомую волну изображения. голография волна изображение
2.2 Регистрируемые параметры объектной волны
Амплитуда и относительная фаза световой волны, идущей от объекта, изменяются определенным образом. Естественно, что и амплитуда, и фаза объектной волны сохраняются в голограмме. Голограмма амплитудной информации используется довольно редко, поскольку она дает плохое качество изображения. В случае когда объект является диффузно отражающим, большая часть информации заключается в фазе. В некоторых случаях, таких, как акустическая голография или голограммы, синтезированные на ЭВМ, при записи или вычислении волнового фронта объектной волны амплитудная информация вообще не учитывается.
2.3 Модулируемые параметры
Голограмма может изменять либо амплитуду, либо фазу освещающей (восстанавливающей) волны, либо одновременно и тот и другой параметр. Тем, кто знаком с теорией связи, поможет аналогия с амплитудной модуляцией (АМ) и фазовой модуляцией (ФМ) временного сигнала. Распределение энергии в плоскости регистрации голограммы, обусловленное интерференцией объектной и опорной волн описывает поверхностную, или тонкую, голограмму.
Виды модуляции.
Голограмму называют амплитудной тогда, когда восстанавливающая волна модулируется таким образом, что после прохождения через голограмму ее амплитуда становится пропорциональна величине распределение энергии. Эта волна после прохождения некоторого расстояния вызывает появление волн, идущих, в трех направлениях. Одна из этих волн пропорциональна исходной волне от объекта. Амплитудную модуляцию можно получить либо за счет поглощения части волны, либо в случае отражательной голограммы за счет коэффициента отражения, который изменяется по x и y.
Фазовой называют голограмму, которая модулирует фазу восстанавливающей волны таким образом, что результирующая волна имеет относительный сдвиг фазы, пропорциональный величине энергии. Фазовую модуляцию можно получить, заставляя коэффициент преломления или толщину голограммы меняться в зависимости от х и у пли меняя профиль голограммы и используя ее как отражатель.
Многие голографические регистрирующие материалы, такие, как тонкая фотоэмульсия, вызывают амплитудную и фазовую модуляцию освещающей волны.
Очень полезным является случай амплитудной и фазовой модуляции, когда желаемое изменение амплитуды волны создается; амплитудной модуляцией, а изменение фазы - фазовой модуляцией. Этого можно достичь с помощью толстых (объемных) голограмм.
Конфигурация.
Под конфигурацией мы понимаем все то, что связано с положением объекта, применением линз для формирования изображения или выполнения преобразования Фурье над объектной волной, структурой опорной волны, с формой поверхности и способами экспонирования голографического материала.
Свойства объектной и опорной волны.
В общем случае, если объект расположен близко к голографическому записывающему устройству, регистрируется то, что называется голограммой Френеля. Если объект мал и находится всего лишь в нескольких сантиметрах от голограммы, мы все же получим то, что называется голограммой Фраунгофера. Если объект располагается очень близко к голограмме или изображение объекта формируется в непосредственной близости голографическому записывающему устройству, мы получаем голограмму сфокусированного изображения. Поскольку в этом случае восстановленное изображение располагается вблизи от голограммы, лучи света разных длин волн не смогут разойтись на большой угол, прежде чем будет сформировано изображение. Это означает, что для освещения голограммы можно применять источник, имеющий широкий спектр излучения. Это свойство делает голограмму сфокусированного изображения особенно полезной при использовании в дисплеях
Влияние формы опорной волны гораздо сильнее, чем это кажется на первый взгляд. От опорной волны зависят положение и размер изображения, его поле зрения и разрешение; она определяет разрешение, которым должен обладать регистрирующий материал. Если точечный источник опорной волны расположен на том же расстоянии от голограммы, что и объект, то голограмма имеет почти те же свойства, что и голограмма Фурье. Поэтому такую голограмму можно назвать голограммой квази-Фурье.
2.4 Регистрирующий материал и конфигурация
В качестве регистрирующего материала, как правило, употребляется плоская фотографическая эмульсия, которая экспонируется одновременно и целиком.
Регистрирующий материал может быть термопластиком, тогда говорят о термопластической голограмме. Записываются фотохромные и бихромат-желатинные голограммы. Почти любая среда, способная записать изображения, может применяться для регистрации голограммы.
Тип голограммы.
Положение фотопластинки при голографировании. Фотопластинку в принципе можно расположить в любом участке поля стоячих волн. В частности, пусть имеем интерференционную картину, создаваемую пучками света от двух точечных источников О 1 и 02 (рис. 2). Для записи голограммы в таком световом поле фотопластинку можно расположить по-разному. На рис. 2 показаны несколько положений фотопластинки (/ - по Габору, 2 - по Лейту и Упатниексу, 3--по Денисюку *, 4--двухмерная голограмма с "обращенным опорным пучком", 5 и 6 - так называемые "безлинзовая" Фурье-голограмма и голограмма Фраунгофера). В зависимости от места расположения пластинки в поле стоячих волн меняется форма интерференционных полос. В общем случае интерференционные полосы являются кривыми, представляющими собой сечения семейства гиперболоидов или параболоидов вращения плоскостью голограммы. В зависимости от назначения и цели выбирают то или иное расположение пластинки относительно источника опорной волны и предмета. Лейт и Упатниекс располагали фотопластинку в положении 2, чтобы лучи рис 2. света от источников пересекались в области фотопластинки под некоторым углом. В этом случае становится возможным раздельно наблюдать действительное и мнимое изображения. В методе Денисюка (положение 3) с целью получения объемной голограммы фотопластинку следует расположить между источниками света на прямой, соединяющей их. Это дает возможность поместить несколько интерференционных полос по толщине фотопластинки.
* В этом случае интерференция предметной и опорной волн фиксируется не на плоскости, а в объеме - голограмма представляет собой толстослойную фотоэмульсию, иначе говоря, фоточувствительный объем (объемная голограмма).
3. Свойства источников
Когерентность и Поляризация.
Термин некогерентная голограмма обычно сохраняется за голограммами, записанными при использовании некогерентного света. При записи некогерентной голограммы интерференционные полосы образуются благодаря интерференции света от какой-либо точки изображения с самим собой. Для этого формируют два изображения объекта с помощью делительного устройства. Свет от соответствующих точек изображения является когерентным и может интерферировать. Свет, который не интерферирует, образует фоновое освещение голограммы. Другой способ получения интерференционных полос, когда источник света имеет низкую когерентность, заключается в формировании на голограмме изображения решетки и помещении объекта в один из порядков этой решетки.
Существует много различных ситуаций, когда голограмма регистрируется в когерентном свете, а изображение с нее восстанавливается некогерентным светом. Название голограммы определяют характеристиками голограммы, не связанными с когерентностью. Например, голограмма, записанная в когерентном свете, но при восстановлении освещаемая белым светом, называется отражательной голограммой, восстанавливаемой в белом свете (такая голограмма называется также голограммой Денисюка или голограммой Липпмана - Брэгга-- Денисюка.
Возможно, что голограмма восстанавливает ту часть света, которая имеет длину волны используемого при регистрации голограммы излучения, поскольку толстая голограмма действует как комбинационный интерференционный фильтр. Может применяться и тонкая голограмма, если для компенсации дисперсии света применяется решетка. Такие голограммы были названы поверхностными отражательными голограммами. При освещении белым светом вполне удовлетворительное изображение дают голограммы сфокусированного изображения и радужные голограммы.
Во многих случаях свет источника является поляризованным, в особенности если источником служит лазер. Это означает, что мы имеем дело с поляризованной опорной волной. Объектная волна во многих случаях, таких, как отражение света от объекта при формировании объектной волны, оказывается поляризованной случайным образом. Поскольку интерференция может произойти только между волнами, имеющими одинаковую поляризацию, часть объектной волны не регистрируется. Обычно о поляризационных свойствах записи голограмм не упоминают. Применение этого свойства для проверки некоторых характеристик объекта путем выбора направления поляризации опорной волны называется поляризационной голографией.
Длина волны света.
Применяя свет нескольких длин волн, можно записать цветную голограмму. Разумеется, сама голограмма не является цветной, но при освещении ее светом со многими длинами волн, мы получаем цветное изображение. Другие названия голограмм, связанные с длиной волны, относятся к области спектра или типу применяемой волны; например, микроволновая голограмма, акустическая голограмма и рентгеновская голограмма.
Названия голограмм, рассмотренные нами, употребляются только в том случае, если голограмма чем-то отличается от стандартной. Если говорят, что кто-то собирается записать голограмму, то это, по всей вероятности, означает, что планируется использовать лазер, поместить фотопластинку в френелевскую область объекта, расположить внеосевой точечный опорный источник по крайней мере на таком же расстоянии от плоскости регистрации, на котором от нее находится объект, применять плоскую фотоэмульсию и регистрировать поверхностную голограмму.
4. Некоторые виды голограмм
4.1 Мультикомплексные голограммы
Мультикомплексной называют такую голограмму, на которой одновременно записано много изображений, либо раздельно записаны отдельные части одного изображения, либо единственное изображение записано несколько раз.
Пространственное мультиплексирование.
При решении задачи хранения данных для записи многих голаграмм можно использовать единственную фотопластинку или какой-либо иной материал, причем каждая голограмма может независимо восстанавливать изображения записанных на ней данных. При этом голограммы могут образовывать решетку типа шахматного поля, а для считывания изображения с каждой голограммы лазерный луч сканирует по решетке.
Составные изображения.
Под составными голограммами мы имеем в виду голограммы, которые формируют изображения, состоящие из отдельных частей каждая из которых была записана самостоятельно
Голограммы, записанные с помощью сканирующего источника света.
Голограммы, записанные с помощью сканирующего источника это такие голограммы, при регистрации которых использован; либо сканирующий пучок света для освещения объекта, либо сканирующий опорный пучок для освещения голограммы. Следовательно, можно увеличить полную интенсивность света, падающего на часть голограммы, и уменьшить время экспозиции для части голограммы. Это позволяет голографировать объекты, имеющие движение в ограниченных пределах. Однако такой мет приводит к уменьшению дифракционной эффективности, что объясняется увеличением энергии опорного пучка по отношению к объектному
Цветные голограммы.
Цветными называют голограммы, способные воспроизводить цветные изображения. В сущности цветные голограммы - это мультиплексные голограммы, восстанавливающие перекрывающиеся изображения, каждое в своем цвете. Как и в случае мультиплексных голограмм, возникают различные проблемы в зависимости от того используются ли тонкие, т. е. поверхностные, голограммы или регистрирующая среда имеет заметную толщину.
Голограмма представляет собой закодированную дифракционную решетку. Следовательно, когда голограмма освещается белым светом, волны с большими длинами волн отклоняются сильнее от оси освещающей голограмму волны, чем волны с более короткими длинами волн. В результате этого восстановленное изображение; смазывается. Такой эффект можно отчасти скомпенсировать, используя дифракционную решетку с шагом штриха, равным среднему периоду интерференционных полос на голограмме. Изложенные выше соображения применимы к тонким голограммам. Объемные голограммы обладают избирательностью по отношению к длине волны и будут отражать или пропускать только узкую полосу длин волн, обусловленную эффектом Брэгга.
5. Применение голографии
Голография нашла применение различных областях науки и техники и имеет перспективы в будущем, а именно: спектроскопии, фотограмметрии, микроскопии и голографической интерферометрии, а также в деле записи информации и создании защитных приспособлений для документов.. Голограмму можно использовать в качестве комплексного оптического элемента. Такой оптический элемент может выступать во многих качествах. Известны голограммы, играющие роль линз (голограмма - зонная решетка), разлагающие свет в спектр (голограммы--дифракционные решетки), интерференционные фильтры (слои Липпмана) и т. д. Голографические дифракционные решетки содержат свыше 5000 полос на 1 мм. Метод голографии позволяет записывать на заданном малом участке фотоэмульсии (особенно толстослойной) в 100--400 раз больше страниц печатного текста, чем методы обычной микрофотографии. На обычную фотопластинку размером 32-32 мм 2 можно записать 1024 голограммы, каждая из которых занимает площадь в один квадратный миллиметр. Одна голограмма-- страница книги, одна пластинка - целая большая книга.
Заключение
Таким образом, согласованные усилия многих исследователей позволили накопить ряд сведений и фактов о свойствах трехмерных голограмм. За этими на первый взгляд разрозненными фактами достаточно отчетливо вырисовывается то единое явление природы, которое лежит в их основе. Оказывается, что материализованная объемная картина волн интенсивности способна воспроизводить волновое поле со всеми его параметрами - амплитудой, фазой, спектральным составом, состоянием поляризации и даже с изменениями этих параметров по времени.
Итак, можно сделать вывод о том, что голография-- это фотографический метод. Но он существенно отличается от метода классической фотографии. В отличие от обычной фотографии изображения, которые получаются при восстановлении записанного на голограмме, полностью неотличимы от изображений реального предмета и позволяет воспроизвести в пространстве действительную картину электромагнитных волн, т. е. волновую картину предмета тогда, когда самого предмета уже нет.
Литература
1. Введение в когерентную оптику и голографию: Учеб. пособие для физ.-мат. фак. пед. ин-тов.-Минск: Выш. шк.,1985.-144 с. Шепелевич В.В.
2. Оптическая голография т.1 С.Б. Гуревич, Г. Колфилд.
3. Оптическая голография т.2 С.Б. Гуревич, Г. Колфилд.
4. Оптика. Учебное пособие для вузов. М., "Высшая школа", 1977г. Годжаев Н.М.
5. Соросовский образовательный журнал №7 1997
Размещено на Allbest.ru
Подобные документы
Сущность и физическое обоснование явления голографии как восстановления изображения предмета. Свойства источников: когерентность, поляризация, длина волны света. Классификация и типы голографии, сферы практического применения данного явления, технологии.
реферат [185,3 K], добавлен 11.06.2013Физические принципы голографии, уравнения. Способы формирования голограмм. Схема регистрации Габора. Свойства опорной и объектной волны. Технология получения изобразительной и криминалистической голографии. Сущность пространственного мультиплексирования.
курсовая работа [513,4 K], добавлен 08.05.2014Применение интерференции для проверки качества обработки поверхностей, "просветления" оптики, измерения показателя преломления веществ. Принцип действия интерферометра. Многолучевая интерференция света. Получение изображения объекта с помощью голографии.
реферат [165,6 K], добавлен 18.11.2013Основы оптической голографии. Схемы записи оптических голограмм, отличие от фотографии, маркировка. Разделение пучка когерентного света. Пропускающая голограмма И. Лейта и Ю. Упатниекса. Восстановления изображения с помощью источника белого света.
презентация [4,8 M], добавлен 14.04.2014Изучение явления интерференции света с помощью интерференционной картины, ее получение по заданным параметрам (на экране не менее восьми светлых полос). Сравнение длины световой волны с длиной волны падающего света. Работа программы "Интерференция волн".
лабораторная работа [86,5 K], добавлен 22.03.2015Понятие интерференции в физике. Особенности этого явления при прохождении через кристалл поляризованного света. Описание законов интерференции поляризованных волн в случае параллельных и сходящихся пучков. Принципы явления хроматической поляризации.
контрольная работа [561,5 K], добавлен 18.11.2014Схемы интерференции, отличающиеся методом создания когерентных пучков. Интерференция, получаемая делением волнового фронта, амплитуды волны. Интерференция при отражении от пластинок тонких и переменной толщины. Практическое применение интерференции.
презентация [199,6 K], добавлен 18.04.2013Отклонение лучей призмой. Линзы, их элементы и характеристики. Интерференция света и условия интерференционных максимумов и минимумов. Получение когерентных пучков. Дифракция света и построение зон Френеля. Поляризация света при отражении и преломлении.
реферат [911,7 K], добавлен 12.02.2016Расчет длины волны из опыта Юнга и колец Ньютона. Интерференция света как результат наложения двух когерентных световых волн. Подробный расчет всех необходимых величин. Определение длины волны через угол наклона соответствующей прямой к оси абсцисс.
лабораторная работа [469,3 K], добавлен 11.06.2010Голография — набор технологий для точной записи, воспроизведения и переформирования волновых полей. Изучение принципа интерференции электромагнитных волн. Использование лазера как источника света. Рассмотрение схем записи Лейта-Упатниекса и Денисюка.
презентация [620,3 K], добавлен 14.05.2014