Электронные приборы и устройства
Анализ основных элементов физики полупроводников. Зависимость электродвижущей силы Холла от размеров пластины. Схемы включения биполярных транзисторов. Сущность электронно-лучевых и вакуумно-люминесцентных индикаторов. Изучение светоизлучающих диодов.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 08.08.2020 |
Размер файла | 860,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1
Размещено на http://www.allbest.ru/
Электронные приборы и устройства
Общие сведения
Возникновение электроники было подготовлено всем ходом развития промышленного производства и в частности электротехники. В цепи замечательных открытий и изобретений в этой области следует особо выделить такие достижения, как открытие явления термоэлектронной эмиссии (1887 г.), создание электровакуумного диода английским ученым Я. Флемингом (1904 г.) и триода Ли де Форестом в США в 1907 г. Эти изобретения позволили генерировать и усиливать электромагнитные колебания. Электроника - важнейшая отрасль науки и техники, изучающая физические процессы, происходящие в электровакуумных и полупроводниковых приборах при взаимодействии заряженных частиц и электрических полей, а также занимающаяся разработкой и созданием электронных приборов и устройств для измерения, контроля, обработки и хранения информации.
Особо следует отметить открытие в 1889 г. русским физиком А.С. Поповым возможности использования электромагнитных волн для передачи сигналов на большие расстояния и создание им в 1895 г. первого в мире радиоприемника.
В 1907 г. русский физик Б.Л. Розинг сформулировал основные принципы телевидения.
Огромный скачок в развитии электроники произошел после открытия в 1922 г. О.В. Лосевым явления проводимости в полупроводниках и разработки группой физиков под руководством академика А. Ф. Иоффе теории полупроводников и их технического применения. После этого использование полупроводниковых приборов в различных областях электроники, радиотехники, вычислительной техники приобрело массовый характер.
Современный этап развития электроники и электронной техники характеризуется использованием новых материалов и технологий, все более сложных и надежных электронных устройств. В связи с этим наибольшее развитие получила интегральная электроника. Первые интегральные микросхемы были созданы в США в 1958 г. Д. Килби и Р. Нойсом.
Создание микросхем позволило существенно снизить размеры и энергопотребление устройств, повысить их надежность и быстродействие.
Исследование высоких технологий в современном производстве способствовало повышению плотности размещения элементов микросхемы в кристалле, что привело к появлению микропроцессоров - основных элементов современных электронно-вычислительных машин.
Современные электронные приборы и устройства широко применяют в различных областях производства при автоматизации технологических процессов, в компьютеризации производственных процессов. В связи с этим изучение электроники будущими специалистами производства, независимо от области их деятельности, позволит существенно повысить их профессиональный уровень.
Глава 1. Электронные приборы
1.1 Электровакуумные приборы
Принцип работы электровакуумных приборов основан на явлении термоэлектронной эмиссии. Электровакуумные приборы условно можно разделить на электронно-управляемые, газоразрядные и электронно-оптические электронно-оптические приборы будут рассматриваться в последующих главах.
В электронно-управляемых приборах - лампах - проводимость обусловлена только свободными электронами, возникающими за счет эмиссии. Лампа представляет собой стеклянный или металлический баллон, в котором создается вакуум. В баллон помещают положительный электрод (катод) и отрицательный электрод (анод). Кроме того, в лампе могут быть один или несколько управляющих электродов (сеток). Катод нагревают до температуры, при которой свободные электроны покидают металл катода и перемещаются в вакууме к аноду. Число электронов, следовательно, и ток, проходящий через прибор, можно регулировать, изменяя электрический потенциал на управляющих электродах.
Электронные лампы используются в электронных приборах для выпрямления переменного тока, усиления сигналов и т.д.
В газоразрядных приборах проводимость обеспечивается в основном наличием в баллоне какого-либо инертного газа. При воздействии на прибор различных внешних факторов - электромагнитного поля, температуры, светового потока - газ ионизируется (появляются, кроме электронов, положительно и отрицательно заряженные ионы) и в газовой среде возникает электрический разряд. Газоразрядные лампы используют в качестве различных электронных индикаторов и указателей.
1.2 Полупроводниковые приборы
Элементы физики полупроводников
К полупроводникам относятся твердые вещества (чаще всего - кристаллические), электропроводность которых, как и в проводниках, связана с перемещением электронов, но значительно меньше электропроводности проводников. По электропроводности полупроводники занимают промежуточное место между проводниками и изоляторами. Под влиянием различных причин их электропроводность может изменяться в очень широких пределах.
Полупроводниками являются химические элементы (германий, кремний, теллур, селен и др.), окислы металлов, сернистые соединения (сульфиды), соединения с селеном (соленоиды), а также сплавы некоторых металлов.
Упрощенная схема структуры кристалла четырехвалентного элемента (например, германия) показана на рис. 12.1. Четыре электрона внешней электронной оболочки каждого атома участвуют в связях с четырьмя соседними атомами. Поскольку все валентные электроны заняты в междуатомных связях, то в веществе не оказывается свободных электронов, которые могли бы перемешаться для образования тока.
Рис. 12.1
Такое вещество не проводит электрического тока, т.е. ведет себя как изолятор.
Во многих случаях электропроводность можно создать усилением тепловых колебаний с помощью нагрева. Тогда отдельные валентные электроны могут разрывать свои связи с атомами вещества. Вырвавшийся из междуатомной связи электрон, нарушает равновесие электрических зарядов - в элементе кристаллической решетки создается недостаток отрицательного заряда. «Пустое место», образующееся в результате выхода электрона, получившее название «дырки», соответствует, таким образом, положительному заряду.
Схематическое изображение этого состояния показало на рис. 12.1, где дырки отмечены буквами Д. Освободившиеся электроны движутся в участках кристаллической решетки, в которых дырки отсутствуют. При сближении с дыркой они могут заполнять недостающую связь, после чего восстанавливается равновесное электрическое состояние. Этот процесс называется рекомбинацией.
Если приложить к кристаллу электродвижущую силу и создать таким образом электрическое поле, то свободные электроны будут отталкиваться отрицательным полюсом источника электродвижущей силы и притягиваться к положительному. Перемещаясь в направлении электрического поля, эти электроны будут участвовать в создании тока. В свою очередь, наличие дырок также создает возможность для прохождения тока. Качественная картина электропроводности в этом случае может быть пояснена схемой (рис. 12.2), где для наглядности действительная структура из атомов, взаимно связанных через валентные электроны, условно заменена простой цепочкой из атомов.
При отсутствии свободных электронов и дырок (рис. 12.2 а) электрический ток в цепи отсутствует. В случае наличия дырок притяжение со стороны нескомпенсированных положительных зарядов действует на электроны соседних нейтральных атомов и способствует вырыванию их из связей, в которых они участвуют. В процессе теплового движения атомов и при наличии указанного дополнительного воздействия возможно высвобождение электронов из соседних элементов кристаллической решетки. При этом электроны могут переходить в недостающие связи, например, как это показано стрелкой на рис.12.2 б. При отсутствии внешнего электрического поля перемещение дырок происходит беспорядочно.
Схемы (рис. 12.2 б-г) поясняют картину явлений при наличии электрического поля, созданного приложенной извне электродвижущей силой. В этом случае на электроны действует дополнительное напряжение, направленное к положительному полюсу эдс.
В результате переход электронов упорядочивается и при данной полярности ЭДС происходит в направлении «плюса», как это показано стрелкой на рис. 12.2 б. После перехода электрона дырка Д оказывается правее своего первоначального положения (рис. 12.2 в). Аналогично происходят и дальнейшие переходы электронов, причем дырка постепенно перемещаются вправо (рис. 12.2 г). Нетрудно видеть, что ток в цепи в этом случае по-прежнему связан с движением электронов, однако это движение проявляется в изменении положения положительных зарядов (т. е. мест, в которых недостает электрона).
Рис. 12.2
В реальных условиях полный ток в чистом полупроводнике связан с одновременным перемещением свободных электронов и дырок.
В полупроводниках, в отличие от диэлектриков, количество свободных носителей электрических зарядов, т.е. электронов и дырок, оказывается сравнительно большим уже при комнатной температуре. Однако оно неизмеримо меньше количества свободных электронов в металле. Поэтому ток в электрической цепи, содержащей полупроводник, зависит от количества свободных носителей зарядов. Благодаря сильной зависимости количества свободных носителей электрического заряда от температуры, температурный коэффициент сопротивления полупроводника оказывается значительно больше, чем температурный коэффициент сопротивления металла.
При изменении тока в электрической цепи, содержащей полупроводник, изменяется и сопротивление этой цепи. Причина этого заключается в следующем. Увеличение тока связано с увеличением количества движущихся в полупроводнике электронов. Эти электроны, отдавая часть своей энергии атомам вещества, вызывают увеличение числа высвобождающихся из междуатомных связей электронов, т.е. увеличение количества свободных электронов и дырок. Сопротивление цепи при этом уменьшается. Ток, проходя по стержню из полупроводника, нагревает его, а нагревание увеличивает электропроводность. В результате сопротивление полупроводникового элемента резко изменяется с изменением тока, и падение напряжения оказывается не прямо пропорциональным току, как это имеет место в обычной цепи с постоянным сопротивлением, а зависящим от него по другому, более сложному закону.
При освещении полупроводника энергия света, передаваясь электронам, вызывает усиленное высвобождение их из связей с атомами, что при наличии электродвижущей силы так же, как и нагревание, ведет к увеличению тока в полупроводнике. Это явление называется фотопроводимостью. На электропроводность влияют и излучения, связанные с радиоактивным распадом.
Принцип действия многих полупроводниковых приборов основан на получении в полупроводнике электропроводности, связанной с присутствием свободных носителей электрического заряда какого-либо одного типа: только электронов или только дырок. Такая электропроводность может быть получена добавлением в кристалл полупроводника примесей других элементов (фосфора, сурьмы, мышьяка, бора, алюминия, индия). Получаемая при этом электропроводность, называемая часто примесной, может быть значительно большей, чем электропроводность чистого полупроводника, называемая собственной. Если, например, в кристаллической решетке один из атомов заменен примесным атомом, имеющим на один валентный электрон больше, чем соседние атомы основного полупроводника, то «лишний» электрон не участвует в валентных связях с соседними атомами и может сравнительно легко оторваться от своего атома. В этом случае ионизация примесного атома приводит к образованию свободного электрона, участвующего в электронной электропроводности. Такая примесь называется донорной. Положительный местный заряд, возникающий после потери электрона нейтральным атомом примеси, неподвижен и не участвует в электропроводности. Если, наоборот, примесный атом имеет на один валентный электрон меньше, чем атомы основного вещества, то при ионизации он может захватывать и сравнительно прочно связывать электрон соседнего атома, что приводит к образованию дырки. Такая примесь называется акцепторной. Ток в полупроводнике в этом случае связан главным образом с перемещением не избыточных электронов, а дырок, т. е. возникает дырочная электропроводность.
Поскольку в первом случае свободные носители зарядов отрицательны (negative), а во втором - положительны (positive), электронная электропроводность обычно обозначается буквой n, а дырочная - буквой p.
Если при нормальной температуре примесная электропроводность преобладает над собственной, то при повышении температуры быстро возрастающая собственная электропроводность начинает играть главную роль, т.е. прохождение тока оказывается связанным с перемещением зарядов обоих типов, а не только электронов или только дырок.
Одной из особенностей полупроводников, обладающих примесной электропроводностью, является возможность получения сравнительно большой электродвижущей силы Холла. Сущность эффекта Холла состоит в отклонении подвижных носителей электрического заряда магнитным полем в направлении, перпендикулярном направлению тока и магнитному полю. Известно, что действие магнитного поля на провод с током вызывает движение провода. Если провод неподвижен, то в направлении его предполагаемого движения смещаются внутри него носители электрического заряда, которые образует ток. Если носителями заряда являются электроны, то смещение их в одном направлении соответствует отрицательному заряду соответствующего участка провода. С противоположной стороны, где создается недостаток электронов, возникает соответствующий положительный заряд, как это показано на рис. 12.3 а.
При дырочном характере электропроводности происходит смещение дырок, т. е. положительных зарядов. Поперечная поляризация в этом случае оказывается противоположной по сравнению с предыдущим случаем (рис. 12.3 б).
а) б)
Рис. 12.3
При наличии в полупроводнике смешанной электропроводности (электронной и дырочной) смещение этих разнотипных носителей заряда при действии магнитного поля привело бы к появлению разности потенциалов только при неодинаковом количестве свободных электронов и дырок. При этом поперечная разность потенциалов оказывается малой. Отрицательный суммарный заряд смещенных электронов компенсируется положительным суммарным зарядом смещенных дырок. Если магнитное поле действует на полупроводник с примесной электропроводностью одного типа (электронной или дырочной), то взаимная компенсация зарядов не возникает. В этом случае поперечная разность потенциалов может получаться сравнительно большой.
Поперечная электродвижущая сила, обусловленная эффектом Холла, прямо пропорциональна произведению тока на напряженность магнитного поля и зависит от концентрации свободных носителей заряда. Она может значительно превышать электродвижущую силу Холла в металлах при том же токе и той же напряженности магнитного поля.
Введением примесей в различные участки кристалла полупроводника в нем можно получить зоны с различной электропроводностью. Полупроводники, с чередующимися участками электронной и дырочной электропроводности, наиболее часто применяют в современной техники. Такими свойствами обусловлено, например, выпрямительное действие электронно-дырочного перехода.
Полупроводниковые диоды
В пограничном слое двух полупроводников с различным характером электропроводности при одном направлении тока дырки и электроны движутся навстречу друг другу, и при их встрече происходит рекомбинация. В цепи, таким образом, протекает ток (рис. 12.4 а).
Если изменить направление тока на обратное (рис.12.4 б), то изменится и направление движения дырок и электронов. Носители зарядов при этом не приближаются к граничной поверхности полупроводников, а удаляются от нее.
а) б)
Рис. 12.4
В результате в пограничной области образуется слой, лишенный свободных носителей зарядов. Постоянный ток через этот слой проходить не может. В реальных условиях очень малый ток проходит через этот слой вследствие наличия в полупроводнике, наряду с примесной, некоторой собственной электропроводности. Однако сопротивление цепи в этом случае (рис. 12.4 б) во много раз больше, чем в предыдущем случае (рис. 12.4 а).
Электронно-дырочный, или p-n, переход представляет собой электрический переход между p и n зонами полупроводника. Электронный прибор с таким переходом называется полупроводниковым диодом. Он обладает односторонней проводимостью. Все полупроводниковые диоды по конструктивному исполнению делят на точечные и плоскостные. Точечный диод состоит из пластины германия или кремния с электропроводностью n-типа и вплавленной в нее стальной проволочкой (рис. 12.5 а). У точечного диоды линейные размеры p-n - перехода много меньше его толщины. Из-за малой площади контакта прямой ток таких диодов, а также их межэлектродная емкость сравнительно малы, поэтому их используют в основном для выпрямления тока в слаботочных устройствах сверхвысокой частоты. Вольт-амперные характеристики точечных диодов приведены на рис. 12.5 б.
Рис. 12.5
В плоскостных диодах p-n - переход образован двумя полупроводниками с различными токами электропроводности, причем линейные размеры перехода много больше его толщины. Площадь перехода колеблется в широких пределах: от долей мкм2 до нескольких см2, поэтому прямой ток плоскостных диодов составляет от единиц до тысяч ампер. Конструкция и вольт-амперные характеристики плоскостных диодов показаны на рис. 12.6 а, б.
Рис.12.6
Основными параметрами диодов являются: прямой максимальный ток диода , прямое напряжение , максимально допустимое обратное напряжение , обратный ток диода .
Стабилитроны
Стабилитрон представляет собой специальный полупроводниковый диод, напряжение электрического пробоя которого очень слабо зависит от протекающего через него тока. Стабилитрон служит для стабилизации напряжения в различных электронных устройствах (например, блоках питания). Вольт-амперная характеристика стабилитрона приведена на рис. 12.7.
Рис. 12.7
Из характеристики видно, что напряжение стабилизации слабо изменяется при достаточно больших изменениях тока стабилизации . Это свойство стабилитрона используют для получения стабильного напряжения в стабилизаторах напряжения.
Одним из основных параметров, учитываемых при выборе стабилитронов, является напряжение стабилизации (пробоя). В справочных данных указывается номинальное напряжение стабилизации для определенного тока. В настоящее время отечественной промышленностью серийно выпускаются стабилитроны с напряжением стабилизации в диапазоне 5…300 В и с допусками на разброс номинального напряжения 5, 10, 15 %. Наличие разброса ограничивает применение некоторых схем включения стабилитронов и приводит иногда к усложнению схем.
Напряжение стабилизации зависит также от температуры стабилитрона. Количественно эта зависимость выражается температурным коэффициентом напряжения , представляющим собой отношение изменения напряжения стабилизации к изменению температуры стабилитрона, приведенное к одному вольту, %/°C
, (12.1)
где и - напряжения стабилизации при температурах и .
Дополнительными характеристиками стабилитрона являются динамическое сопротивление на участке стабилизации , минимальный и максимальный ток стабилизации.
Параметры схем со стабилитронами выбираются так, чтобы длительный средний ток через них был меньше максимально допустимого Значение тока ограничено допустимой по тепловому режиму мощностью рассеяния и представляет собой отношение этой мощности к напряжению стабилизации. Кратковременно же стабилитрон способен выдерживать токи, значительно большие Значение температурного коэффициента возрастает с увеличением напряжения стабилизации. Поэтому в ряде случаев целесообразно заменить один высоковольтный стабилитрон цепочкой низковольтных, соединенных последовательно.
Конструктивно стабилитроны выполняются аналогично выпрямительным диодам.
Тиристоры
Тиристоры представляют собой кристаллическую структуру из четырех слоев чередующихся электронной и дырочной проводимостей (рис. 12.8) с тремя электродами: анодом А, катодом К и управляющим электродом УЭ, отходящими от слоев p1, n2 и n1 соответственно (тиристор с N-управля-ющим электродом). Полупроводниковым материалом для изготовления тиристоров является кремний.
Напряжение питания тиристора является обратным напряжением для электронно-дырочного перехода П2. Соответственно ток (при = 0) тиристора, представляющий собой обратный ток перехода П2, является прямым током для переходов П1 и П3. Тиристор имеет релейную проходную характеристику (рис. 12.9).
Напряжение питания подается на тиристор таким образом, что переходы П1 и П3 открыты, а П2 закрыт. Вследствие этого ток через тиристор не протекает. Если повышать напряжение , то ток тиристора будет незначительно увеличиваться, пока не достигнет определенного значения.
Рис. 12.8
Рис. 12.9
Происходит лавинообразный пробой внутреннего перехода, ток через тиристор резко возрастает, и тиристор открывается.
Напряжение включения может быть снижено, если в слой ввести дополнительные носители заряда от независимого источника энергии. В зависимости от тока управления можно получить семейство характеристик тиристора (рис. 12.9). Важными параметрами при выборе тиристора являются ток управления и максимальное обратное напряжение
Тиристоры маркируют буквами и цифрами, например, КУ202Н, 2У202Н, где К- или 2 - кремниевые; У-тиристоры; 202Н - обозначение параметров прибора (мощность, частота, напряжение, ток).
Иногда изготовляют тиристоры с симметричной ВАХ. Это достигается встречным соединением двух одинаковых четырехслойных структур или специальных пятислойных структур с четырьмя p-n-переходами. На рис. 12.10 показана структура симметричного тиристора (симистора), предназначенного для работы в цепях переменного тока. Симистор состоит из пяти слоев чередующихся электронной и дырочной
Рис. 12.10 проводимостей. Металлические слои М () обеспечивают выключение одного из р-n переходов (П3 или П4) в зависимости от направления ЭДС () источника питания. Поэтому при каждом из направлений основного (прямого) тока () функционируют три перехода, как у обычного тиристора.
Возможность работы симистора в цепи переменного тока и управления переменным током является важной для практики его применения. Симистор может управляться и постоянным током.
Холлотроны
Холлотрон представляет собой магнитно-полупроводниковый прибор, действующий на основе гальваномагнитного эффекта возникновения ЭДС в кристалле проводника или полупроводника, находящемся в магнитном поле, при прохождении по нему электрического тока на основе эффекта Холла. По существу эффект возникновения ЭДС является особым случаем явления электромагнитной индукции. Электродвижущая сила Холла, как и в электромеханическом генераторе, возникает вследствие взаимодействия движущихся электронов с магнитным полем. Разница состоит лишь в том, что электроны проводника обмотки электромеханического генератора перемещаются относительно магнитного поля вместе с проводником за счет механической энергии, а электроны твердого тела, в котором возникает ЭДС Холла, перемещаются в его кристаллической решетке под воздействием электрической энергии.
В полупроводнике с электронной проводимостью в виде удлиненной пластинки прямоугольной формы при показанных на рис. 12.11 направлениях тока и магнитного поля , электроны отклоняются на боковую грань а и образуют на ней отрицательный заряд. Противоположная грань б заряжается положительно. Таким образом, ЭДС Холла обусловливается пространственно разделенными разноименными зарядами. Как и ЭДС электромеханического генератора , она определяется мгновенным значением магнитной индукции В, скоростью и геометрическими размерами полупроводника b в направлении ЭДС (длиной проводника обмотки генератора)
.
Поскольку концентрация электронов в полупроводнике намного ниже, а подвижность выше, чем у проводников, то ЭДС в полупроводниках получается достаточной для технического использования гальваномагнитного эффекта Холла.
Холлотрон (рис. 12.12 а) состоит из магнитопровода 1 с обмоткой w возбуждения магнитного поля и полупроводникового элемента (пластины) 2 прямоугольной формы (рис.12.12 б), расположенной в воздушном зазоре магнитопровода. Характеристики холлотронов определяются прежде всего свойствами и характеристиками полупроводниковых элементов, которые имеют четыре электрода. Токовые электроды 1 и 2 для создания равномерной плотности тока соприкасаются с пластиной по всей поверхности ее торцевых граней. Электроды Холла 3 и 4, наоборот, выполняются точечными, и располагают их на середине узких боковых граней.
Электродвижущая сила Холла зависит от размеров пластины, главным образом от ее толщины d. Уменьшение отношения длины пластины к ширине снижает ЭДС связи с усиливающимся влиянием токовых электродов, шунтирующих грани, между которыми возникает ЭДС. По мере снижения
Рис. 12.12
уменьшается сопротивление пластины между токовыми электродами. Поэтому при сохранении поверхности пластины (условий теплоотдачи) может быть увеличен ток и соответственно ЭДС Холла. При неизменной мощности оптимальной в отношении значения ЭДС является квадратная пластина. При квадратной форме сопротивления и между токовыми электродами и между электродами Холла одинаковы. В целях снижения свойственной полупроводникам зависимости удельного сопротивления от магнитной индукции обычно используются пластины с соотношением = 2. Элементы Холла изготовляются в виде пластин, вырезанных из кристалла, или в виде пленок путем напыления полупроводникового вещества на изоляционную подложку, например, на тонкий слой слюды. На слюду обычно наклеивают и вырезанные из кристаллов пластины. Толщина пластин составляет несколько десятых долей миллиметра, а пленок - микроны. Однако подвижность электронов пленок значительно ниже подвижности электронов кристаллов.
Для изготовления холлотронов применяются следующие полупроводниковые вещества: антимонид (InSb) и арсенид (1пSb) индия, германий (Ge), теллурид (HgTe) и селенид (HgSe) ртути.
Основными количественными показателями полупроводниковых элементов холлотронов являются: коэффициент чувствительности по ЭДС и коэффициенты преобразования напряжения и мощности.
Биполярные транзисторы
Транзисторы являются управляемыми полупроводниковыми приборами, обеспечивающими усиление сигналов. По принципам действия их делят на управляемые электрическим током (биполярные) и управляемые электрическим полем (полевые).
Рис. 12.13
Биполярный транзистор представляет собой совокупность двух электронно-дырочных переходов с общей n-областью (или р-областью), взаимодействующих между собой так, что обратный ток одного из р-n - переходов является функцией прямого тока второго перехода (рис. 12.13). В основе указанного взаимодействия лежит явление инжекции - ввода неосновных носителей тока в общую область, например дырок в
р-области в общую n-область.
Ввод дырок одной из р-областей в общую n-область происходит в несимметричном p-n - переходе при прохождении через него прямого тока . Таким образом, действие биполярного транзистора основано на процессе управления концентрациями неосновных носителей тока.
Если, например, к левому р-n - переходу подключить источник напряжения , то через первый переход пойдет прямой ток , который в
р-области левого перехода будет практически дырочным током . Поток дырок, создающих , вводится (инжектируется) в n-область. Часть инжектированных дырок рекомбенирует в n-области с электронами, поступающими от источника Однако, большинство дырок, которые в n-области являются неосновными носителями, захватывается электрическим полем правого перехода, создавая ток . Поэтому через правый р-n - переход проходит в обратном направлении ток
, (12.3)
где - ток, обусловленный собственными носителями; - ток, обусловленный инжектированными носителями.
Таким образом, левый р-n - переход с прямым током поставляет в
n-область неосновные носители тока - эмиттирует и поэтому называется эмиттерным. Он является управляющим переходом. Правый p-n - переход собирает поставленные в n-область неосновные носители тока и называется коллекторным. Общая n-область называется базой. Отходящие от соответствующих областей металлические выводы (электроды) называются эмиттером Э, коллектором К и базой Б биполярного транзистора (рис. 12.14), а токи, проходящие по ним - токами эмиттера , коллектора и базы . База, как указывалось, может иметь электронную и дырочную проводимость. Соответственно различаются биполярные транзисторы типа p-n-p и n-p-n.
Рис. 12.14
Биполярный транзистор выполняется из кристалла германия или кремния, в котором путем вплавления, диффузии (или другим технологическим способом) примесей, например, индия, формируются два электронно-дырочных перехода (рис. 12.14).
Различают входные и выходные вольт-амперные характеристики биполярного транзистора. Входная, или базовая, характеристика - это зависимость между током и напряжением на входе транзистора (рис. 12.15 а). полупроводник биполярный транзистор индикатор
Известны три схемы включения транзисторов:
1) с общей базой (рис. 12.16 а) - используют в устройствах для усиления напряжения и мощности;
2) с общим эмиттером (рис. 12.16 б) - применяют для усиления мощности;
3) с общим коллектором (рис. 12.16 в) - схема обладает большим выходным сопротивлением, и ее используют в так называемых эмиттерных повторителях для повышения входного сопротивления электронного устройства.
Биполярные транзисторы обозначают буквами ГТ (германиевые) и КТ (кремниевые) с цифрами, характеризующими параметры транзистора. Основные электрические параметры транзистора следующие: , - ток базы и ток коллектора соответственно, - напряжение между базой и эмиттером, - напряжение между коллектором и эмиттером. Кроме этих параметров для расчета и анализа устройств с биполярными транзисторами используются так называемые h-параметры: - входное сопротивление транзистора, - коэффициент обратной связи по напряжению, - коэффициент передачи по току (характеризует усилительные свойства транзистора), - характеризует выходную проводимость.
Рис. 12.15
Рис.12.16
Полевые транзисторы
Полевые транзисторы разделяют на униполярные (с одним p-n - переходом) и полевые с изолированным затвором (без p-n - перехода) или со структурой МДП (металл - диэлектрик - полупроводник). Действие полевых транзисторов основано на процессах управления основными носителями тока электрическим полем, перпендикулярным направлению их движения в полупроводнике. По способам управления указанные разновидности полевых транзисторов существенно различаются.
Униполярный транзистор представляет собой полупроводник с электронно-дырочным переходом, управляемым обратным напряжением. Конструкция и условные обозначения транзистора показаны на рис. 12.17.
Рис. 12.17
Вывод З базы (в данном случае р-типа переход) принято называть затвором полевого транзистора. Вывод И от канала, из которого при электронном канале (n-типа) ток выходит, называется истоком. Второй вывод С называется стоком. Токи, проходящие по ним, называются токами истока и стока .
Униполярный транзистор выполняется из кристалла кремния или германия, например р-типа (подложка), в котором создаются две области n-типа: исток И и сток С - и р-n переход, область n которого является каналом.
Транзистор с изолированным затвором (металл М), (рис. 12.18) представляет собой полупроводник П с токопроводящим слоем у поверхности соприкосновения с диэлектриком Д, концентрация носителей тока в котором изменяется в функции напряженности электрического поля, перпендикулярного направлению тока. Токопроводящий канал формируется (индуцируется) из неосновных носителей полупроводника, например из электронов n полупроводника с дырочной р электропроводностью (подложки) и электрическим полем, обусловленным напряжением .
В канале электроны являются основными носителями тока. Токопроводящий канал имеет противоположную подложке электропроводность и называется инверсионным слоем полупроводника. Инверсионный слой образуется у поверхности соприкосновения полупроводника с диэлектриком, поскольку электрическое поле сосредоточено практически только в диэлектрике (непроводящем слое). На границе их раздела происходит разрыв вектора напряженности поля, что в соответствии с электромагнитной теорией означает наличие поверхностного заряда.
Концентрация носителей тока в канале определяется количеством перемещенных электрическим полем из объема полупроводника электронов и, следовательно зависит от напряжения на затворе. Изменяется, в данном случае увеличивается, при возрастании напряжения и ток стока Iс, пропорциональный концентрации основных (для канала) носителей. В рассмотренном МДП-транзисторе с индуцированным каналом происходит обогащение канала носителями тока при положительном (канал n-типа) или при отрицательном (р-типа) напряжении . Как и униполярный, МДП-транзистор с индуцированным каналом может управляться напряжением одного знака. Однако образование инверсионного слоя возможно и при отсутствии напряжения на затворе. Поэтому существуют МДП-транзисторы со встроенным каналом. Их особенностью является возможность работы как с обогащением, так и с объединением канала, то есть возможность управления напряжением с изменяющейся полярностью. Истоком МДП-транзистора с каналом n-типа является область полупроводника, подключенная к отрицательному зажиму источника , а каналом р-типа - к положительному.
Транзистор со структурой МДП выполняется обычно на полупроводниковом кристалле П, кремния с дырочной проводимостью, в котором создают две области n-типа - исток И и сток С (рис. 12.19 а). Поверхность кристалла между истоком и стоком покрывают диэлектриком Д - двуокисью кремния, на котором располагается металлический слой М затвора З. Условные графические обозначения транзисторов с изолированным затвором и каналами n- и p-типов приведены на рис.12.19 б, в.
Рис.12.19
Полевые транзисторы, особенно с изолированным затвором, имеют очень большое входное сопротивление и практически не требуют мощности для управления ими. Для действия полевых транзисторов используются основные носители заряда полупроводника. Поскольку концентрация неосновных носителей является функцией внутренней энергии твердого тела (тепловой и др. видов), а концентрация основных носителей практически не зависит от нее, то полевые транзисторы менее подвержены воздействию температуры, радиационного излучения и других факторов, изменяющих внутреннюю энергию твердого тела.
Важная особенность полевых транзисторов состоит в возможности их работы при переменном напряжении UСИ, поскольку при симметричной конструкции исток и сток транзистора одинаковы, т. е. их можно использовать в цепях переменного тока как управляемые резисторы.
Интегральные микросхемы
Постоянное усложнение схем электронных устройств привело к существенному увеличению количества входящих в них элементов. В связи с этим возникает проблема все большей миниатюризации электронных приборов. Это стало возможным только на базе современного научно-технического направления электроники - микроэлектроники, основным принципом которой является объединение в одном сложном микроэлементе многих простейших - диодов, транзисторов, резисторов, конденсаторов и др. Эти достаточно сложные элементы обладают высокой надежностью и быстродействием, энергии потребляют мало, а стоят недорого. Такие сложные микроэлементы называют интегральными микросхемами (или просто микросхемами). Внешний вид одной из таких микросхем показан на рис. 12.20.
Рис. 12.20
Рис. 12.21
В зависимости от технологии изготовления микросхемы разделяют на гибридные и полупроводниковые. Гибридная микросхема представляет собой диэлектрическое основание (стекло, керамика), на которое в виде различных пленок наносят пассивные элементы - резисторы, конденсаторы, соединительные проводники. Для этого используют напыления из золота, серебра, меди.
Активные элементы - бескорпусные полупроводниковые приборы - навешивают на диэлектрик. Все это объединяют в одном корпусе с выводами (рис. 12.21). Плотность расположения элементов в гибридной микросхеме может достигать 500 шт./см2.
Основным достоинством гибридных микросхем является высокая точность параметров элементов, входящих в микросхему, например, резисторы, выполненные из пленочного тантала имеют точность не хуже 0,5 %.
Полупроводниковые микросхемы изготовляют из единого кристалла полупроводника (рис. 12.22), отдельные области которого представляют собой различные активные и пассивные элементы.
Рис. 12.22
Элементы полупроводников микросхем получают в едином технологическом процессе. Резисторы, например, получают посредством легирования полупроводника. Сопротивление резистора зависит от размеров данной области полупроводника и его удельного сопротивления. Высокоомные резисторы получают посредством создания эмиттерных повторителей в кристалле.
Диоды и транзисторы получают путем избирательного травления исходного кристалла на нанесенной ранее маске и создания изоляционного слоя окиси кремния. Затем напыляют или наращивают слой поликристаллического кремния и после повторного травления в определенные области кристалла с помощью диффузии вводят акцепторные и донорные примеси, то есть получают участки с электропроводностью р- и n-типа. Для соединения отдельных элементов микросхемы между собой используют золотые и алюминиевые пленки, которые наносят с помощью напыления. Все элементы помещают в металлический или пластмассовый корпус и соединяют с выводами с помощью золотой или алюминиевой проволоки диаметром до 10 мкм.
Интегральные микросхемы в зависимости от назначения подразделяют на линейно-импульсные и логические и могут иметь в отличие от обычных электронных приборов несколько входных и выходных параметров, которые строго нормируются. Микросхемы представляют собой целые функциональные узлы электронных устройств, например, генераторы, усилители, счетчики импульсов и др.
Глава 2. Электронно-оптические приборы
2.1 Индикаторные приборы
Индикаторные приборы служат для преобразования электрических сигналов в визуально воспринимаемую информацию. В зависимости от назначения индикаторные приборы могут иметь разную степень сложности и базироваться на различных физических принципах. В настоящее время для отображения знаковой информации наибольшее распространение получили электронно-лучевые, вакуумно-люминесцентные, газоразрядные, полупроводниковые и жидкокристаллические индикаторы.
Электронно-лучевые индикаторы
Действие электронно-лучевых индикаторов основано на управлении сформированным потоком электронов, называемым электронным лучом. Эти приборы позволяют не только регистрировать электрические сигналы в их непрерывном виде (например, в осциллографе), но и получать изображение (в телевидении). Электронно-лучевыми индикаторами комплектуют многие измерительные и диагностические установки и системы визуального наблюдения за технологическими процессами производства.
Рис. 13.1
Электронно-лучевой индикатор состоит из электронно-лучевой трубки, представляющей собой вытянутый в направлении луча стеклянный баллон с глубоким вакуумом, внутрь которого помещают источник свободных электронов и различные управляющие электроды. Утолщенная часть трубки, на которой фокусируется луч электронов, называется экраном. Изнутри он покрыт специальным слоем - люминофором, способным светиться при попадании на него электронов. Управление лучом осуществляется специальной электронной схемой с помощью электростатических или магнитных полей. На рис. 13.1 схематично показано устройство электронно-лучевой трубки. Основным элементом электронно-лучевой трубки является прожектор. Он состоит из катода К, представляющего собой металлический стакан, подогреваемый нитью накала Н. Катод по периметру охвачен цилиндрическим модулятором М с осевым отверстием. Модулятор управляет интенсивностью потока электронов, срывающихся с катода. Электроны, прошедшие модулятор, попадают в электрическое поле, создаваемое несколькими анодами (А1 и А2), ускоряются и фокусируются в тонкий луч.
Управление отклонением луча на экране осуществляется с помощью двух пар отклоняющих пластин Х и Y, которые расположены перпендикулярно друг другу. За счет разности потенциалов пластины Х управляют лучом в горизонтальном направлении, а пластины Y - в вертикальном.
Основными характеристиками электронно-лучевой трубки являются:
- послесвечение - время, за которое восстанавливается цвет экрана после прекращения бомбардировки его электронами;
- разрешающая способность - минимальный диаметр светового пятна на экране;
- чувствительность - отношение отклонения луча к напряжению отклоняющих пластин (по вертикали и по горизонтали).
2.2 Вакуумно-люминесцентные индикаторы
Рис. 13.2
Вакуумно-люминесцентный индикатор представляет собой электронную лампу - триод (рис. 13.2), состоящую из накаливаемой током металлической нити - катода 1, металлической сетки 2 и анодов - сегментов 3, покрытых люминофором. Все элементы конструкции размещены в вакуумном стеклянном баллоне с выводами от электродов.
Принцип действия индикатора основан на преобразовании кинетической энергии электронов в видимое излучение люминофорного покрытия анодов-сегментов. Электроны, покинувшие катод вследствие термоэлектронной эмиссии, ускоряются полем сетки, положительно заряженной относительно катода, частично проходят сквозь сетку и бомбардируют сегменты анода, вызывая их свечение. Подключением анодов-сегментов в определенных комбинациях к источнику положительного напряжения можно получить требуемый светящийся знак. В зависимости от типа люминофорного покрытия анодов-сегментов индикаторы имеют свечение красного или зеленого цвета. Конструкция индикатора может быть как одно-, так и многоразрядной.
Вследствие низкого напряжения питания (20...25 В) и малой потребляемой мощности вакуумно-люминесцентные индикаторы хорошо сочетаются с интегральными микросхемами. В настоящее время их широко применяют в микрокалькуляторах, измерительных приборах и часах.
Газоразрядные индикаторы
Газоразрядный индикатор относится к ионным приборам тлеющего разряда и выполняется с холодным катодом. Индикатор имеет два или более электродов, помещенных в стеклянный баллон, заполненный инертным газом при давлении 0,1...103 Па (рис. 13.3).
Рис. 13.3
При напряжении между электродами (анодом и катодом), достаточном для лавинообразной ионизации инертного газа движущимися в электрическом поле электронами и выбивания вторичных электронов с катода ускоренными электрическим полем положительными ионами, в пространстве между анодом и катодом возникает тлеющий разряд. Одновременно идет процесс рекомбинации электронов и положительно заряженных ионов. При этом выделяется энергия в виде фотонов, т.е. газ светится. Цвет свечения определяется составом газа-наполнителя.
Ионизация и рекомбинация наиболее интенсивно происходят вблизи катода, где концентрации свободных электронов и ионов максимальны. Поэтому наиболее интенсивное свечение наблюдается в прикатодной области.
Рис. 13.4
Простейшие приборы этого типа - сигнальные индикаторы (неоновые лампы). Они представляют собой два металлических электрода, выполненные в виде дисков, стержней или коаксиальных цилиндров и помещенные в стеклянный баллон, заполненный неоном. Устройство сигнального индикатора показано на рис. 13.4.
Пространство этих ламп вблизи катода светится оранжево-красным светом, наблюдаемым обычно через торец лампы. Для ограничения тока в неоновых лампах последовательно с ними необходимо включать балластный резистор, который может находиться в цоколе лампы.
Напряжение питания сигнальных индикаторов колеблется от 60 до 235 В, рабочий ток - от 0,15 до 30 мА. Неоновые лампы широко используют как сигнальные в устройствах автоматики, вычислительной техники и в приборостроении. Особенно часто их применяют в качестве индикаторов напряжения питания.
Знаковые газоразрядные индикаторы - это многокатодные приборы тлеющего разряда, предназначенные для индикации знаков-цифр, букв или математических символов. Катоды могут быть выполнены как в виде соответствующих знаков, так и в виде отдельных элементов этих знаков - сегментов. В первом случае катоды располагаются друг за другом, представляя собой пакет тонких проволочных знаков, а анодом является сетка, не мешающая восприятию знаков (рис. 13.5). Во втором случае изображение буквы, цифры или символа составляется из светящихся сегментов. Например, 13 сегментов знакового индикатора типа ИН-23 позволяют синтезировать цифры от 0 до 9 и все буквы алфавита на одном знакоместе. Условное графическое обозначение индикатора ИН-23 показано на рис.13.6.
Газоразрядные индикаторы отличаются надежностью и простотой конструкции, потребляют мало энергии и позволяют получать высокие яркости и контрастность изображения.
Рис. 13.5
Рис. 13.6
Недостатком газоразрядных индикаторов является слрожность их прямого подключения к интегральным микросхемам из-за высокого напряжения питания (100...250 В).
2.3 Полупроводниковые индикаторы
Принцип действия полупроводникового индикатора основан на излучении квантов света при рекомбинации носителей заряда в области р-n - перехода, к которому приложено прямое напряжение. К полупроводниковым индикаторам относится светодиод - полупроводниковый диод, в котором предусмотрена возможность вывода светового излучения из области р-n - перехода сквозь прозрачное окно в корпусе. Цвет определяется материалом, из которого выполнен светодиод. Выпускают светодиоды красного, желтого и зеленого свечения.
Полупроводниковые индикаторы подразделяются на дискретные (точечные), предназначенные для отображения цветной световой точки (рис. 13.7 а), и знаковые - для отображения цифр и букв (рис. 13.7 б). В знаковых сегментных индикаторах каждый сегмент представляет собой отдельный диод. Из 7 сегментов можно синтезировать цифры от 0 до 9 и 12 букв русского алфавита.
Рис. 13.7
Существенно большими информативными возможностями обладают полупроводниковые знаковые индикаторы в виде матриц точечных элементов (рис.13.7 в), где 36 элементов матрицы сгруппированы в 5 колонок и 7 рядов (плюс одна светящаяся точка в 7 ряду). Катоды элементов каждого ряда соединены между собой и имеют общий вывод, также как и аноды элементов каждой колонки. Подавая напряжение на выводы выбранных ряда и колонки, можно вызывать свечение заданного элемента матрицы.
Матричные элементы позволяют отображать все цифры и буквы русского и латинского алфавитов. На их основе можно создавать буквенно-цифровые дисплеи, в частности, в виде бегущей строки.
Полупроводниковые индикаторы работают при прямом напряжении 2...6 В и токе 10...40 мА в расчете на сегмент или на точку. Их применяют для индикации в измерительных приборах, системах автоматики и вычислительной техники.
Достоинствами полупроводниковых индикаторов являются: возможность их прямого подключения к интегральным микросхемам благодаря низкому рабочему напряжению; большой срок службы; высокая яркость свечения и хороший обзор.
Основной их недостаток состоит в сравнительно высокой потребляемой мощности - 0,5…1 Вт на один сегментный светодиод.
Жидкокристаллические индикаторы
Жидкокристаллические индикаторы не излучают собственный свет, а только воздействуют на свет, проходящий через индикатор. Поэтому для них необходим внешний источник света. Основу индикаторов этого типа составляют жидкокристаллические вещества, молекулы которых могут поворачиваться под действием электрического поля и вследствие этого изменять прозрачность слоя жидкого кристалла.
Индикатор (рис.13.8) представляет собой две стеклянные пластинки 1, между которыми размещен тонкий слой (10...20 мкм) жидкого кристалла 2.
На внутренние поверхности пластин нанесены тонкопленочные проводящие электроды, причем на верхней пластине электроды выполнены прозрачными, а на нижней электрод - вертикально отражающими свет. Зазор между пластинами и герметичность объема, занятого жидким кристаллом, обеспечиваются изолирующими прокладками. Для подключения управляющего напряжения проводящие электроды снабжены выводами.
Рис. 13.8
При отсутствии электрического поля молекулы жидкого кристалла ориентированы вдоль одной оси и образуют прозрачную для света структуру. Падающий на индикатор свет проходит сквозь прозрачный электрод, слой жидкого кристалла и, отразившись от нижнего электрода, возвращается к наблюдателю. В этом случае слой жидкого кристалла выглядит светлым. При подаче управляющего напряжения ориентация молекул жидкого кристалла изменяется, прозрачность слоя уменьшается, и слой жидкого кристалла под прозрачным электродом выглядит темным.
Если прозрачные электроды выполнить в виде сегментов, то, создавая напряжение между отражающим электродом и соответствующим сегментом, можно получать темные знаки на светлом фоне.
По электрическим параметрам жидкокристаллические индикаторы хорошо согласуются с полупроводниковыми микросхемами, изготовленными по планарной технологии, имеют наименьшую потребляемую мощность среди всех индикаторов (5...50 мкВт/см2), а срок их службы достигает 104 ч.
Промышленность выпускает индикаторы сегментного типа, позволяющие синтезировать цифры, буквы и другие знаки на панелях, содержащих от 1 до 23 знакомест.
Жидкокристаллические индикаторы находят широкое применение в часах, микрокалькуляторах и измерительных приборах. Основные их недостатки - необходимость во внешнем источнике света и относительно узкий диапазон рабочих температур (1...50 °С).
2.4 Оптоэлектронные приборы
Оптоэлектронными называют приборы, преобразующие электрические сигналы в оптические. К оптоэлектронным приборам относят светоизлучающие диоды, оптопары и волоконно-оптические приборы.
Светоизлучающие диоды
Светоизлучающий диод - это полупроводниковый диод, излучающий энергию в видимой области спектра в результате рекомбинации электронов и дырок. В качестве самостоятельного прибора излучающий диод применяется в световых индикаторах, в которых используется явление излучения света
р-n переходом при прохождении через него прямого тока. Кванты света возникают при рекомбинации инжектируемых р-n переходом в базу диода неосновных носителей с основными носителями заряда (явление люминесценции).
Рис. 13.9
Устройство светодиода и его условное обозначение показаны на рис. 13.9. Часто светодиод снабжают пластмассовой светорассеивающей линзой. В таком виде его используют в качестве светосигнального индикатора. Яркость его свечения зависит от плотности тока, цвет свечения - от ширины запрещенной зоны и типа полупроводника. Цвета свечения: красный, желтый, зеленый. Так, например, светодиод 2Л101А имеет желтое свечение, яркость - 10 кДж/м2, ток - 10 мА, напряжение - 5 В.
Оптопары
Оптопара (оптрон) - это оптоэлектронный полупроводниковый прибор, состоящий из излучающего и светоприемного элементов, электрически изолированных друг от друга и имеющих между собой оптическую связь.
Рис. 13.10
Простейший оптрон состоит из светодиода и фотодиода, размещенных в одном корпусе. В качестве светоприемника также могут использоваться фототранзисторы, фототиристоры и фотосопротивления; при этом источник и приемник светового излучения выбирают спектрально согласованными.
Подобные документы
Использование биполярных транзисторов. Назначение элементов в схемах усилителей с общим эмиттером и коллектором. Температурная стабилизация и форма кривой выходного напряжения. Расчет коэффициентов усиления по току, напряжению и входному сопротивлению.
контрольная работа [2,1 M], добавлен 15.02.2011Условия существования разности потенциалов (напряжения) между полюсами источника тока. Понятие и методика определения электродвижущей силы (ЭДС) источника. Измерение и сравнение ЭДС двух батарей с помощью компенсационной схемы, проверка их исправности.
лабораторная работа [346,3 K], добавлен 13.01.2013Параметры, свойства, характеристики полупроводниковых диодов, тиристоров и транзисторов, выпрямительных диодов. Операционный усилитель, импульсные устройства. Реализация полной системы логических функций с помощью универсальных логических микросхем.
контрольная работа [233,1 K], добавлен 25.07.2013Объяснение эффекта Холла с помощью электронной теории. Эффект Холла в ферромагнетиках и полупроводниках. Датчик ЭДС Холла. Угол Холла. Постоянная Холла. Измерение эффекта Холла. Эффект Холла при примесной и собственной проводимости.
курсовая работа [404,9 K], добавлен 06.02.2007Основные принципы построения транзисторного преобразователя для управления трехфазным асинхронным двигателем. Анализ схемной реализации устройства. Статический расчет транзисторного ключа. Расчет элементов формирующих линию включения транзисторов.
курсовая работа [390,0 K], добавлен 15.02.2017Понятие и сущность классической теории о коммутации. Особенности влияния электродвижущей силы. Экспериментальная проверка настройки коммутации. Определение и уменьшение реактивной электродвижущей силы. Исследование коммутации датчиком тока разрыва.
презентация [784,7 K], добавлен 21.10.2013Классификация диодов в зависимости от технологии изготовления: плоскостные, точечные, микросплавные, мезадиффузионные, эпитаксально-планарные. Виды диодов по функциональному назначению. Основные параметры, схемы включения и вольт-амперные характеристики.
курсовая работа [909,2 K], добавлен 22.01.2015Электроизмерительные приборы и измерение сопротивлений. Изучение электростатического поля и электростатической индукции. Определение емкости конденсатора по изучению его разряда. Температурная зависимость сопротивления проводников и полупроводников.
книга [332,0 K], добавлен 01.11.2008Понятие полупроводниковых приборов, их вольтамперные характеристики. Описание транзисторов, стабилитронов, светодиодов. Рассмотрение типологии предприятий. Изучение техники безопасности работы с электронной техникой, мероприятий по защите от шума.
дипломная работа [3,5 M], добавлен 29.12.2014Расчет параметров схемы замещения в относительных единицах. Определение электродвижущей силы генератора и соответствующих им фазовых углов. Расчет статической устойчивости электрической системы. Зависимость реактивной мощности от угла электропередачи.
курсовая работа [941,9 K], добавлен 04.05.2014