Учебное пособие для слушателей основной программы профессионального обучения-программы профессиональной переподготовки рабочих "Электромонтер по ремонту и обслуживанию электрооборудования"
Электротехника как отрасль науки и техники, связанная с применением электрических и магнитных явлений для преобразования энергии, обработки материалов. Общая характеристика свойств ферромагнитных материалов. Анализ этапов расчета магнитных цепей.
Рубрика | Физика и энергетика |
Вид | книга |
Язык | русский |
Дата добавления | 25.05.2020 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Учебное пособие для слушателей основной программы профессионального обучения-программы профессиональной переподготовки рабочих "Электромонтер по ремонту и обслуживанию электрооборудования"
Введение
Электротехника - отрасль науки и техники, связанная с применением электрических и магнитных явлений для преобразования энергии, обработки материалов, передачи информации и др. Электротехника охватывает вопросы получения, преобразования и использования электроэнергии в практической деятельности человека. Электроэнергию можно получить в значительных количествах, передать на расстояние и легко преобразовать в энергию других видов.
В кратком курсе лекций даны основные определения и топологические параметры электрических цепей, изложены методы расчета линейных и нелинейных цепей постоянного и переменного тока, анализ и расчет магнитных цепей. Рассмотрены конструкция, принцип действия и характеристики трансформаторов и электрических машин постоянного и переменного тока, а также информационных электрических машин.
1. Основные определения
1.1 Основные пояснения и термины
Электротехника -- это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях. Электрическая цепь -- это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока. Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три группы:
1. Источники энергии, т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).
2. Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электромеханизмы и т.д.).
3. Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).
Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I. Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i.
Для работы электрической цепи необходимо наличие источников энергии. Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными - электрические цепи, не содержащие источников энергии.
Электрическую цепь называют линейной, если ни один параметр цепи не зависит от величины или направления тока, или напряжения. Электрическая цепь является нелинейной, если она содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.
Электрическая схема -- это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 1.1 изображена электрическая схема цепи, состоящей из источника энергии, электроламп 1 и 2, электродвигателя 3.
Рис. 1.1
Для облегчения анализа электрическую цепь заменяют схемой замещения. Схема замещения -- это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов. На рисунке 1.2 показана схема замещения.
Рис. 1.2
1.2 Пассивные элементы схемы замещения
Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость.Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую.
Сопротивление в схеме замещения изображается следующим образом:
Величина, обратная сопротивлению, называется проводимостью.
Сопротивление измеряется в омах (Ом), а проводимость - в сименсах (См).
Индуктивностью называется идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле.
Индуктивность катушки измеряется в генри [Гн].
На рисунке показано изображение индуктивности в схеме замещения.
Емкостью называется идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле.
Емкость конденсатора измеряется в фарадах (Ф).
На рисунке показано изображение емкости в схеме замещения.
1.3 Активные элементы схемы замещения
Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС -- это источник, характеризующийся электродвижущей силой и внутренним сопротивлением. Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.
На рис. 1.3 изображен источник ЭДС, к зажимам которого подключено сопротивление R. Ri - внутреннее сопротивление источника ЭДС. Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала.
У идеального источника ЭДС внутреннее сопротивление Ri = 0, U12 = E. Напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе. Источником тока называется источник энергии, характеризующийся величиной тока и внутренней проводимостью. Идеальным называется источник тока, внутренняя проводимость которого равна нулю.
У идеального источника тока gi = 0 и J = I.
Ток идеального источника не зависит от сопротивления внешней части цепи. Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис. 1.4.
Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.
Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.
1.4 Основные определения, относящиеся к схемам
Различают разветвленные и неразветвленные схемы. На рис. 1.5 изображена неразветвленная схема. На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений. Разветвленная схема -- это сложная комбинация соединений пассивных и активных элементов.
Участок электрической цепи, по которому проходит один и тот же ток, называется ветвью. Место соединения трех и более ветвей электрической цепи называется узлом. Узел в схеме обозначается точкой. Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением. Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром.
1.5 Режимы работы электрических цепей
В зависимости от нагрузки различают следующие режимы работы: номинальный, режим холостого хода, короткого замыкания, согласованный режим. При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя. Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки. Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток.
Режим короткого замыкания является аварийным. Согласованный режим -- это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.
1.6 Основные законы электрических цепей
На рис. 1.7 изображен участок цепи с сопротивлением R. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления.
Основными законами электрических цепей, наряду с законом Ома, являются первый и второй законы Кирхгофа. В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:
Возьмем схему на рис. 1.8 и запишем для нее уравнение по первому закону Кирхгофа.
Токам, направленным к узлу, присвоим знак "плюс", а токам, направленным от узла - знак "минус". Получим следующее уравнение:
Рис. 1.8
Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре
Возьмем схему на рис. 1.9 и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа.
Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком "плюс", если направления их совпадают с направлением обхода контура, и со знаком "минус", если не совпадают. При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви.
Рис. 1.9
Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви (рис. 1.10).
Рис. 1.10
Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке.
Получим
Из этого уравнения выведем формулу для тока
ЭДС в формуле записывается со знаком "плюс", если направление ее совпадает с направлением обхода контура и со знаком "минус", если не совпадает. .
2. Эквивалентные преобразования схем
2.1 Последовательное соединение элементов электрических цепей
Эквивалентным называется преобразование, при котором напряжения и токи в частях схемы, не подвергшихся преобразованию, не меняются.
На рис. 2.1 изображена электрическая цепь с последовательно соединенными сопротивлениями.
Рис. 2.1
Напряжение на зажимах источника ЭДС равно величине электродвижущей силы. Поэтому часто источник на схеме не изображают. Падения напряжений на сопротивлениях определяются по формулам
В соответствии со вторым законом Кирхгофа, напряжение на входе электрической цепи равно сумме падений напряжений на сопротивлениях цепи.
где - эквивалентное сопротивление.
Эквивалентное сопротивление электрической цепи, состоящей из n последовательно включенных элементов, равно сумме сопротивлений этих элементов.
2.2 Параллельное соединение элементовэлектрических цепей
На рис. 2.2 показана электрическая цепь с параллельным соединением сопротивлений.
Рис. 2.2
Токи в параллельных ветвях определяются по формулам:
где - проводимости 1-й, 2-й и n-й ветвей.
В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях.
где
Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов. Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости
Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R одного элемента
Возьмем схему, состоящую из двух параллельно включенных сопротивлений (рис. 2.3). Известны величины сопротивлений и ток в неразветвленной части схемы. Необходимо определить токи в параллельных ветвях.
Рис. 2.3
Эквивалентная проводимость схемы
,
а эквивалентное сопротивление
Напряжение на входе схемы
Токи в параллельных ветвях
Аналогично
Ток в параллельной ветви равен току в неразветвленной части схемы, умноженному на сопротивление противолежащей, чужой параллельной ветви и деленному на сумму сопротивлений чужой и своей параллельно включенных ветвей.
3. Анализ электрических цепей постоянного тока с одним источником энергии
3.1 Расчет электрических цепей постоянного тока с одним источником методом свертывания
В соответствии с методом свертывания, отдельные участки схемы упрощают и постепенным преобразованием приводят схему к одному эквивалентному (входному) сопротивлению, включенному к зажимам источника. Схема упрощается с помощью замены группы последовательно или параллельно соединенных сопротивлений одним, эквивалентным по сопротивлению. Определяют ток в упрощенной схеме, затем возвращаются к исходной схеме и определяют в ней токи. Рассмотрим схему на рис. 3.1. Пусть известны величины сопротивлений R1, R2, R3, R4, R5, R6, ЭДС Е. Необходимо определить токи в ветвях схемы.
Сопротивления R4 и R5 соединены последовательно, а сопротивление R6 - параллельно с ними, поэтому их эквивалентное сопротивление
После проведенных преобразований схема принимает вид, показанный на рис. 3.2, а эквивалентное сопротивление всей цепи
Ток I1 в неразветвленной части схемы определяется по формуле:
Найдем токи I2 и I3 в схеме на рис. 3.2 по формулам:
I3 = I1 - I2 - формула получается из уравнения, составленного по первому закону Кирхгофа:
I1 - I2 - I3 = 0.
Переходим к исходной схеме на рис. 3.1 и определим токи в ней по формулам:
I6 = I3 - I4 (в соответствии с первым законом Кирхгофа I3 - I4 - I6 =0).
4. Анализ сложных электрических цепей с несколькими источниками энергии
4.1 Метод непосредственного применения законов Кирхгофа
На рис. 4.1 изображена схема разветвленной электрической цепи. Известны величины сопротивлений и ЭДС, необходимо определить токи..
Укажем произвольно направления токов.
Если в схеме имеется n узлов, количество независимых уравнений, которые можно составить по первому закону Кирхгофа, равно n - 1. Для схемы на рис. 4.1 число независимых уравнений равно трем.
Рис. 4.1
Недостающее количество уравнений составляют по второму закону Кирхгофа. Уравнения по второму закону составляют для независимых контуров. Независимым является контур, в который входит хотя бы одна новая ветвь, не вошедшая в другие контуры. Выберем три независимых контура и укажем направления обхода контуров. Запишем три уравнения по второму закону Кирхгофа.
Решив совместно системы уравнений (4.1) и (4.2), определим токи в схеме. Ток в ветви может иметь отрицательное значение. Это означает, что действительное направление тока противоположно выбранному нами.
4.2 Метод контурных токов
Метод применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах. На рис. 4.2 в качестве примера изображена двухконтурная схема, в которой I11 и I22 - контурные токи.
Рис. 4.2
Токи в сопротивлениях R1 и R2 равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно.
Порядок расчета
Выбираются независимые контуры, и задаются произвольные направления контурных токов. В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид:
Перегруппируем слагаемые в уравнениях
(4.3)
(4.4)
Суммарное сопротивление данного контура называется собственным сопротивлением контура. Собственные сопротивления контуров схемы
, .
Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров.
,
где R12 - общее сопротивление между первым и вторым контурами; R21 - общее сопротивление между вторым и первым контурами. E11 = E1 и E22 = E2 - контурные ЭДС. В общем виде уравнения (4.3) и (4.4) записываются следующим образом:
,.
Собственные сопротивления всегда имеют знак "плюс". Общее сопротивление имеет знак "минус", если в данном сопротивлении контурные токи направлены встречно друг другу, и знак "плюс", если контурные токи в общем сопротивлении совпадают по направлению. Решая уравнения (4.3) и (4.4) совместно, определим контурные токи I11 и I22, затем от контурных токов переходим к токам в ветвях. Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви. В схеме на рис. 4.2
.
Рекомендации
1. Контуры выбирают произвольно и контурные токи желательно направлять одинаково (по часовой стрелке или против
2. Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным.
3. Если в схеме имеется ветвь с известным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше.
4.3 Метод узловых потенциалов
Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла. Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем произвольно направления токов. Примем для схемы ц4 = 0.
Запишем уравнение по первому закону Кирхгофа для узла 1.
Рис. 4.3
В соответствии с законом Ома
,
где - проводимость первой ветви.
,
где - проводимость второй ветви.
Подставим выражения токов в уравнение (4.5).
(4.6)
где g11 = g1 + g2 - собственная проводимость узла 1.
Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле. g12 = g2 - общая проводимость между узлами 1 и 2. Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2. - сумма токов источников, находящихся в ветвях, сходящихся в узле 1. Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком "плюс", если от узла - со знаком "минус". По аналогии запишем для узла 2:
(4.7)
для узла 3: (4.8)
Решив совместно уравнения (4.6), (4.7), (4.8), определим неизвестные потенциалы ц1, ц2, ц3, а затем по закону Ома для активной или пассивной ветви найдем токи. Если число узлов схемы - n, количество уравнений по методу узловых потенциалов - (n - 1).
Замечание. Если в какой-либо ветви содержится идеальный источник ЭДС, необходимо один из двух узлов, между которыми включена эта ветвь, выбрать в качестве базисного, тогда потенциал другого узла окажется известным и равным величине ЭДС. Количество составляемых узловых уравнений становится на одно меньше.
5. Нелинейные электрические цепи постоянного тока
5.1 Основные определения
В линейной электрической цепи сопротивления ее элементов не зависят от величины или направления тока или напряжения. Вольтамперные характеристики линейных элементов (зависимость напряжения на элементе от тока) являются прямыми линиями.
В нелинейной электрической цепи сопротивления ее элементов зависят от величины или направления тока или напряжения. Нелинейные элементы имеют криволинейные вольтамперные характеристики, симметричные или несимметричные относительно осей координат. Сопротивления нелинейных элементов с симметричной характеристикой не зависят от направления тока. Сопротивления нелинейных элементов с несимметричной характеристикой зависят от направления тока. Например, электролампы, термисторы имеют симметричные вольтамперные характеристики (рис. 5.1), а полупроводниковые диоды - несимметричные характеристики (рис. 5.2).
Статическим или интегральным сопротивлением нелинейного элемента называется отношение напряжения на элементе к величине тока. Это сопротивление пропорционально тангенсу угла наклона б между осью тока и прямой, проведенной из начала координат в точку а характеристики (рис. 5.3)
Дифференциальное или динамическое сопротивление нелинейного элемента -- это величина, равная отношению бесконечно малого приращения напряжения на нелинейном сопротивлении к соответствующему приращению тока.
Это сопротивление пропорционально тангенсу угла наклона в между осью тока и касательной к точке a характеристики (рис. 5.4).
.
При переходе от одной точки вольтамперной характеристики к соседней статическое и динамическое сопротивления нелинейного элемента меняются. Статическое и динамическое сопротивления линейного элемента одинаковы и не зависят от тока или напряжения.
5.2 Графический метод расчета нелинейных цепей постоянного тока
Известные аналитические методы непригодны для расчета нелинейных электрических цепей, так как сопротивления нелинейных элементов зависят от направления и значения тока или напряжения. Применяются графоаналитические методы, основанные на применении законов Кирхгофа и использовании заданных вольтамперных характеристик (ВАХ) этих элементов. Рассмотрим электрическую цепь, состоящую из двух последовательно соединенных нелинейных сопротивлений н.с.1 и н.с.2 (рис. 5.5). ВАХ 1 и ВАХ 2 приведены на рис. 5.6.
К цепи подведено напряжение U, и оно равно сумме падений напряжений на н.с.1 и н.с.2:
По всей цепи протекает один и тот же ток I, так как н.с.1 и н.с.2 соединены между собой последовательно. Для определения тока в электрической цепи нужно построить результирующую ВАХ цепи. Для построения этой характеристики следует суммировать абсциссы кривых 1 и 2 (аг = аб + ав), соответствующие одним и те же значениям тока. Далее, задаваясь произвольным значением тока (например, больше I' и меньше I' ) можно построить ВАХ всей цепи (рис. 5.6, кривая 3).
При параллельном соединении двух нелинейных элементов (рис. 5.7) ток в неразветвленной части электрической цепи равен сумме токов в параллельных определенных ветвях. Поэтому при построении результирующей ВАХ всей цепи следует суммировать ординаты графиков 1 и 2 (рис. 5.8), соответствующие одним и те же значениям напряжения, так как к этим нелинейным элементам приложено одно и то же напряжение, равное напряжению внешней сети, т.е. источника питания. Например, для произвольного значения напряжения находим ординату аг точки для результирующей кривой 3. (аг = ав + аб)
Далее задаваясь произвольным значением напряжения больше и меньше U', можно построить ВАХ всей цепи (кривая 3). Затем, пользуясь ВАХ, можно при любом значении приложенного напряжения U (отрезок ор) найти величину общего тока I (pn = oк). Это напряжение также определяет значения токов I1 и I2 в отдельных ветвях с учетом масштаба тока mI.
В случае смешанного (рис. 5.9) соединения расчет цепи производят в следующем порядке: сначала заменяют два параллельно соединенных нелинейных элемента одним эквивалентным; схема со смешанным соединением приводится к рассмотренной ранее схеме последовательного соединения двух нелинейных элементов.
Рис. 5.9
6. Электрические цепи однофазного переменного тока
6.1 Основные определения
Переменным называется электрический ток, величина и направление которого изменяются. Область применения переменного тока намного шире, чем постоянного. Значение переменного тока в рассматриваемый момент времени называют мгновенным значением и обозначают строчной буквой i.
Наименьший промежуток времени, через который значения переменного тока повторяются, называется периодом. Период T измеряется в секундах. Периодические токи, изменяющиеся по синусоидальному закону, называются синусоидальными. Мгновенное значение синусоидального тока определяется по формуле
где Im - максимальное, или амплитудное, значение тока. Аргумент синусоидальной функции называют фазой; величину ц, равную фазе в момент времени t = 0, называют начальной фазой. Фаза измеряется в радианах или градусах. Величину, обратную периоду, называют частотой. Частота f измеряется в герцах.
Величину называют круговой, или угловой, частотой. Угловая частота измеряется в рад/c. Если у синусоидальных токов начальные фазы при одинаковых частотах одинаковы, говорят, что эти токи совпадают по фазе. Если неодинаковы по фазе, говорят, что токи сдвинуты по фазе. Сдвиг фаз двух синусоидальных токов измеряется разностью начальных фаз
Амперметры и вольтметры электромагнитной системы измеряют действующие значения переменного тока и напряжения. Действующим значением переменного тока называется среднеквадратичное значение тока за период. Действующее значение тока (для синусоиды )
.
Аналогично определяются действующие значения ЭДС и напряжений
.
Действующие значения переменного тока, напряжения, ЭДС меньше максимальных в v2 раз. Законы Ома и Кирхгофа справедливы для мгновенных значений токов и напряжений. Закон Ома для мгновенных значений:
. (6.1)
Законы Кирхгофа для мгновенных значений:
. (6.2)
. (6.3)
6.2 Изображения синусоидальных функций времени в векторной форме
При расчете электрических цепей часто приходится складывать или вычитать величины токов или напряжений, являющиеся синусоидальными функциями времени. Графические построения или тригонометрические преобразования в этом случае могут оказаться слишком громоздкими. Задача упрощается, если представить наши синусоидальные функции в векторной форме. Имеем синусоидальную функцию . Известно, что проекция отрезка, вращающегося вокруг оси с постоянной угловой скоростью, на любую линию, проведенную в плоскости вращения, изменяется по синусоидальному закону.
Пусть отрезок прямой длиной Im начинает вращаться вокруг оси 0 из положения, когда он образует с горизонтальной осью угол ц, и вращается против часовой стрелки с постоянной угловой скоростью щ. Проекция отрезка на вертикальную ось в начальный момент времени . Когда отрезок повернется на угол б1, проекция его . Откладывая углы б1, б2, ... на горизонтальной оси, а проекции отрезка прямой - на вертикальной оси, получим ряд точек синусоиды (рис. 6.1).
Рис. 6.1
Пусть даны два синусоидальных тока: и
.
Нужно сложить эти токи и получить результирующий ток:
Представим синусоидальные токи i1 и i2 в виде двух радиус - векторов, длина которых равна в соответствующем масштабе I1m и I2m. Эти векторы расположены в начальный момент времени под углами ц1 и ц2 относительно горизонтальной оси. Сложим геометрически отрезки I1m и I2m. Получим отрезок, длина которого равна амплитудному значению результирующего тока I3m. Отрезок расположен под углом ц3 относительно горизонтальной оси. Все три отрезка вращаются вокруг оси 0 с постоянной угловой скоростью щ. Проекции отрезков на вертикальную ось изменяются по синусоидальному закону. Будучи остановленными для рассмотрения, данные отрезки образуют векторную диаграмму (рис. 6.2). Векторная диаграмма - это совокупность векторов, изображающих синусоидальные напряжения, токи и ЭДС одинаковой частоты.
Рис. 6.2
Положительным считается направление вращения векторов против часовой стрелки. Векторные диаграммы используются для качественного анализа электрических цепей, а также при решении некоторых электротехнических задач.
6.3 Изображение синусоидальных функций временив комплексной форме
При расчетах цепей синусоидального тока используют символический метод расчета или метод комплексных амплитуд. В этом методе сложение двух синусоидальных токов заменяют сложением двух комплексных чисел, соответствующих этим токам. Из курса математики известно, что комплексное число может быть записано в показательной или алгебраической форме:
где с - модуль комплексного числа; ц- аргумент; a - вещественная часть комплексного числа; b - мнимая часть; j - мнимая единица, j = v-1.
С помощью формулы Эйлера можно перейти от показательной формы записи к алгебраической.
От алгебраической формы записи переходят к показательной форме с помощью формул:
Комплексное число может быть представлено в виде радиус - вектора в комплексной плоскости. Вектор длиной, равной модулю c, расположен в начальный момент времени под углом ц относительно вещественной оси (рис.6.3).
Умножим комплексное число на множитель . Радиус - вектор на комплексной плоскости повернется на угол в.
Замечание. В электротехнике над символами, изображающими комплексные напряжения, токи, ЭДС, принято ставить точку. Синусоидальные функции времени могут быть представлены векторами в комплексной плоскости, вращающимися против часовой стрелки с постоянной угловой скоростью щ. Проекция вектора на мнимую ось изменяется по синусоидальному закону.
Пример.
Сложение синусоидальных токов заменим сложением комплексных амплитуд, соответствующих этим токам.
Амплитуда результирующего тока , начальная фаза - .
Мгновенное значение результирующего тока
.
Законы Ома и Кирхгофа в комплексной форме:
- закон Ома; (6.4) - первый закон Кирхгофа; (6.5) - второй закон Кирхгофа. (6.6)
6.4 Сопротивление в цепи синусоидального тока
Если напряжение подключить к сопротивлению R, то через него протекает ток
Анализ выражения (6.7) показывает, что напряжение на сопротивлении и ток, протекающий через него, совпадают по фазе. Формула (6.7) в комплексной форме записи имеет вид
где и - комплексные амплитуды тока и напряжения. Комплексному уравнению (6.8) соответствует векторная диаграмма (рис. 6.4).
Из анализа диаграммы следует, что векторы напряжения и тока совпадают по направлению.
Рис.6.4
6.5 Индуктивная катушка в цепи синусоидального тока
Сначала рассмотрим идеальную индуктивную катушку, активное сопротивление которой равно нулю. Пусть по идеальной катушке с индуктивностью L протекает синусоидальный ток . Этот ток создает в индуктивной катушке переменное магнитное поле, изменение которого вызывает в катушке ЭДС самоиндукции
Таким образом, ток в индуктивности отстает по фазе от напряжения на 90o из-за явления самоиндукции. В реальной катушке, имеющей активное сопротивление R, ток отстает по фазе от напряжения на некоторый угол ц (0o < ц < 90o), величина которого зависит от соотношения R и L.
Полное комплексное сопротивление индуктивной катушки ;
- индуктивное сопротивление - начальная фаза комплексного сопротивления.
Полное сопротивление индуктивной катушки или модуль комплексного сопротивления
.
Реальной катушке соответствует векторная диаграмма (рис.6.5).
Рис. 6.5
Из анализа диаграммы видно, что вектор напряжения на индуктивности опережает вектор тока на 90o. В цепи переменного тока напряжения на участках цепи складываются не арифметически, а геометрически. Если мы поделим стороны треугольника напряжений на величину тока Im, то перейдем к подобному треугольнику сопротивлений (рис. 6.6).
Из треугольника сопротивлений получим несколько формул:
6.6 Емкость в цепи синусоидального тока
Если к конденсатору емкостью C подключить синусоидальное напряжение, то в цепи протекает синусоидальный ток
;
Из анализа выражений 6.13 следует, что ток опережает напряжение по фазе на 90o.
Выражение (6.13) в комплексной форме записи имеет вид:
где - емкостное сопротивление, фиктивная расчетная величина, имеющая размерность сопротивления.
Если комплексное сопротивление индуктивности положительно , то комплексное сопротивление емкости отрицательно .
На рис. 6.7 изображена векторная диаграмма цепи с емкостью. Вектор тока опережает вектор напряжения на 90o.
6.7 Последовательно соединенные реальная индуктивная катушка и конденсатор в цепи синусоидального тока
Катушка с активным сопротивлением R и индуктивностью L и конденсатор емкостью С включены последовательно (рис.6.8). В схеме протекает синусоидальный ток
.
Определим напряжение на входе схемы. В соответствии со вторым законом Кирхгофа,
(6.15)
Подставим эти формулы в уравнение (6.15). Получим:
Рис.6.8
Из выражения (6.16) видно: напряжение в активном сопротивлении совпадает по фазе с током, напряжение на индуктивности опережает по фазе ток на 90o, напряжение по емкости отстает по фазе от тока на 90o. Рис.6.8 Запишем уравнение (6.16) в комплексной форме для действующих значений токов и напряжений
где - комплексное сопротивление цепи; - модуль комплексного сопротивления; - начальная фаза комплексного сопротивления.
При построении векторных диаграмм цепи рассмотрим три случая.
1. XL > XC, цепь носит индуктивный характер. Векторы напряжений на индуктивности и емкости направлены в противоположные стороны, частично компенсируют друг друга. Вектор напряжения на входе схемы опережает вектор тока (рис.6.9).
2. Индуктивное сопротивление меньше емкостного. Вектор напряжения на входе схемы отстает от вектора тока. Цепь носит емкостный характер (рис.6.10).
3. Индуктивное и емкостное сопротивления одинаковы. Напряжения на индуктивности и емкости полностью компенсируют друг друга. Ток в цепи совпадает по фазе с входным напряжением. В электрической цепи наступает режим резонансного напряжения (рис.6.11).
Ток в резонансном режиме достигает максимума, так как полное сопротивление (z) цепи имеет минимальное значение.
Условие возникновения резонанса: , отсюда резонансная частота равна
.
Из формулы следует, что режима резонанса можно добиться следующими способами:
1. изменением частоты;
2. изменением индуктивности;
3. изменением емкости.
В резонансном режиме входное напряжение равно падению напряжения в активном сопротивлении. На индуктивности и емкости схемы могут возникнуть напряжения, во много раз превышающие напряжение на входе цепи. Это объясняется тем, что каждое напряжение равно произведению тока I0 (а он наибольший), на соответствующее индуктивное или емкостное сопротивление (а они могут быть большими).
6.8 Параллельно соединенные индуктивность, емкостьи активное сопротивление в цепи синусоидального тока
К схеме на рис. 6.12 подключено синусоидальное напряжение . Схема состоит из параллельно включенных индуктивности, емкости и активного сопротивления. Определим ток на входе схемы.
Рис. 6.12
В соответствии с первым законом Кирхгофа: , (6.19) где - активная проводимость.
Подставим эти формулы в уравнение (6.19). запишем его в комплексной форме:
где - индуктивная проводимость; - емкостная проводимость,
- комплексная проводимость; - полная проводимость; - начальная фаза комплексной проводимости.
Ток в ветви с индуктивностью отстает по фазе от напряжения на 90o, ток в ветви с активным сопротивлением совпадает по фазе с напряжением, ток в ветви с емкостью опережает по фазе напряжение на 90o.
Построим векторные диаграммы, соответствующие комплексному уравнению (6.21).
В схеме на рис. 6.12 может возникнуть режим резонанса токов. Резонанс токов возникает тогда, когда индуктивная и емкостная проводимости одинаковы. При этом индуктивный и емкостный токи, направленные в противоположные стороны, полностью компенсируют друг друга. Ток в неразветвленной части схемы совпадает по фазе с напряжением. Из условия возникновения резонанса тока получим формулу для резонансной частоты тока
В режиме резонанса тока полная проводимость цепи - минимальна, а полное сопротивление - максимально. Ток в неразветвленной части схемы в резонансном режиме имеет минимальное значение. В идеализированном случае R = 0,
и .
6.10 Мощность в цепи синусоидального тока
Мгновенной мощностью называют произведение мгновенного напряжения на входе цепи на мгновенный ток. Пусть мгновенные напряжение и ток определяются по формулам:
Тогда
Среднее значение мгновенной мощности за период
Из треугольника сопротивлений , а .
Получим еще одну формулу:
.
Среднее арифметическое значение мощности за период называют активной мощностью и обозначают буквой P. Эта мощность измеряется в ваттах и характеризует необратимое преобразование электрической энергии в другой вид энергии, например, в тепловую, световую и механическую энергию. Возьмем реактивный элемент (индуктивность или емкость). Активная мощность в этом элементе , так как напряжение и ток в индуктивности или емкости различаются по фазе на 90o. В реактивных элементах отсутствуют необратимые потери электрической энергии, не происходит нагрева элементов. Происходит обратимый процесс в виде обмена электрической энергией между источником и приемником. Для качественной оценки интенсивности обмена энергией вводится понятие реактивной мощности Q.
,
где x - реактивное сопротивление (индуктивное или емкостное). Реактивная мощность, измеряемая в вольтамперах реактивных, расходуется на создание магнитного поля в индуктивности или электрического поля в емкости. Энергия, накопленная в емкости или в индуктивности, периодически возвращается источнику питания. . Полная мощность, измеряемая в вольтамперах, равна произведению действующих значений напряжения и тока:
,
где z - полное сопротивление цепи. Полная мощность характеризует предельные возможности источника энергии. В электрической цепи можно использовать часть полной мощности
,
где - коэффициент мощности.
Коэффициент мощности является одной из важнейших характеристик электротехнических устройств. Принимают специальные меры к увеличению коэффициента мощности. Возьмем треугольник сопротивлений и умножим его стороны на квадрат тока в цепи. Получим подобный треугольник мощностей (рис. 6.16).
Из треугольника мощностей получим ряд формул:
, ,
Активная мощность всегда положительна. Реактивная мощность в цепи, имеющей индуктивный характер, - положительна, а в цепи с емкостным характером - отрицательна.
7. Трёхфазные цепи
7.1 Основные определения
Трехфазная цепь является совокупностью трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые относительно друг друга по фазе на 120o, создаваемые общим источником. Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой.
Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки. Трехфазный генератор представляет собой синхронную машину. В фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой электродвижущие силы одинаковы по амплитуде и различаются по фазе на 120o. Запишем мгновенные значения и комплексы действующих значений ЭДС.
Сумма электродвижущих сил симметричной трехфазной системы в любой момент времени равна нулю.
Соответственно
На схемах трехфазных цепей начала фаз обозначают первыми буквами латинского алфавита ( А, В, С ), а концы - последними буквами ( X, Y, Z ). Направления ЭДС указывают от конца фазы обмотки генератора к ее началу. Каждая фаза нагрузки соединяется с фазой генератора двумя проводами: прямым и обратным. Получается несвязанная трехфазная система, в которой имеется шесть соединительных проводов. Чтобы уменьшить количество соединительных проводов, используют трехфазные цепи, соединенные звездой или треугольником.
7.2 Соединение в звезду. Схема, определения
Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1.
Рис. 7.1
Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N' называют нейтральным (нулевым) проводом. Напряжения между началами фаз или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями. Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах - линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.
Iл = Iф .
ZN - сопротивление нейтрального провода.
Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений
(7.1)
На рис. 7.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.
Рис. 7.2
Из векторной диаграммы видно, что
При симметричной системе ЭДС источника линейное напряжение больше фазного в v3 раз.
Uл = v3 Uф
Частные случаи. 1. Симметричная нагрузка. Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.
2. Нагрузка несимметричная, RA < RB = RC, но сопротивление нейтрального провода равно нулю: ZN = 0.
Фазные напряжения нагрузки и генератора одинаковы
Рис. 7.2
Фазные токи определяются по формулам
Вектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов.
На рис. 7.6 приведена векторная диаграмма трехфазной цепи, соединенной звездой, с нейтральным проводом, имеющим нулевое сопротивление, нагрузкой которой являются неодинаковые по величине активные сопротивления. 3. Нагрузка несимметричная, RA < RB = RC, нейтральный провод отсутствует,
В схеме появляется напряжение смещения нейтрали, вычисляемое по формуле:
Система фазных напряжений генератора остается симметричной. Это объясняется тем, что источник трехфазных ЭДС имеет практически бесконечно большую мощность. Несимметрия нагрузки не влияет на систему напряжений генератора. Из-за напряжения смещения нейтрали фазные напряжения нагрузки становятся неодинаковыми. Фазные напряжения генератора и нагрузки отличаются друг от друга. При отсутствии нейтрального провода геометрическая сумма фазных токов равна нулю.
7.3 Соединение в треугольник. Схема, определения
Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке. На рис. 7.3 изображена трехфазная цепь, соединенная треугольником. Как видно из рис. 7.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.
Uл = Uф
IA, IB, IC - линейные токи;
Iab, Ibc, Ica- фазные токи.
Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.
Рис. 7.3
Линейный ток равен геометрической разности соответствующих фазных токов. На рис. 7.4 изображена векторная диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.
Рис. 7.4
Из векторной диаграммы видно, что
,
Iл = v3 Iф при симметричной нагрузке.
Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме "звезда". Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.
7.4 Мощность в трехфазных цепях
Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками. Активная мощность трехфазной цепи равна сумме активных мощностей фаз
Формула (7.5) используется для расчета активной мощности в трехфазной цепи при несимметричной нагрузке. При симметричной нагрузке:
При соединении в треугольник симметричной нагрузки
При соединении в звезду
.
В обоих случаях
9. Магнитные цепи
9.1. Основные определения
Как известно из курса физики, вокруг проводника с током появляется магнитное поле. Интенсивность магнитного поля характеризуется векторной величиной: напряженностью магнитного поля , измеряемой в амперах на метр (A/м). Интенсивность магнитного поля характеризуется также вектором магнитной индукции , измеряемой в теслах (Тл). Напряженность магнитного поля не зависит, а магнитная индукция зависит от свойств окружающей среды.
где м0 - абсолютная магнитная проницаемость, Гн/м;
м - относительное значение магнитной проницаемости, безразмерная величина;
м0 = 4р·10-7 Гн/м. В зависимости от величины относительной магнитной проницаемости, все вещества делятся на три группы.
К первой группе относятся диамагнетики: вещества, у которых м< 1. Ко второй группе относятся парамагнетики, вещества с м >1. К третьей группе относятся ферромагнетики, вещества с м >> 1.
К ферромагнетикам принадлежат железо, никель, кобальт и многие сплавы из неферромагнитных веществ. Магнитной цепью называется совокупность устройств, содержащих ферромагнитные вещества. Процессы в магнитных цепях описываются с помощью понятий магнитодвижущей силы, магнитного потока. Магнитным потоком называется поток вектора магнитной индукции через поверхность S
Магнитный поток измеряется в веберах (Вб). Источником магнитодвижущей силы является либо постоянный магнит, либо электромагнит (катушка, обтекаемая током). Магнитодвижущая сила электромагнита
где I - ток, протекающий в катушке; W - число витков катушки. В магнитных цепях используется свойство ферромагнитного материала тысячекратно усиливать магнитное поле катушки с током за счет собственной намагниченности.
9.2 Свойства ферромагнитных материалов
Поместим ферромагнитный материал внутри катушки с током. Сначала, с увеличением напряженности намагничивающего поля, магнитная индукция быстро возрастает. Затем, из-за насыщения материала, при дальнейшем увеличении напряженности магнитного поля магнитная индукция почти не меняется. При уменьшении напряженности намагничивающего поля кривая размагничивания не совпадает с кривой намагничивания из-за явления гистерезиса. Явление гистерезиса заключается в том, что изменение магнитной индукции запаздывает от изменения намагничивающего поля. Кривая зависимости B(H), получающаяся при циклическом перемагничивании ферромагнитного материала, называется петлей гистерезиса. Эта кривая изображена на рис. 9.1. Чем больше площадь петли, тем больше потери на перемагничивание, нагревающие материал.
Рис. 9.1
Значение магнитной индукции при напряженности намагничивающего поля, равном нулю, называется остаточной магнитной индукцией Br, или остаточной намагниченностью. Напряженность магнитного поля НС при В = 0 называется коэрцитивной силой. Ферромагнитные материалы с большим значением коэрцитивной силы () называются магнитотвердыми. Из этих материалов изготавливают постоянные магниты. Ферромагнитные материалы с малым значением коэрцитивной силы () называются магнитомягкими. Эти материалы используют в магнитопроводах электрических машин и трансформаторов. Таким образом, зависимости B = f(H) у ферромагнитных материалов нелинейные. Эти зависимости приводятся в справочниках в табличной форме или в виде кривых, называемых кривыми намагничивания.
9.3 Расчет магнитных цепей
Основным законом, используемым при расчетах магнитных цепей, является закон полного тока.
магнитный электротехника явление
Он формулируется следующим образом: линейный интеграл вектора напряженности магнитного поля по замкнутому контуру равен алгебраической сумме токов, охватываемых этим контуром. Если контур интегрирования охватывает катушку с числом витков W, через которую протекает ток I, то алгебраическая сумма токов , где F - магнитодвижущая сила.
Обычно контур интегрирования выбирают таким образом, чтобы он совпадал с силовой линией магнитного поля, тогда векторное произведение в формуле (9.1) можно заменить произведением скалярных величин H·dl. В практических расчетах интеграл заменяют суммой и выбирают отдельные участки магнитной цепи таким образом, чтобы H1, H2, . . . вдоль этих участков можно было считать приблизительно постоянными. При этом (9.1) переходит в
(9.2)
где l1, l2, …, ln - длины участков магнитной цепи; H1·l1, H2·l2 - магнитные напряжения участков цепи. Магнитным сопротивлением участка магнитной цепи называется отношение магнитного напряжения рассматриваемого участка к магнитному потоку в этом участке
,
где S - площадь поперечного сечения участка магнитной цепи, l - длина участка.
Рассмотрим расчет магнитной цепи, изображенной на рис. 9.2.
Ферромагнитный магнитопровод имеет одинаковую площадь поперечного сечения S. lср - длина средней силовой линии магнитного поля в магнитопроводе; д - толщина воздушного зазора. На магнитопроводе размещена обмотка, по которой протекает ток I.
Рис. 9.2
Прямая задача расчета магнитной цепи заключается в том, что задан магнитный поток Ф и требуется определить магнитодвижущую силу F. Определим магнитную индукцию в магнитопроводе
.
По кривой намагничивания найдем значение напряженности магнитного поля H, соответствующее величине В. Напряженность магнитного поля в воздушном зазоре
Магнитодвижущая сила обмотки
При обратной задаче расчета магнитной цепи по заданному значению магнитодвижущей силы требуется определить магнитный поток. Расчет такой задачи выполняется с помощью магнитной характеристики цепи F = f(Ф). Для построения такой характеристики необходимо задаться несколькими значениями Ф и найти соответствующие значения F. С помощью магнитной характеристики по заданной магнитодвижущей силе определяется магнитный поток.
10. Трансформаторы
10.1 Конструкция трансформатора
Трансформатор представляет собой электромагнитный аппарат, предназначенный для преобразования величин токов и напряжений без изменения частоты. Трансформатор состоит из замкнутого ферромагнитного сердечника, на котором размещены две или большее число обмоток. Обмотка, подключенная к источнику энергии, называется первичной. Обмотки, подключенные к сопротивлениям нагрузки, называются вторичными. Сердечник (магнитопровод) трансформатора изготавливают из листовой электротехнической стали, имеющей малые потери на перемагничивание и на вихревые токи. Отдельные листы стали изолируют слоем лака, после чего стягивают болтами. Такое устройство применяется для уменьшения вихревых токов, индуктируемых в стали переменным потоком.
Подобные документы
Основные критерии классификации магнитных материалов. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей. Свойства ферритов и магнитодиэлектриков. Магнитные материалы специального назначения. Анализ магнитных цепей постоянного тока.
курсовая работа [366,4 K], добавлен 05.01.2017Проявления магнитного поля, параметры, его характеризующие. Особенности ферромагнитных (магнитомягких и магнитотвердых) материалов. Законы Кирхгофа и Ома для магнитных цепей постоянного тока, принцип их расчета, их аналогия с электрическими цепями.
контрольная работа [122,4 K], добавлен 10.10.2010Характеристика основных заданий электротехники - науки о техническом (прикладном) использовании электрических и магнитных явлений. Электрическая схема и её топологические элементы, которые позволяют описать структуру цепи. Связные и несвязные графы.
реферат [473,0 K], добавлен 21.11.2010Использование электрических и магнитных явлений. Применение преобразования Лапласа и его свойств к расчету переходных процессов. Переход от изображения к оригиналу. Формулы разложения. Законы цепей в операторной форме. Операторные схемы замещения.
реферат [111,9 K], добавлен 28.11.2010Определение тока утечки, мощности потери, удельных диэлектрических потерь при включении образца на переменное напряжение. Классификация и основные свойства полупроводниковых материалов. Физический смысл и область использования магнитных материалов.
контрольная работа [93,7 K], добавлен 28.10.2014Анализ свойств цепей, методов их расчета применительно к линейным цепям с постоянными источниками. Доказательство свойств линейных цепей с помощью законов Кирхгофа. Принцип эквивалентного генератора. Метод эквивалентного преобразования электрических схем.
презентация [433,3 K], добавлен 16.10.2013Магнитно-силовая микроскопия как инструмент для исследования микро- и наномагнитных структур. Определение рельефа с использованием контактного или прерывисто-контатного методов. Магнитное взаимодействие, явление парамагнетизма и ферромагнетизма.
реферат [592,7 K], добавлен 18.10.2013Анализ основных положений теории электрических цепей, основ промышленной электроники и электрических измерений. Описание устройства и рабочих свойств трансформаторов, электрических машин постоянного и переменного тока. Электрическая энергия и мощность.
курс лекций [1,5 M], добавлен 12.11.2010Магнитометр как прибор для измерения характеристик магнитного поля и магнитных свойств веществ (магнитных материалов), его разновидности и функциональные особенности. Феррозонд: понятие и типы, структура и элементы, принцип действия, назначение.
реферат [329,0 K], добавлен 11.02.2014Закон полного тока. Единая теория электрических и магнитных полей Максвелла. Пояснения к теории классической электродинамики. Система уравнений Максвелла. Скорость распространения электромагнитного поля. Релятивистская трактовка магнитных явлений.
презентация [1,0 M], добавлен 14.03.2016