Расчёт цепей с взаимосвязанными катушками индуктивности

Явление самоиндукции катушек, обусловленное током в цепи. Определение потока самоиндукции контура. Суммарные потоки, пронизывающие первый и второй контуры. Абсолютная магнитная проницаемость среды (материала магнитопровода). Алгебраическая сумма ЭДС.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 06.01.2020
Размер файла 298,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Расчёт цепей с взаимосвязанными катушками индуктивности

При рассмотрении цепей синусоидального тока до сих пор учитывалось только явление самоиндукции катушек, обусловленное током в цепи. Цепи, в которых наводятся ЭДС между двумя (и более) взаимно связанными катушками, называются индуктивно связанными цепями. Рассмотрим явление возникновения ЭДС в одном из контуров при изменении тока в другом.

Рис. 1

Контуры (рис. 1) представляют собой плоские тонкие катушки с числами витков и . Поток самоиндукции , созданный током , может быть представлен в виде потока рассеяния , пронизывающего только первый контур, и потока , пронизывающего второй контур

= + .

Аналогично определяем поток самоиндукции второго контура

= + .

Потоки и называют потоками взаимной индукции. Их принято обозначать двумя индексами: первый индекс указывает, с каким контуром сцепляется поток, второй - номер тока, вызвавшего данный поток. Например, поток вызван током , сцепляется с первым контуром. Если направление потока взаимной индукции совпадает с направлением потока самоиндукции данного контура, то говорят, что магнитные потоки и токи контуров направлены согласно. В случае противоположного направления говорят о встречном направлении потоков. Суммарные потоки, пронизывающие первый и второй контуры

= ; = ,

где «+» соответствует согласному направлению потоков, «-» - встречному направлению.

Полные потокосцепления первого и второго контуров

(2.48)

(2.49)

Отношение потокосцепления взаимной индукции в одной цепи к току в другой называется взаимной индуктивностью

Для линейных электрических цепей всегда выполняется равенство

.

Взаимная индуктивность двух катушек зависит от числа витков, геометрических размеров магнитопровода и взаимного расположения катушек, а также от абсолютной магнитной проницаемости среды (материала магнитопровода). Индуктивную связь двух катушек характеризуют коэффициентом связи

.

Этот коэффициент всегда меньше единицы, так как магнитный поток взаимной индукции всегда меньше потока самоиндукции и может быть увеличен за счет уменьшения потоков рассеяния бифилярной намоткой катушек (двойным проводом) или применением для магнитопровода материала с высокой абсолютной магнитной проницаемостью.

ЭДС самоиндукции

Если по проводнику протекает переменный ток, то вокруг этого проводника он создает переменный магнитный поток, который создает переменное потокосцепление, а нон в свою очередь порождает ЭДС.

Таким образом, ЭДС каждой катушки определяется алгебраической суммой ЭДС самоиндукции и взаимной индукции. Для определения знака ЭДС взаимной индукции размечают зажимы индуктивно связанных элементов цепи. Два зажима называют одноименными, если при одинаковом направлении токов относительно этих зажимов магнитные потоки самоиндукции и взаимной индукции складываются. Такие выводы обозначают на схемах одинаковыми условными значками, например, точками или звездочками (рис. 2 а, б). Одинаково направленные токи и (рис. 2 а) относительно зажимов и вызывают совпадающие по направлению потоки самоиндукции () и взаимной индукции (). Следовательно, зажимы и являются одноименными. Одноименной является и другая пара зажимов и , но условными значками обозначают только одну пару одноименных выводов, например, и (рис. 2 а). Если токи и направлены неодинаково относительно одноименных зажимов (рис. 2 б), то имеет место встречное направление потоков самоиндукции и взаимоиндукции.

На схемах магнитопроводы, как правило, не показывают и ограничиваются только обозначением одноименных зажимов (рис. 2 в, г).

Одноименные зажимы можно определить опытным путем. Для этого одну из катушек включают в цепь источника постоянного тока, а к другой присоединяют вольтметр постоянного тока. Если в момент подключения источника стрелка измерительного прибора отклоняется, то зажимы индуктивно связанных катушек, подключенные к положительному полюсу источника и положительному зажиму измерительного прибора, являются одноименными.

Рис. 2

Определим знаки ЭДС и напряжения взаимной индукции. Допустим, первая катушка (рис. 2 а) разомкнута, а во второй протекает ток . Выберем положительные направления для одинаковыми относительно одноименных зажимов. ЭДС и напряжение взаимной индукции равны, но противоположны по знаку. Действительно, когда 0, потенциал зажима b больше потенциала зажима а, следовательно, 0.

По правилу Ленца знаки и всегда противоположны, поэтому

.

В комплексной форме уравнение имеет вид

(2.50)

При встречном включении катушек (рис. 2.20 б)

. (2.51)

Из (2.50) и (2.51) видно, что вектор напряжения на взаимной индуктивности сдвинут по фазе относительно вектора тока на угол 90°.

Сопротивление называется сопротивлением взаимной индуктивности, а - комплексным сопротивлением взаимной индуктивности.

Таким образом, при согласном направлении токов падение напряжения на взаимной индуктивности имеет знак «плюс», при встречном - знак «минус».

Рассмотрим на примере Последовательное соединение двух индуктивно связанных катушек

Рассмотрим две катушки, соединенные последовательно и имеющие активные сопротивления , индуктивности и взаимную индуктивность . Возможны два вида их включения - согласное (рис. 3 а) и встречное (рис. 3 б). При согласном включении ток в обеих катушках направлен одинаково относительно одноименных зажимов, поэтому падение напряжения на взаимной индуктивности в уравнениях Кирхгофа для мгновенных значений запишем со знаком «плюс»

Эти же уравнения в комплексной форме

(2.52)

а) б)

Рис. 3

Полное сопротивление цепи при согласном включении

При встречном включении (рис. 3 б) ток в катушках направлен противоположно относительно одноименных зажимов, поэтому напряжения на взаимной индуктивности записывают со знаком «минус». В этом случае уравнения Кирхгофа в комплексной форме имеют вид

(2.53)

Полное сопротивление цепи при встречном включении

Полное сопротивление цепи при согласном включении больше, чем при встречном. Этим можно пользоваться для определения опытным путем одноименных зажимов индуктивно связанных катушек.

На рис. 4 построены векторные диаграммы для согласного и встречного включения катушек. Начальная фаза вектора тока, являющегося общим для всех элементов цепи, принята равной нулю. По вектору тока сориентированы в порядке записи все слагаемые напряжений и (2.52, 2.53). Упрощает выбор направления векторов правило о том, что умножение комплекса на соответствует его повороту на 90°. Многоугольники векторов , , , построенные на диаграмме соответственно с законом Кирхгофа, для наглядности заштрихованы.

Векторная диаграмма (рис. 4 б) при встречном включении катушек построена в предположении, что . При таком соотношении параметров в первой катушке наблюдается емкостный эффект, т.к. напряжение отстает от тока . В цепи нет конденсаторов, но индуктивность первой катушки получается отрицательной, что равноценно включению конденсатора. Однако в целом цепь всегда имеет индуктивный характер, т.к. вектор тока отстает от вектора напряжения на входе в виду того, что .

При согласном включении катушек емкостный эффект невозможен.

самоиндукция катушка магнитный проницаемость

Размещено на Allbest.ru


Подобные документы

  • Понятие индуктивности. Методы расчета индуктивности воздушных контуров, катушек с замкнутыми сердечниками, катушек с немагнитными сердечниками и катушек с сердечниками, имеющими воздушный зазор. Потери в катушках индуктивности. формула добротности.

    контрольная работа [72,9 K], добавлен 21.02.2009

  • Понятие явления самоиндукции, влияние на ток при замыкании и размыкании цепи; индуктивность трансформатора. Взаимная индукция, размерность индуктивности, возникновение ЭДС. Индуктивность трансформатора. Расчет энергии магнитного поля в длинном соленоиде.

    презентация [2,5 M], добавлен 14.03.2016

  • Определение тягового усилия электромагнита. Расчет неразветвленной магнитной цепи. Вычисление тока в катушке, необходимого для создания заданного магнитного потока в воздушном зазоре магнитной цепи. Определение индуктивности катушки электромагнита.

    презентация [716,0 K], добавлен 22.09.2013

  • Алгебраическая сумма токов в ветвях, сходящихся к любому узлу электрической цепи, тождественно равна нулю. Алгебраическая сумма напряжений ветвей в любом контуре цепи тождественно равна нулю. Примеры на применение первого и второго законов Кирхгофа.

    реферат [99,1 K], добавлен 11.03.2009

  • Изучение электрических цепей, содержащих катушку индуктивности. Определение зависимости величины индуктивности от магнитной проницаемости сердечника. Измерение магнитной индуктивности катушки в электрической цепи с сопротивлением и источником тока.

    лабораторная работа [24,1 K], добавлен 10.06.2019

  • Понятие и действие магнитного поля, его характеристики: магнитная индукция, магнитный поток, напряжённость, магнитная проницаемость. Формулы магнитной индукции и правило "левой руки". Элементы и типы магнитных цепей, формулировка их основных законов.

    презентация [71,7 K], добавлен 27.05.2014

  • Электрические цепи переменного тока, их параметры. Понятие и основные условия явления резонанса. Особенности изменения индуктивного и емкостного сопротивления. Анализ зависимости фазового сдвига между током и напряжением на входе контура от частоты.

    контрольная работа [216,6 K], добавлен 16.01.2010

  • Понятие и принципы распространения токов Фуко, их характерные особенности. Сущность скин-эффекта. Явление самоиндукции и ее ЭДС. Энергия магнитного поля, критерии и порядок ее измерения. Понятие взаимной индукции, факторы и порядок ее возникновения.

    презентация [307,9 K], добавлен 24.09.2013

  • Влияние величины индуктивности катушки на электрические параметры цепи однофазного синусоидального напряжения, содержащей последовательно соединенные катушки индуктивности и конденсатор. Опытное определение условий возникновения резонанса напряжений.

    лабораторная работа [105,2 K], добавлен 22.11.2010

  • Элементы R, L, C в цепи синусоидального тока и фазовые соотношения между их напряжением и током. Методы расчета электрических цепей. Составление уравнений по законам Кирхгофа. Метод расчёта электрических цепей с использованием принципа суперпозиции.

    курсовая работа [604,3 K], добавлен 11.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.