Влияние электрического тока на организм человека
Особенности местных и общих электротравм. Факторы, определяющие исход поражения электрическим током. Путь замыкания тока, величина напряжения и время действия. Сопротивление человека, определение допустимых уровней напряжений прикосновения и токов.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.11.2019 |
Размер файла | 656,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Содержание
- Введение
- 1. Действие электрического тока на человека
- 1.1 Местные электротравмы
- 1.2 Общие электротравмы
- 1.3 Факторы, определяющие исход поражения электрическим током
- 2. Величина напряжения и время действия
- 2.1 Род и частота тока
- 2.2 Путь замыкания тока
- 2.3 Сопротивление человека
- 2.4 Окружающая среда
- 2.5 Допустимые уровни напряжений прикосновения и токов по ГОСТ 12.1.038-82
- Список использованных источников
Введение
О том, что электрический разряд действует на человека, стало очевидным в последней четверти 18 века. Одно из первых обстоятельных описаний этого действия принадлежит Ж.Марату, видному деятелю Великой французской революции 1789-1794гг. Англичанин А. Уориш, итальянцы Л. Гальвани, А. Вольта и ряд других ученых установили, что на человека действует разряд, полученный не только от источника статистического электричества, но и от электрохимичекого элемента [2].
Однако никто из названных исследователей не указал на опасность этого действия на человека. Впервые установил эту опасность изобретатель первого в мире электрохимического высоковольтного источника напряжения В.В. Петров. электротравма ток напряжение электрический
В наше время, использование электроэнергии является более широкое во всех областях деятельности человека: неуклонный рост энерговооруженности труда, резкое увеличение количества электроприборов в быту и на производстве, естественным образом повлекли за собой повышение опасности поражения человека электрическим током.
Электрический ток не имеет каких-либо физических признаком или свойств, по которым человек мог бы его ощущать органами чувств, что усугубляет его опасность для человека. По сравнению с другими видами производственного травматизма, электротравматизм составляет небольшой процент, однако по числу травм с тяжелым и особенно летальным исходом занимает одно из первых мест. На производстве из-за несоблюдения правил техники безопасности происходит 75% электропоражений [3].
1. Действие электрического тока на организм человека
При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственном соприкосновении с находящимися под напряжением проводками электрического тока. В результате прохождения тока через человека может произойти нарушение его жизнедеятельных функций.
Опасность поражения электрическим током усугубляется тем, что, во первых, ток не имеет внешних признаков и как правило человек без специальных приборов не может заблаговременно обнаружить грозящую ему опасность; во вторых, воздействия тока на человека в большинстве случаев приводит к серьезным нарушениям наиболее важных жизнедеятельных систем, таких как центральная нервная, сердечно-сосудистая и дыхательная, что увеличивает тяжесть поражения; в третьих, переменный ток способен вызвать интенсивные судороги мышц, приводящие к не отпускающему эффекту, при котором человек самостоятельно не может освободиться от воздействия тока; в четвертых, воздействие тока вызывает у человека резкую реакцию одергивания, а в ряде случаев и потерю сознания, что при работе на высоте может привести к травмированию в результате падения.
Биологическое действие заключается в способности электрического тока раздражать и возбуждать живые ткани организма, тепловое - в способности вызывать ожоги тела, механическое - приводить к разрыву тканей, а химическое - к электролизу крови.
Воздействие электрического тока на организм человека может явиться причиной электротравмы.Электротравма - это травма, вызванная воздействием электрического тока или электрической дуги [4]. Условно электротравмы делят на местные и общие.
При местных электротравмах возникает местное повреждение организма, выражающиеся в появлении электрических ожогов, электрических знаков, в металлизации кожи, механических повреждениях и электроофтальмии (воспаление наружных оболочек глаз).
Общие электротравмы, или электрические удары, приводят к поражению всего организма, выражающемуся в нарушении или полном прекращении деятельности наиболее жизненно важных органов и систем - легких (дыхания), сердца (кровообращения).
1.1 Местные электротравмы
Это ярко выраженные местные (локальные) повреждения тканей тела, вызванные воздействием электрического тока или электрической дуги. Местным повреждением чаще всего подвергается поверхность кожи человека, но в некоторых случаях поражаются и мышечные ткани, а также связки и кости. Обычно местные электротравмы излечиваются работоспособность человека полностью или частично восстанавливается. Однако в некоторых случаях местные электротравмы приводят к гибели человека. К местным электротравмам относят:
- электрические ожоги,
- электрические знаки (метки тока),
- электрометаллизации кожи,
- механические повреждения,
- электроофтальмию.
Электрический ожог является самой распространенной электротравмой, возникающей у большинства (63 %) пострадавших от электрического тока. В зависимости от условий возникновения ожог может; быть токовый (контактный), возникающий при прохождении тока через тело человека в результате его контакта с токоведущей частью, или дуговой, вызванный воздействием на тело человека электрической дуги [3].
В электроустановках возможны также ожоги и без прохождения тока, в частности, при прикосновении человека к сильно нагретым частям электрооборудования, от разлетающихся раскаленных частиц металла и т.п.
Различают четыре степени ожогов:
I степень - покраснение кожи и незначительная боль;
II степень -- образование волдырей (пузырей) на покрасневшей воспаленной коже;
Ш степень -- омертвление всей толщи кожи;
IV степень -- обугливание кожи и мышечных тканей.
Обычно тяжесть повреждения организма при ожогах обусловливается не столько степенью ожога, сколько площадью, пораженной ожогом поверхности тела. Известно, что поражение ожогом более одной трети поверхности тела приводит к смертельному исходу.
Электрические знаки (метки тока) возникают, в отличие от ожогов, при контакте с электродами. По внешнему виду они представляют собой припухлость на коже человека круглой или овальной формы, края которой резко очерчены белой или серой каймой. Кожа в этом месте затвердевает в виде мозоли и приобретает серый или желтовато-серый цвет. В пораженном месте происходит как бы омертвение верхнего слоя кожи. Каких-либо покраснений или воспалений не наблюдается. Электрические знаки, как правило, безболезненны и обычно заканчиваются заживлением. С течением времени верхний слой кожи сходит и пораженный участок приобретает первоначальный цвет, эластичность и чувствительность.
Металлизация кожи -- это поверхностное пропитывание кожи мельчайшими частицами металла, расплавляющегося и испаряющегося под действием электрической дуги. Поврежденный участок кожи имеет жесткую шероховатую поверхность. Пострадавший испытывает неприятное ощущение от присутствия в коже инородных частиц. Исход такого поражения, как и при ожоге, зависит от площади пораженной поверхности кожи. С течением времени больная кожа сходит, пораженный участок приобретает нормальный вид и эластичность, все болезненныеощущения исчезают [3].
1.2 Общие электротравмы
Электрический удар -- это общее биологическое воздействие электрического тока на организм, которое проявляется в виде рефлекторного (непроизвольного) возбуждения живых тканей организма протекающим через них током. Электрический удар является автоматической реакцией (рефлексом) организма на производимое электрическим током внешнее раздражение. Этот вид воздействия электрического тока выражается очень резко, так как обусловлен действием электрического тока через нервную систему. Электрический удар может привести к судорогам мышц, остановке дыхания, нарушению деятельности сердца и к шоку.
Известно, что при протекании через тело человека переменного тока промышленной частоты начало его ощущения у разных людей наступает при различных силах тока и лежит в пределах от 0,8 до 3 мА, что объясняется индивидуальными особенностями человека. Наблюдениями установлено, что 99,5 % всех людей начинают ощущать ток силой в 1 мА, который, и принят в качестве порогового неощутимого тока [7]. При протекании через тело тока, лишь незначительно превышающего пороговый неощутимый ток, человек ощущает слабый зуд, покалывание и пощипывание кожи в месте контакта с электродом. При дальнейшем увеличении тока (до 5 мА) интенсивность неприятных раздражающих ощущений нарастает, одновременно появляются непроизвольные сокращения (судороги) мышц рук и предплечий. Однако эти судороги еще таковы, что человек может самостоятельно их преодолеть и разорвать цепь протекающего через него тока без посторонней помощи, хотя и с трудом. Иными словами, эти судороги и вызывающие их токи будут для человека отпускающими.
Начиная с 6 мА, отдельные люди (0,5 %) уже не в состоянии самостоятельно разорвать цепь протекающего через них тока, то есть для них ток становится неотпускающим. Поэтому ток силой 6 мА принят в качестве порогового неотпускающего тока [2].
Электрический удар может привести к шоку.
Шок -- это тяжелое общее расстройство всех функций организма (кровообращения, дыхания, обмена веществ и т.п.), вызываемое тяжелым психическим потрясением или резким физическим воздействием, которыми может сопровождаться электрический удар [5]. Шок может длиться от нескольких десятков минут до суток. Если пострадавшему не будет оказана своевременная медицинская помощь, то наступает смерть в результате полного угасания жизненно важных функций организма.
Можно сделать вывод, что смертельный исход при электротравмах может наступить в результате следующих повреждений организма:
- нарушение сердечной деятельности;
- остановка дыхания;
- шок;
- обширные ожоги (обычно при напряжениях выше 1000 В).
Очень часто смерть наступает в результате одновременного действия нескольких из вышеупомянутых причин, так как в человеческом организме все его жизненные функции взаимосвязаны.
Остановка дыхания и прекращение кровообращения (отсутствие пульса) являются первыми внешними признаками смерти. Однако различают два основных этапа смерти:
- клиническую (или «мнимую») смерть;
- биологическую смерть.
Клиническая смерть -- это переходное состояние от жизни к смерти, наступающее с момента прекращения деятельности сердца и легких [5]. Длительность клинической смерти определяется периодом времени с момента прекращения кровообращения и дыхания до начала гибели клеток коры головного мозга. У большинства нормальных людей это время не превышает 6 минут. Если в этот период начать оказывать пострадавшему соответствующую помощь, то дальнейшее развитие смерти может быть приостановлено и жизнь человека сохранена. Если пострадавшему не оказать своевременную помощь, то клиническая смерть переходит вбиологическую смерть, под которой понимают необратимое явление, характеризующееся прекращением биологических процессов в клетках и тканях организма и распадом белковых структур. Спасти человека после этого становится невозможным.
1.3 Факторы, определяющие исход поражения электрическим током
Поражение человека электрическим током происходит в случаях:
1) Прикосновения к токоведущим частям электроустановок, находящихся под напряжением.
2) Приближения человека на опасное расстояние к токоведущим незащищенным изоляцией частям электроустановок.
3) Прикосновения человека к нетоковедущим частям электроустановок, оказавшимся под напряжением (из-за замыкания на их корпус).
4) Ошибочного принятия находящегося под напряжением оборудования как отключенного.
5) Повреждения изоляции.
6) Удара молнии.
7) Действия электрической дуги.
8) Освобождения другого человека, находящегося под напряжением.
9) В результате возникновения токового напряжения на поверхности земли из-за замыкания фазного провода на землю, что привело к растеканию тока по земле. Оказавшийся в зоне поражения человек попадает под шаговое напряжение, которое по мере приближения к проводу принимает опасные значения. Шаговое напряжение зависит от расстояния между точками соприкосновения человека с землей. Уходить от упавшего провода следует мелкими шажками. На расстоянии более 20 м от провода напряжение уменьшается до нуля.
К факторам, влияющим на исход поражения электрическим током, относят:величину тока, величину напряжения, время действия, род и частоту тока, путь замыкания, сопротивление человека, окружающую среду, фактор внимания.
2. Величина напряжения и время действия
Факторы величины напряжения и время воздействия электрического тока[1], приведены в табл. 1.
Таблица 1 -- Факторы величины напряжения и время воздействия электрического тока
Время действия, сек. |
Длител. |
До 30 |
1 |
0,5 |
0,2 |
0,1 |
|
Величина тока, мА. |
1 |
6 |
50 |
100 |
250 |
500 |
|
Величина напряжения, В. |
6 |
36 |
50 |
100 |
250 |
500 |
При кратковременном воздействии (0,1-0,5с) ток порядка 100мА не вызывает фибрилляции сердца. Если увеличить длительность воздействия до 1с, то этот же ток может привести к смертельному исходу. С уменьшением длительности воздействия значение допустимых для человека токов существенно увеличивается. При изменении времени воздействия от 1 до 0,1с допустимый ток возрастает в 16 раз.
Кроме того, сокращение длительности воздействия электрического тока уменьшает опасность поражения человека исходя из некоторых особенностей работы сердца. Продолжительность одного периода кардиоцикла составляет 0075-0,85с.
В каждом кардиоцикле наблюдается период систолы, когда желудочки сердца сокращаются (пик QRS) и выталкивают кровь в артериальные сосуды.
Фаза Т соответствует окончанию сокращения желудочков и они переходят в расслабленное состояние. В период диастола желудочки наполняются кровью. Фаза Р соответствует сокращению предсердий. Установлено, что сердце наиболее чувствительно к воздействию электрического тока во время фазы Т кардиоцикла. Для того чтобы возникла фибрилляция сердца, необходимо совпадение по времени воздействия тока с фазой Т, продолжительность которой 0,15-0,2с. С сокращением длительности воздействия электрического тока вероятность такового совпадениястановится меньше, а следовательно, уменьшается опасность фибрилляции сердца. В случае несовпадения времени прохождения тока через человека с фазой Т токи, значительно превышающие пороговые значения, не вызовут фибрилляции сердца [7].
Рисунок 1 - Поражающее воздействие тока на разные органы человека [2]
2.1 Род и частота тока
Постоянный и переменный токи оказывают различные воздействия на организм главным образом при напряжениях до 500 В. При таких напряжениях степень поражения постоянным током меньше, чем переменным той же величины. Считают, что напряжение 120 В постоянного тока при одинаковых условиях эквивалентно по опасности напряжению 40 В переменного тока промышленной частоты. При напряжении 500В и выше различий в воздействии постоянного и переменного токов практически не наблюдаются.
Исследования показали, что самыми неблагоприятными для человека являются токи промышленной частоты (50Гц). При увеличении частоты (более 50Гц) значения неотпускающего тока возрастает. С уменьшением частоты (от 50Гц до 0) значения неотпускающего тока тоже возрастает и при частоте, равной нулю (постоянный ток - болевой эффект), они становятся больше примерно в три раза.
Значения фибрилляционного тока при частотах 50-100Гц равны, с повышением частоты до 200Гц этот ток возрастает примерно в 2 раза, а при частоте 400Гц - почти в 3,5 раза.
2.2 Путь замыкания тока
При прикосновении человека к токоведущим частям путь тока может быть различным. Всего существует 18 вариантов путей замыкания тока через человека. Основные из них:
- голова - ноги;
- рука - рука;
- правая рука - ноги;
- левая рука - ноги;
- нога - нога.
Степень поражения в этих случаях зависит от того, какие органы человека подвергаются воздействию тока, и от величины тока, проходящего непосредственно через сердце. Так при протекании тока по пути «рука - рука» через сердце проходит 3,3% общего тока, по пути «левая рука - ноги» 3,7%, «правая рука - ноги» 6,7%, «нога - нога» - 0,4%. Величина неотпускающего тока по пути «рука - рука» приблизительно в два раза меньше, чем по пути «рука - ноги» [2].
С медицинской точки зрения величина и путь прохождения тока через человека являются основными травмирующими факторами.
2.3 Сопротивление человека
Величина тока проходящего через какой-либо участок тела человека, зависит от приложенного напряжения (напряжения прикосновения) и электрического сопротивления оказываемого току данным участком тела.
Между воздействующим током и напряжением существует нелинейная зависимость: с увеличением напряжения ток растет быстрее. Это объясняется главным образом нелинейностью электрического сопротивления тела человека. На участке между двумя электродами электрическое сопротивление тела человека в основном состоит из сопротивлений двух тонких наружных слоев кожи, касающихся электродов, и внутреннего сопротивления остальной части тела. Плохо проводящий ток наружный слой кожи, прилегающий к электроду, и внутренняя ткань, находящаяся под плохо проводящим слоем, как бы образуют обкладки конденсатора емкостью С и сопротивлением его изоляции Vн (рис.2.2.). С увеличением частоты тока сопротивление тела человека уменьшается и при больших частотах практически становится равным внутреннему сопротивлению.
При напряжении на электродах 40-45В в наружном слое кожи возникают значительные напряженности поля, которые полностью или частично нарушают полупроводящие свойства этого слоя. При увеличении напряжения сопротивление тела уменьшается и при напряжении 100-200В падает до значения внутреннего сопротивления тела. Это сопротивление для практических расчетов может быть принято равным 1000 Ом.
В теоретических основах электротехники доказывается, что с повышением частоты приложенного напряжения путь тока по проводнику изменяется - он вытесняется к поверхности проводника. Относительно организма человека это свойство проявляется в том, что малое активное внутреннее сопротивление исключается при больших частотах из цепи, поэтому путь тока будет пролегать через наружный слой кожи. Кроме того, при повышении частоты тока физиологические диполи организма не успевают «переориентироваться», в итоге значительно ослабевает реакция организма на такие воздействия. Иначе говоря, общее сопротивление организма возрастает с увеличением частоты, следовательно, при одном и том же значении величины напряжения, но с увеличением частоты ток, протекающий по организму, уменьшается и снижается опасность поражения. Однако в этом случае в большей мере проявляются такие последствия электрического тока, как поверхностный ожог. Доказано, что опасны токи частотой до 1 кГц, а выше 50 кГц практически не опасны [2].
2.4 Окружающая среда
Влажность и температура воздуха, наличие заземленных металлических конструкций и полов, токопроводящая пыль и другие факторы окружающей среды оказывают дополнительное влияние на условие электробезопасности. Во влажных помещениях с высокой температурой или наружных электроустановках складываются неблагоприятные условия, при которых обеспечивается наилучший контакт с токоведущими частями [6]. Наличие заземленных металлических конструкций и полов создает повышенную опасность поражения вследствие того, что человек практически постоянно связан с одним полюсом (землей) электроустановки. Токопроводящая пыль также улучшает условия для электрического контакта человека как с токоведущими частями, так и с землей.
Влияние продолжительности действия тока
При увеличении продолжительности действия тока увеличиваются опасность и последствия воздействия тока на организм.
При длительном протекании тока это объясняется повышенным выделением тепла, что приводит к потовыделению, увлажнению кожи, снижению сопротивления тела человека, и, как следствие, к возрастанию тока и увеличению опасности.
При кратковременном воздействии тока (менее 1 с) опасность зависит от того, с какой фазой работы сердца совпал момент прохождения тока. Известно, что в каждом кардиоцикле продолжительностью около 1с сердце в течение 0,1 с. находится в расслабленном состоянии и в это время особенно чувствительно к прохождению тока, что увеличивает вероятность возникновения фибрилляции. При длительности более 1 с ток не может не совпасть с этим состоянием сердца. При уменьшении продолжительности действия тока уменьшается и вероятность совпадения момента прохождения тока с расслабленным состоянием сердца, что снижает опасность поражения.
Предельно допустимый ток , не вызывающий фибрилляции сердца (пороговый нефибрилляционный ток) в интервале времени t = 0,2... 1 с, можно определить из выражения(1):
(1)
Т. е. чем меньше длительность протекания тока, тем меньше вероятность возникновения фибрилляции сердца.
Влияние состояния человеческого организма.
Тяжесть исхода электротравмы зависит от физического состояния пострадавшего в момент поражения, в первую очередь от состояния нервной системы. Отсутствие внимания, подавленное состояние, состояние алкогольного опьянения, а также некоторые болезни-все эти факторы увеличивают вероятность тяжелого и смертельного исхода электротравмы.
Увеличивают опасность поражения электрическим током некоторые болезни. В соответствии с приказом Министерства здравоохранения в перечень медицинских противопоказаний к допуску на работы по обслуживанию действующих электротехнических установок включены: психические заболевания со значительными изменениями личности; органические заболевания центральной нервной системы, в том числе эпилепсия и эпилептиформные состояния; наркомания, токсикомания, хронический алкоголизм; гипертоническая болезнь II и III стадий, ишемическая болезнь сердца (стенокардия с частыми приступами) и др.
Большое влияние на исход электротравмы оказывает фактор внимания. Неожиданность поражения, испуг создают дополнительную нагрузку на нервную систему и приводят к снижению электрического сопротивления тела человека, что утяжеляет условия поражения. Если же человек знает о наличии потенциальной опасности поражения током и находится в состоянии направленного внимания, то поражение током (если оно случайно произойдет) не будет для него неожиданным и как правило значительно легче. Объясняется это тем, что под влиянием напряженного внимания усиливается кровообращение центральной нервной системы. Это вызывает повышенное потребление кислорода, что, в свою очередь, приводит к увеличению числа электронов, участвующих в биохимических реакциях обмена веществ. Усиленный поток электронов сложнее нарушить импульсом тока. Поэтому сосредоточенный, внимательный к опасности человек менее подвержен воздействию тока. Таким образом, фактор внимания является одним из решающих для исхода поражения [9].
2.5 Допустимые уровни напряжений прикосновения и токов по ГОСТ 12.1.038-82
ГОСТ 12.1.038-82 «ССБТ. Электробезопасность. Предельно допустимые уровни напряжений прикосновения и токов».
Этот ГОСТ устанавливает предельно допустимые уровни прикосновения и токов, протекающих через тело человека, предназначенные для проектирования способов и средств защиты людей при взаимодействии их с электроустановками производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц. Предельно допустимые уровни напряжений прикосновения и токов установлены для путей тока от одной руки к другой и от руки к ногам (табл. 2).
Таблица 2-- Предельно допустимые напряжения прикосновения и токи при нормальном режиме работы электроустановок
Род тока |
U, В |
I, мА |
|
не более |
|||
Переменный, 50 Гц |
2,0 |
0,3 |
|
Переменный, 400 Гц |
3,0 |
0,4 |
|
Постоянный |
8,0 |
1,0 |
|
Примечания: 1. Напряжения прикосновения и токи приведены при продолжительности воздействия не более 10 мин. в сутки и установлены, исходя из реакции ощущения. 2. Напряжения прикосновения и токи для лиц, выполняющих работу в условиях высоких температур (выше 25оС) и влажности (относительная влажность более 75%), должны быть уменьшены в три раза. |
Предельно допустимые уровни напряжений прикосновения и токов при аварийном режиме производственных электроустановок напряжением до 1000 В с глухозаземленной или изолированной нейтралью и выше 1000 В с изолированной нейтралью не должны превышать значений, указанных в табл. 3. При этом под аварийным режимом электроустановки понимается такая работа неисправной электроустановки, при которой могут возникнуть опасные ситуации, приводящие к электротравмированию людей, взаимодействующих с этой электроустановкой.
Примечание: предельно допустимые уровни напряжений прикосновения и токов, протекающих через тело человека при продолжительности воздействия свыше 1 с, приведенные в табл. 2 соответствуют отпускающим (переменным) и неболевым (постоянным) токам.
Из рассмотренных критериев электробезопасности следует, что защиту человека от воздействия напряжений прикосновения и токов можно обеспечить либо конструкцией электроустановок, техническими способами и средствами защиты, либо за счет снижения тока, протекающего через тело человека, или за счет сокращения времени его воздействия.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. ГОСТ 12.1.038-82 ССБТ «Предельно допустимые величины напряжений и токов. Электробезопасность» [Электронный ресурс]: URL: http://www.rosteplo.ru/Npb_files/npb_shablon.php?id=682 (дата обращения: 05.05.2019).
2. Венцель В.Д. Электробезопасность персонала впроизводственных условиях и в электроустановках до и выше 1000 В: учебное пособие / В.Д. Венцель, В.С.-Омск: Изд-во ОмГТУ, 2009. - 93с
3. Монаков В. К., Кудрявцев Д. Ю. Электробезопасность: Теория и практика / В. К. Монаков, Д. Ю. Кудрявцев. - М.: Инфра-Инженерия, 2017. - 184 с.
4. Сердюк В. С., Игнатович И. А., Кирьянова Е. Н., Кокоулина Н. С., Стишенко Л. Г. Безопасность жизнедеятельности: конспект лекций. - Омск: Изд-во ОмГТУ, 2007. - 160 с.
5. Действие электрического тока на человека и виды поражений [Электронный ресурс]: URL: http://delta-grup.ru/bibliot/97/80.htm(дата обращения: 05.05.2019).
6. Семехин Ю. Г. Безопасность жизнедеятельности: учебное пособие / Ю. Г. Семехин., В. Н. Бондин. - М.-Берлин: Директ-Медиа, 2015 - 412 с.
7. ВОЗДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА НА ОРГАНИЗМ ЧЕЛОВЕКА [Электронный ресурс]: URL: http://upr-proektom.ru/vozdeystvie-lektricheskogo-toka-na-organizm-cheloveka (дата обращения: 05.05.2019).
8. Поражение электрическим током [Электронный ресурс]: URL: https://ru.wikipedia.org/wiki/Поражение_электрическим_током (дата обращения: 05.05.2019).
9. Факторы, влияющие на исход поражения электрическим током [Электронный ресурс]: URLhttps://topuch.ru/pk1-osnovnie-ponyatiya-i-opredeleniya-2-obekt-izucheniya-bjd3/index4.html (дата обращения: 31.10.2019).
Размещено на Allbest.ru
Подобные документы
Действие электрического тока на организм человека. Факторы, влияющие на исход поражения током. Нормирование напряжений прикосновения и токов через тело человека. Эквивалентная схема электрического сопротивления различных тканей и жидкостей тела человека.
контрольная работа [69,3 K], добавлен 30.10.2011Определение расчетной мощности завода: расчет электрических нагрузок и токов короткого замыкания, выбор подстанций, трансформатора и релейной защиты. Общие требования по электробезопасности. Изучения действия электрического тока на организм человека.
курсовая работа [859,7 K], добавлен 25.09.2011Составление схемы замещения элементов системы. Расчёт ударного тока трёхфазного короткого замыкания. Определение коэффициентов токораспределения. Дополнительное сопротивление для однофазного замыкания. Построение векторных диаграмм токов и напряжений.
курсовая работа [1,9 M], добавлен 26.04.2014Разработка схемы главных электрических соединений подстанции. Расчет токов короткого замыкания. Выбор и проверка аккумуляторной батареи, разъедениетелей и приборов измерения тока. Расчет заземляющего устройства и определение напряжения прикосновения.
курсовая работа [801,3 K], добавлен 23.03.2015Составление математических моделей цепи для мгновенных, комплексных, постоянных значений источников напряжения и тока. Расчет токов и напряжений на элементах при действии источников напряжения и тока. Входное сопротивление относительно источника сигнала.
курсовая работа [818,5 K], добавлен 13.05.2015Расчет токов и напряжений симметричного КЗ. Расчет токов и напряжений несимметричного КЗ, вид указывается в задании. Расчет токов симметричного КЗ с использованием ПК. Значения периодической составляющей тока и напряжения в месте несимметричного КЗ
методичка [1,5 M], добавлен 05.10.2008Понятие электрической цепи и электрического тока. Что такое электропроводность и сопротивление, определение единицы электрического заряда. Основные элементы цепи, параллельное и последовательное соединения. Приборы для измерения силы тока и напряжения.
презентация [4,6 M], добавлен 22.03.2011Синусоидальные токи и напряжения. Максимальные значения тока и напряжения и угол сдвига фаз между напряжением и током. Тепловое действие в линейном резистивном элементе. Действующее значение гармонического тока. Действия с комплексными числами.
презентация [777,5 K], добавлен 16.10.2013Расчет сопротивления внешнего шунта для измерения магнитоэлектрическим амперметром силового тока. Определение тока в антенне передатчика при помощи трансформатора тока высокой частоты. Вольтметры для измерения напряжения с относительной погрешностью.
контрольная работа [160,4 K], добавлен 12.05.2013Определение значения ударного тока. Преобразование схемы прямой последовательности и определение её параметров. Построение векторных диаграмм тока и напряжения. Определение сопротивления внешней цепи. Расчет токов КЗ в сетях напряжением выше 1000В.
курсовая работа [2,8 M], добавлен 25.05.2015