Резонансные явления в цепях синусоидального тока
Возникновение колебаний электрических зарядов в электрических цепях. Резонанс в последовательном контуре. Частотные характеристики последовательного колебательного контура. Индуктивное, емкостное и реактивное сопротивления, напряжения на участках цепи.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 02.04.2019 |
Размер файла | 48,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Резонансные явления в цепях синусоидального тока
1. Колебательные (резонансные) цепи
Колебательными или резонансными цепями называются электрические цепи, в которых могут возникать колебания электрических зарядов.
Резонанс - это такой режим электрической цепи, содержащей конденсаторы и катушки индуктивности, при котором интенсивность вынужденных колебаний электрических зарядов максимальна.
При последовательном соединении катушек индуктивности и конденсаторов наблюдается резонанс напряжений, при параллельном - резонанс токов.
Резонанс может возникать при определенном соотношении параметров цепей или при какой-то подаваемой частоте питания. Частоты, при которых наблюдается резонанс, называются резонансными.
Одной из характерных особенностей резонанса является совпадение по фазе тока и напряжения на входе цепи, поэтому в пассивных двухполюсниках можно выделить фазовый резонанс.
Принято различать резонанс напряжений - для последовательного соединения элементов R, L, C и резонанс токов - для цепей с параллельным соединением этих элементов.
2. Резонанс в последовательном контуре
Рассмотрим простейший колебательный контур (рис. 2.23).
Комплексное сопротивление цепи
. (2.35)
Размещено на http://www.allbest.ru/
Рис. RLC колебательный контур
Резонанс наступает при .
Напряжения на индуктивности и емкости при этом оказываются равными друг другу по величине (UL = XLI = UC = XCI) и скомпенсированными друг с другом. Приложенное напряжение падает только на активном сопротивлении. Полное сопротивление Z при X = 0 будет равно и при заданном напряжении ток I достигает максимального значения Imax.
Условие равенства L = 1/C показывает, что в общем случае резонансных условий можно достичь, изменяя или параметры цепи L и C или частоту питания . Угловая частота
(2.36)
называется резонансной угловой частотой.
Сопротивление
(2.37)
называется характеристическим или волновым.
В том случае, когда активное сопротивление цепи много меньше волнового, напряжения на индуктивности и емкости значительно превосходят по величине напряжение на зажимах цепи. Количественно различие этих величин принято определять с помощью так называемой добротности контура Q:
. (2.38)
Величина, обратная добротности, называется затуханием
. (2.39)
Это наименование связано с тем, что при отключении колебательного контура от источника, когда контур замыкается накоротко, колебательный процесс затухает тем интенсивнее, чем больше величина d.
В режиме резонанса суммарная энергия электрического и магнитного полей остается постоянной. Действительно, если ток в контуре определяется величиной i = Imsin 0t, то напряжение на емкости будет
.
Энергия полей будет определяться выражениями
,
.
Их сумма
.
Учитывая, что или , будем иметь .
Кроме факта постоянства суммы энергий электрического и магнитного полей, произведенные выкладки показывают и существующий непрерывный обмен энергиями этих полей. Энергия, поступающая от источника питания, преобразуется в тепло активным сопротивлением. Поэтому вся цепь эквивалентна активному сопротивлению.
3. Частотные характеристики последовательного колебательного контура
электрический цепь контур колебательный
Под частотными характеристиками цепи понимают зависимости от частоты тех величин, которые характеризуют ее свойства (рис. 2.24). В рассматриваемом случае такими величинами оказываются индуктивное, емкостное и реактивное сопротивления, напряжения на отдельных участках цепи, а также сдвиг фаз между током и приложенным напряжением. Зависимость тока и напряжений от частоты называют резонансными кривыми (рис. 2.25).
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Рис. Резонансные кривые
Характер кривых определяется их аналитическими выражениями:
XL = L, XC = 1/C, X = XL - XC = L - 1/C,
, , , .
Если учесть, что реальная катушка индуктивности обладает активным сопротивлением провода, а конденсатор - сопротивлением утечки, то при исследовании UL = f1() и UC = f2() оказывается, что максимум UL наступает при частоте , а максимум UC наступает при . Следовательно, расхождение частот L и C будет тем больше, чем больше затухание d.
Резонансная кривая тока показывает избирательные свойства последовательного контура. Он обладает наименьшим сопротивлением при частотах, близких к резонансной; при отклонении частоты в ту или другую сторону сопротивление контура растет.
Выражение тока в цепи можно привести к виду
,
которое показывает, что с возрастанием добротности кривая становится более острой; цепь более «избирательна» в своем поведении к резонансной частоте (рис. 2.26).
Размещено на http://www.allbest.ru/
Размещено на Allbest.ru
Подобные документы
Понятие о электрических цепях и резонансе в физике. Характеристика линейной электрической цепи. Резонанс напряжений, токов, в разветвленной цепи, взаимной индукции. Понятие нелинейных электрических цепей. Параметрический резонанс в нелинейном контуре.
курсовая работа [867,4 K], добавлен 05.01.2017Исследование резонансных явлений в последовательном контуре электрической цепи на электронной модели в пакете Multisim. Угловая и циклическая резонансная частота. Активное сопротивление для заданной добротности. Полное и реактивное сопротивления.
лабораторная работа [424,7 K], добавлен 27.12.2014Исследование асинхронного трехфазного двигателя с фазным ротором. Схема последовательного и параллельного соединения элементов для исследования резонанса напряжений. Резонанс напряжений, токов. Зависимость тока от емкости при резонансе напряжений.
лабораторная работа [249,7 K], добавлен 19.05.2011Изучение резонансных явлений в последовательном контуре на электронной модели в пакете Multisim. Вычисление значения скорости резистора, емкости конденсатора и индуктивности катушки. Нахождение теоретического и практического импеданса электрической цепи.
лабораторная работа [1,8 M], добавлен 27.12.2014Анализ электрической цепи при переходе от одного стационарного состояния к другому. Возникновение переходных колебаний в электрических цепях. Законы коммутации и начальные условия. Классический метод анализа переходных колебаний в электрических цепях.
реферат [62,1 K], добавлен 23.03.2009Исследование основных особенностей электромагнитных процессов в цепях переменного тока. Характеристика электрических однофазных цепей синусоидального тока. Расчет сложной электрической цепи постоянного тока. Составление полной системы уравнений Кирхгофа.
реферат [122,8 K], добавлен 27.07.2013Основные элементы электрической цепи, источник ЭДС и источник тока. Линейные цепи постоянного тока, применение законов Кирхгофа. Основные соотношения в синусоидальных цепях: сопротивление, емкость, индуктивность. Понятие о многофазных электрических цепях.
курс лекций [1,2 M], добавлен 24.10.2012Исследование линейной электрической цепи. Расчет источника гармонических колебаний, тока, напряжения, баланса мощностей электромагнитной системы. Реактивное сопротивление выходных зажимов четырехполюсника. Расчет переходных процессов классическим методом.
курсовая работа [830,6 K], добавлен 11.12.2012Характеристика переходных процессов в электрических цепях. Классический и операторный метод расчета. Определение начальных и конечных условий в цепях с ненулевыми начальными условиями. Расчет графиков переходного процесса. Обобщенные характеристики цепи.
курсовая работа [713,8 K], добавлен 21.03.2011Определение понятия колебательных процессов. Математическое представление и графическое изображение незатухающих и затухающих колебаний в электрической цепи. Рассмотрение вынужденных колебаний в контуре под действием периодической электродвижущей силы.
курсовая работа [1,5 M], добавлен 30.01.2012