Исследование методов изменения направления световых лучей в солнечных электроустановках
Характеристика основных способов изменения направления лучей в солнечных электроустановках. Изучение особенностей использования различных средств изменения направления луча, положения самой батареи, отражателей или концентраторов солнечной энергии.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 28.02.2019 |
Размер файла | 19,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ИССЛЕДОВАНИЕ МЕТОДОВ ИЗМЕНЕНИЯ НАПРАВЛЕНИЯ СВЕТОВЫХ ЛУЧЕЙ В СОЛНЕЧНЫХ ЭЛЕКТРОУСТАНОВКАХ
Поливанов А.А., Галущак В.С., Титова М.Е.
Камышинский технологический институт (филиал)
«Волгоградского государственного технического
университета», Камышин, Волгоградская обл.,
Россия (403874 г. Камышин Волгоградской обл. ул. Ленина 6а)
e-mail: polivanov@kti.ru
Статья посвящена рассмотрению способов изменения направления лучей в солнечных электроустановках. В настоящее время электростанции на основе солнечных батарей приобретают все большую популярность, имея массу преимуществ перед другими средствами генерации. Но у солнечных батарей есть и недостатки, наиболее существенным из них является зависимость мощности генерации от положения солнца относительно батареи. Максимальная генерация достигается при ортогональном падении солнечных лучей на поверхность батареи, а при изменении этого угла мощность резко падает. Очевидным решением этой проблемы является использование различных средств изменения направления луча, положения самой батареи, отражателей или концентраторов солнечной энергии. В статье рассмотрены различные виды концентраторов солнечной энергии и других способов изменения направления луча или самой солнечной батареи. Особое внимание уделено адаптивным методам изменения направления солнечных лучей. По мнению многих специалистов, разработка концентраторов солнечной энергии, использующих адаптивные немеханические методы поворота луча, является чрезвычайно важной и актуальной задачей.
Ключевые слова: солнечная батарея, концентратор солнечной энергии, фотоэлектрический преобразователь, возобновляемые источники энергии.
электроустановка солнечный отражатель батарея
INVESTIGATION OF METHODS FOR CHANGING THE DIRECTION OF LIGHT RAYS
IN SOLAR ELECTRICAL INSTALLATIONS
Polivanov A.A., Galushchak V.S., Titova M. E.
Reader of Kamyshin Tecnological Institut (branch) of Volgograd State Technical University, Kamyshin, Russia (403874, Kamyshin, Lenina Street, 6А) e-mail: polivanov@kti.ru
The article is devoted to the consideration of ways of changing the direction of rays in solar electrical installations. Currently, solar-powered power plants are becoming increasingly popular, with many advantages over other means of generation. But solar batteries have disadvantages, the most significant of them is the dependence of the generation power on the position of the sun relative to the battery. The maximum generation is achieved by orthogonal incidence of sun's rays on the battery surface, and when this angle is changed, the power drops sharply. An obvious solution to this problem is the use of various means of changing the direction of the beam, the position of the battery itself, reflectors or concentrators of solar energy. Different types of solar energy concentrators and other ways of changing the direction of the beam or the solar cell are considered in the article. Particular attention is paid to adaptive methods of changing the direction of the sun's rays. According to many experts, the development of solar energy concentrators using adaptive nonmechanical methods of beam rotation is an extremely important and urgent task.
Key words: solar battery, solar energy concentrator, photoelectric сonverter, renewable energy sources.
В настоящее время солнечные батареи как источники электропитания широко применяются как на стационарных, так и подвижных объектах. Совершенно очевидно, что источники питания такого типа являются наиболее перспективными и будут активно применяться в будущем, сфера их использования - расширяться, а стоимость - снижаться.
Но при этом одним из наиболее существенных недостатков солнечных батарей всех типов является зависимость мощности генерации от положения солнца относительно батареи. Максимальная генерация достигается при ортогональном падении солнечных лучей на поверхность батареи, а при изменении этого угла мощность резко падает. Так, например, при значении угла падения луча>60° мощность генерации падает на 80%, что совершенно неприемлемо [1].
Очевидным решением этой проблемы является использование различных средств изменения направления луча, положения самой батареи, отражателей или концентраторов солнечной энергии, которые позволят обеспечить ортогональное падение лучей на поверхность солнечной батареи. Это, безусловно, влияет на надежность работы станции, усложняет ее эксплуатацию, обслуживание и в конечном итоге влияет на стоимость вырабатываемой электроэнергии [1].
Все методы изменения направления светового луча делятся на две большие группы: - механические; - оптические.
В механических методах солнечная батарея устанавливается на поворотную платформу - гелиостат, либо используется зеркало (призма), которое поворачивается при движении солнца по горизонту и отражает луч таким образом, чтобы он падал на солнечную батарею ортогонально.
В оптических методах применяются различные немеханические способы поворота луча, основанные на законах геометрической оптики - преломление луча, интерференция, дифракция и т.д. В свою очередь, они делятся на две группы:
- адаптивные;
- неадаптивные.
В адаптивных методах вследствие внешнего воздействия на вещество, выполняющее поворот луча, происходит изменение его оптических свойств, в результате угол поворота может изменяться в зависимости от внешних условий (изменение положения солнца на горизонте, изменение расположения объекта в пространстве и т.д.).
В неадаптивных методах величина изменения направление луча фиксированная и не будет зависеть от внешних условий. Совершенно очевидно, что наиболее перспективными являются адаптивные оптические методы изменения направления светового луча.
Во всех механических методах изменения направления светового луча используется либо поворот самой солнечной батареи по отношению к солнцу, либо поворот специального зеркала (призмы) которое перенаправляет световой луч, так, чтобы он падал на солнечную батарею ортогонально.
В частности, одним из известных примеров практической реализации такого метода, является солнечная электростанция СЭС - 5, построенная в 80 - е годы прошлого века в Крыму [2], . Следует отметить, что станции такого типа крайне ненадежны и громоздки, и поэтому не получили широкого распространения в мире.
Для современных солнечных электростанций небольшой мощности существуют портативные системы слежения за солнцем, примером может служить привод солнечной электростанции "Астро Эл-320 Синхрон", который позволяет ориентировать батареи относительно сторон света.
Однако очевидно, что применение механических систем поворота солнечных батарей, отражателей или других элементов является малоперспективным, поскольку сложность и низкая отказоустойчивость такой системы не вызывает сомнений, и с увеличением количества подвижных элементов она будет только возрастать. В связи с этим перспективно создавать модули со стационарными концентраторами, позволяющими исключить механические системы слежения, то есть использовать оптические методы поворота солнечных лучей.
Эти методы позволяют создавать фотоэлектрические установки с концентраторами солнечной энергии, позволяющие вырабатывать электроэнергию без слежения за положением Солнца [4].
Простейшим примером является использование неподвижных линз особой конструкции, фокусирующих солнечную энергию непосредственно на поверхность солнечной батареи. Это позволяет повысить энергоотдачу солнечной батареи, но весьма незначительно - не более чем на 10%. Следует отметить, что в любых оптических концентраторах независимо от их конструкции происходят потери излучения, связанные с отражением от поверхности и поглощением, причем по мере загрязнения поверхности концентратора эти потери будут только возрастать. В результате фактический прирост энергоотдачи за счет применения таких простых концентраторов солнечной энергии может быть даже сведен к нулю. По этой причине линзовые концентраторы солнечной энергии доказали свою низкую эффективность и не получили широкого распространения.
Дальнейшим развитием оптических концентраторов солнечной энергии стало появление отражателей, имеющих поверхность сложной геометрической формы, обеспечивающей отражение солнечных лучей с больших азимутальных углов, в частности, конусов сложной формы и призм. Еще более совершенным решением является использование в качестве преломляющих элементов так называемых гелиотехнических линз или призм Френеля [1]. Их рабочий профиль представляет набор призматических элементов, при этом преломляющие их способности подобраны в соответствии с необходимыми принципами формирования освещённости на поверхности приемника излучения.
Главным недостатком концентрирующих систем в виде призм является наличие хроматических аберраций, которые уменьшают степень концентрации солнечного излучения и снижают эффективность системы в целом. Кроме этого, конструкция модуля концентратора солнечной энергии, изготовленная таким образом, может оказаться достаточно громоздкой и тяжелой, что может быть неприемлемо, особенно при использовании солнечной батареи на подвижных объектах.
Самым совершенным видом устройств такого типа, созданных до сегодняшнего дня, являются голографические солнечные концентраторы. Эти фотоэлектрические преобразователи обеспечивают отбор из потока наиболее подходящих для генерации световых частот [5, 6]. По сравнению с солнечными батареями без концентраторов, здесь для получения одного ватта требуется на 50-85% меньше кремния, что является одним из условий низкой цены голографических панелей. К тому же сами голографические плёнки намного дешевле больших зеркал или линз. Однако, в солнечных батареях такого типа рабочая область используется крайне нерационально - большую часть поверхности батареи составляют не фотоэлементы, а «пустые» поля. Это приводит к значительному увеличению общей площади батарей, следовательно, габаритов электростанции в целом. И если солнечная электростанция является стационарной, данная проблема несущественна, а на подвижных объектах (например, электромобилях, самолетах, яхтах и т.д.), где на счету каждый квадратный сантиметр площади, это, скорее всего, будет неприменимо. Не следует забывать и о том, что часть полезного излучения будет неизбежно поглощаться внутри голографического концентратора.
Адаптивные методы изменения направления солнечных лучей позволяют управлять углом поворота луча в зависимости от положения Солнца на горизонте, а также самих солнечных батарей, если речь идет о подвижных объектах. В основе данного метода используется свойство некоторых материалов изменять свои характеристики (показатель преломления, прозрачность, угол поворота плоскости поляризации, переход из аморфного состояния в кристаллическое и наоборот и т.д.) в результате какого - либо внешнего воздействия - электростатического, электромагнитного, акустического, теплового и т.д. Такие материалы известны давно и широко применяются в технике, в частности, во всех видах жидкокристаллических индикаторов и экранов, однако в литературе пока не встречаются сведения об их использовании для управления углом поворота светового луча на солнечных электростанциях. Тем не менее, именно данное направление видится нам наиболее перспективным, особенно применительно к использованию на подвижных объектах, которые могут занимать произвольное пространственное положение по отношению к солнцу, и неадаптивные концентраторы солнечной энергии в этом случае могут оказаться неэффективными.
Для определения целесообразности такого подхода авторами статьи был проведен эксперимент, в котором использовалась полая прозрачная призма, заполненная оптически активной жидкостью. На жидкость внутри призмы оказывалось электрофизическое воздействие регулируемой мощности. Через призму проходил лазерный луч с длиной волны 630 нм. В результате эксперимента авторам удалось добиться отклонения лазерного луча на угол, равный 0,7є. Разумеется, столь незначительные углы отклонения не позволят реализовать возможность немеханического изменения направления светового луча в реальных солнечных электроустановках, но таким образом была доказана принципиальная возможность предложенного подхода. В дальнейшем эксперименты будут продолжены, в ходе которых планируется опробовать различные виды оптически активных веществ, конструкции отклоняющих призм, электрофизических воздействий, способы их приложений и сочетаний.
Поскольку опыт строительства и эксплуатации установок с концентраторами солнечной энергии всех типов еще незначителен, необходимо продолжать их активное изучение и расширять перспективы применения. В целом можно утверждать, что в настоящее время имеется высокая целесообразность и экономическая эффективность проектирования, разработки и строительства фотоэлектрических станций с применением концентраторов солнечной энергии, причем современное состояние развития науки и техники позволяет с успехом реализовывать эти достижения в промышленном масштабе. Особенно актуальным является такое направление, как разработка адаптивных концентраторов солнечной энергии, предназначенных для установки на подвижных объектах.
Список литературы
1. Бавин М.Р. Разработка и исследование преломляющих фотоэлектрических установок: Дисс. канд. техн. наук. - Москва, 2014. - 139 с.
2. Википедия. Свободная энциклопедия [Электронный ресурс]. - Режим доступа: http://ru.wikipedia.org
3. В США сгорела крупнейшая в мире солнечная электростанция - Газета.Ru: [Электронный ресурс]. - Режим доступа: https://www.gazeta.ru/science/2016/05/23_a_8260373.shtml
4. Солнечная энергетика, учебное пособие для вузов В.И.Виссарионов, Г.В.Дерюгина, В.А Кузнецова, Н.К.Малинин. Москва, Издательский дом МЭИ, 2008г.
5. Строительная Мастерская КМС: Голографические солнечные батареи: [Электронный ресурс]. - Режим доступа: http://masterskaykms.blogspot.ru/2014/05/blog-post_1.html
6. Патент BY. Голографический концентратор солнечной энергии / Пилипович В.А., и др.// Заявл. 2009-07-06; Опубл. 10.11.2010.
7. Патент РФ № 2172903. Солнечный модуль с концентратором /Стребков Д.С., Тверьянович Э.В., Иродионов А.Е.и др.// №2000108561/06; Заявл. 07.04.2000; Опубл. 27.08.2001.
Размещено на Allbest.ru
Подобные документы
Обзор технологий и развитие электроустановок солнечных электростанций. Машина Стирлинга и принцип ее действия. Производство электроэнергии с помощью солнечных батарей. Использования солнечной энергии в различных отраслях производства промышленности.
реферат [62,3 K], добавлен 10.02.2012Исследование электроснабжения объектов альтернативными источниками энергии. Расчёт количества солнечных модулей, среднесуточного потребления энергии. Анализ особенностей эксплуатации солнечных и ветровых установок, оценка ветрового потенциала в регионе.
курсовая работа [258,8 K], добавлен 15.07.2012О происхождении космических лучей. Атмосфера земли - защитный экран и детектор космических лучей сверхвысокой энергии. О распространении космических лучей сверхвысокой энергии от источника до солнечной системы. Эффект Грейзена, Зацепина и Кузьмина.
статья [153,6 K], добавлен 06.02.2008История открытия солнечной энергии. Принцип действия и свойства солнечных панелей. Типы батарей: маломощные, универсальные и панели солнечных элементов. Меры безопасности при эксплуатации и экономическая выгода применения солнечной системы отопления.
презентация [3,1 M], добавлен 13.05.2014Область применения солнечных коллекторов. Преимущества солнечных установок. Оптимизация и уменьшение эксплуатационных затрат при отоплении зданий. Преимущества использования вакуумного солнечного коллектора. Конструкция солнечной сплит-системы.
презентация [770,2 K], добавлен 23.01.2015Определение основных достоинств и недостатков солнечной энергетики при исследовании перспектив её развития. Изучение устройства и действия наземных солнечных установок и космических солнечных станций. Методические разработки темы "Солнечная энергетика".
курсовая работа [88,1 K], добавлен 27.01.2011Вольтамперная характеристика фотоэлемента. Анализ изменения эффективности различных типов полупроводниковых преобразователей солнечной энергии. Изучение параметров органических и гибридных фотоэлементов. Концепция объемного и планарного гетеро-перехода.
презентация [2,0 M], добавлен 25.11.2014Изучение принципа работы солнечных элементов и их характеристик. Рассмотрение принципиальных схем соединения СЭ в батареи. Исследование проблем возникающих при использовании соединений и их решение. Технология изготовления кремниевого фотоэлемента.
реферат [282,1 K], добавлен 03.11.2014Количество солнечной энергии, попадающей на Землю, ее использование человеком. Способы пассивного применения солнечной энергии. Солнечные коллекторы. Технологический цикл солнечных тепловых электростанций. Промышленные фотоэлектрические установки.
презентация [3,3 M], добавлен 06.12.2015Исследование особенностей технологических путей создания микрорельефа на фронтальной поверхности солнечных элементов на основе монокристаллического кремния. Основные фотоэлектрические параметры полученных структур, их анализ и направления изучения.
статья [114,6 K], добавлен 22.06.2015