Введение в электродинамику и электростатику

Общая характеристика закона электромагнитной индукции, открытого М. Фарадеем в 1831 году. Электродинамика как раздел физики, в котором изучаются носители электричества, формируемые ими электрические и магнитные поля, а также взаимодействия между ними.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 04.02.2019
Размер файла 4,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение в электродинамику и электростатику

Электродинамика - самый большой раздел физики и в нём оказалось больше всего фундаментальных ошибок. В результате пришлось почти всю её переписать. Теперь она стала нагляднее, логичнее и значительно проще в понимании её физической сути, которая следует из экспериментальных данных. Это обеспечивает необходимость включения её в учебный процесс. Представляем новую информацию об электродинамике по темам. Начинаем с основ электродинамики и электростатики.

Вводная часть: плюс - минус, юг-север?

Электродинамика - раздел физики, в котором изучаются носители электричества, формируемые ими электрические и магнитные поля, а также взаимодействия между ними. Она родилась в начале 19-го века, во времена Фарадея и Максвелла.

Экспериментальной основой существующей электродинамики является закон электромагнитной индукции, открытый Майклом Фарадеем в 1831 году. Суть этого закона кратко можно выразить так: переменное электрическое поле создаёт магнитное поле, а переменное магнитное поле создаёт электрическое поле. На основании этого считается, что работа электромоторов, электрогенераторов, трансформаторов и других многочисленных электротехнических устройств - результат взаимодействия электрических и магнитных полей. Проверим связь с реальностью таких представлений.

Вполне естественно, что электродинамика макромира базируется на электродинамике микромира. Они связаны между собой, но эта связь пока не рассматривалась, поэтому сделаем первую попытку такого рассмотрения.

Поскольку главным носителем электричества и источником электромагнетизма является электрон, то выявление его структуры - первая и главная задача электродинамики, без решения которой невозможно познание электродинамических процессов и явлений.

Мы уже показали, что электрон представляет собой полый тор, который имеет два вращения: относительно оси симметрии и относительно кольцевой оси тора. Вращение относительно кольцевой оси тора формирует магнитное поле электрона, а направления магнитных силовых линий этого поля формируют два магнитных полюса: северный N и южный S (рис. 1, а).

Рис. 1. a) схема электрона: N - северный и S - южный магнитные полюса электрона b) cхема плазмоэлектролитической ячейки: 1-катод и входной патрубок для раствора; 2-анод в виде цилиндра; 3 - выпускной патрубок парогазовой смеси; Р-Р - зона плазмы

электромагнитный поле закон

Вращением электрона (рис. 1, а) относительно центральной оси управляет кинетический момент - векторная величина. Магнитный момент электрона - тоже величина векторная, совпадающая с направлением вектора кинетического момента . Оба эти вектора формируют северный магнитный полюс электрона (N), а на другом конце центральной оси его вращения формируется южный магнитный полюс (S). Формированием столь сложной структуры электрона (рис. 1, а) управляют более 20 констант. Имея эту общую информацию о структуре электрона, приступим к анализу его поведения в проводах.

Так как протоны находятся в ядрах атомов, а электроны на их поверхности, то вполне естественно, что в проводе могут быть только свободные электроны. В результате возникает вопрос: каким образом в проводе с постоянным током формируется на одном конце плюсовой потенциал, носителем которого являются протоны, а на другом - минусовый, носителем которого являются электроны? Чтобы найти ответ на выше сформулированный вопрос, проанализируем работу плазмоэлектролитической ячейки (Патент № 2157862, рис. 1, b).

Сущность процесса работы плазмоэлектролитической ячейки (рис. 1, b) заключается в следующем. Так как площадь поверхности катода 1 в десятки раз меньше площади поверхности анода, то большая плотность тока на поверхности катода 1 формирует поток положительных ионов раствора, направленных к нему. В этом потоке есть и положительно заряженные протоны атомов водорода, отделившиеся от молекул воды. Они взаимодействуют с электронами, пришедшими из сети и испущенными катодом, образуют атомы водорода, совокупность которых формирует в растворе, в зоне Р катода 1, плазму атомарного водорода с температурой до 10000 С (рис. 1, b).

Отрицательно заряженные ионы собираются у анода. Они передают лишние электроны аноду и те движутся по проводу от плюса (+) к минусу (-). Поскольку соседство свободных электронов и свободных протонов заканчивается формированием атомов водорода, которые существуют лишь в плазменном состоянии (рис. 1, b, зона Р..Р), то исключается одновременное существование свободных протонов и свободных электронов в проводе, по которому течёт ток.

Таким образом, анализ электролитического процесса, протекающего в электролитической ячейке (рис. 1, b), показывает, что в электролитическом растворе электроны движутся от минуса к плюсу, а в проводе - от плюса к минусу.

Если источником питания является аккумулятор или батарея, то знаки плюс (+) и минус (-) принадлежат их клеммам. Тут всё понятно. А если источником постоянного напряжения является выпрямитель, подключённый к сети переменного тока и электрогенератор, то появление плюса и минуса на клеммах выпрямителя формирует серию вопросов.

Генератор электростанции генерирует переменное напряжение, носителями которого являются только электроны. Откуда же тогда на клеммах выпрямителя появляются знаки плюс и минус? Это вопрос электрикам и электронщикам. Почему они мирятся с описанным элементарным противоречием? Но мы не имеем права игнорировать его, так как отсутствие ответа на этот вопрос формирует искажённые представления о сути процессов, протекающих в электротехнических и электронных устройствах.

Итак, наличие модели электрона (рис. 1, a) позволяет нам приступить к поиску ответа на поставленный вопрос. Вполне естественно, что его надо базировать на экспериментальных данных. Начнём с самого простого эксперимента - изучения процесса и причин отклонения стрелки компаса, положенного на провод или под провод, по которому течёт ток.

На рис. 2 показана электрическая схема, направления проводов которой сориентированы на север (N). При отсутствии тока в проводе направление стрелок компасов А, В, С и D совпадают с направлением правого и левого проводов на север N. При включении тока вокруг провода возникает магнитное поле и стрелки компасов отклоняются [1].

Когда электроны движутся по проводу в направлении с юга (S) на север (N) - от плюсовой клеммы первичного источника, то стрелка компаса A, расположенного над проводом, отклоняется вправо, а стрелка компаса B, расположенного под проводом, - влево (табл. 1). Из этих результатов следует, что магнитное поле вокруг провода закручено против хода часовой стрелки, если смотреть с северного (N) конца провода, и имеет магнитный момент .

Таблица 1. Углы отклонения стрелок компасов A и B при различных токах

Ток, I A

, град.

, град

1,0 А

34,0

33,0

2,0 А

48,0

50,0

3,0 А

57,0

58,0

Рис. 2. Схема эксперимента по формированию магнитных полей электронами , движущимися по проводам

Те же электроны, которые движутся по правому проводу с севера (N) на юг (S), формируют вокруг него противоположно направленное магнитное поле и стрелки аналогичных компасов С и D отклоняются противоположно отклонению стрелок компасов А и В (рис. 2).

На рис. 3 представлена схема магнитного поля вокруг провода с током. Вполне естественно, что это поле формируют электроны, движущиеся по проводу (рис. 2). Из схемы магнитного поля вокруг провода (рис. 3) следует, что оно может быть сформировано лишь в том случае, если северные магнитные полюса электронов (рис. 1, a) направлены вверх, в сторону (северного) минусового конца провода, а южные - вниз, в сторону плюсового конца провода (рис. 3).

Рис. 3. Схема движения электронов в проводе от плюса (+) к минусу (-) и формирования вокруг него магнитного поля, северный полюс (N) которого соответствует минусу, а южный (s) - плюсу

Это означает, что плюсовой конец провода эквивалентен южному магнитному полюсу (S), а минусовой - северному (N).

Итак, результаты эксперимента, представленные на рис. 3 и в табл. 1, показывают, что направление магнитного поля, формирующегося вокруг провода, совпадает с направлением вращения свободных электронов в нём (рис. 2, 3), поэтому направление тока совпадает с направлением движения электронов. Таким образом, направление силовых линий магнитного поля, образующегося вокруг провода с током, соответствуют такой ориентации свободных электронов в нём, при которой они движутся от плюса к минусу, ориентируясь так, что южные полюса магнитных полей электронов оказываются направленными к плюсовому концу провода, а северные - к минусовому (рис. 3). Этот простой эксперимент ярко демонстрирует, что если источником питания является аккумулятор или батарея, то электроны движутся по проводам от плюса (рис. 2, 3) к минусу. Такая картина полностью согласуется со структурой электронов (рис. 1, a) и однозначно доказывает, что свободные электроны провода с постоянным напряжением повёрнуты южными магнитными полюсами к положительному концу провода, а северными - к отрицательному. В этом случае не требуется присутствие в проводах свободных протонов для формирования положительного потенциала, так как свободные электроны провода формируют на его концах не разноимённые электрические заряды, а разноимённые магнитные полюса.

Из новых представлений о поведении электронов в проводе следует необходимость заменить представления о плюсовом и минусовом концах проводов сети с постоянным напряжением на концы с северным и южным магнитными полюсами. Однако, процесс реализации этой необходимости будет длительный. Но он, как мы увидим дальше, неизбежен, так как углубление представлений о реальных электродинамических процессах невозможно без новых условностей в обозначении концов электрических проводов.

Электроны в электронно-лучевой трубке

Модель электрона, представленная на рис. 1, a поясняет эксперимент инженера А.К. Сухвал (рис. 4, а), который доказал, что при замыкании магнитных полюсов магнита электроны движутся по внешнему проводу от южного полюса магнита к северному, как это и следует из экспериментов, представленных на рис. 2 и 3. Вполне естественно, что электроны собираются у отрицательного конца провода - катода электронно-лучевой трубки и движутся в ней к её экрану от минуса к плюсу (рис. 4, b).

Рис. 4. а) эксперимент инженера А.К. Сухвал; b) - схема движения электронов в проводе с постоянным напряжением и в электронно-лучевой трубке

Чистое постоянное напряжение V (рис. 4, b) имеют батареи и аккумуляторы. Однако, этим понятием обозначают и выпрямленное переменное напряжение, поэтому при анализе поведения электрона в проводе надо учитывать этот факт.

Схема ориентации электронов при их движении вдоль провода с постоянным напряжением показана на рис. 4, b следует из структуры электрона (рис. 1, a) и магнитного поля, формирующегося вокруг провода с постоянным напряжением (рис. 3). Как видно (рис. 4, b), электроны выстраиваются так, что векторы их магнитных моментов и спинов оказываются направленными от плюса к минусу. Таким образом, южные полюса всех свободных электронов в проводе с постоянным напряжением оказываются сориентированными к плюсовому () концу провода. Северные полюса всех свободных электронов оказываются сориентированными к другому концу провода () (рис. 4, b).

Чтобы понимать основания для введения представлений о том, что плюсовой конец провода соответствует южному магнитному полюсу, а минусовый - северному, надо иметь в виду, что в проводе нет свободных протонов, поэтому некому в нём формировать положительный знак заряда. Есть только свободные электроны, а они имеют один знак заряда, но два магнитных полюса: южный (S) и северный (N).

Дальше мы увидим, как из такой условности вытекают следствия, объясняющие такое обилие электрических эффектов, что данная гипотеза уверенно завоёвывает статус постулата.

Анализируя описываемый процесс движения свободных электронов в проводе, надо иметь представления о разнице между размерами атомов и электронов, которые оказываются в промежутках между атомами. Примерная разница известна. Размеры электронов , а размеры атомов . Тысячекратная разница в размерах - достаточное условие для перемещения свободных электронов в проводе.

Тем не менее, заряды и магнитные поля свободных электронов не безразличны для зарядов и магнитных полей электронов, связанных с атомами и молекулами. Они оказываются достаточными, чтобы, воздействуя на валентные и другие связанные электроны атомов, заставлять их излучать фотоны.

Таким образом, приложенное постоянное напряжение не только перемещает свободные электроны вдоль провода, но генерирует фотоны, нагревающие провод. Чем больше приложенное напряжение, тем больше скорость движения электронов в проводе и интенсивнее их действие на связанные электроны, которые излучают фотоны с большей энергией.

Нетрудно видеть, что переменное напряжение заставит электроны вращаться так, что концы векторов магнитных моментов электронов и общих моментов совокупностей электронов, а также векторы их спинов будут описывать окружности. Процессы изменения напряжения, тока и напряжённости магнитного поля возникающего при этом вокруг провода (рис. 3), принимают синусоидальный характер.

Электроны в проводе с переменным напряжением

Изменение знака амплитуды синусоидального напряжения - результат изменения направления электронов в проводе в интервале одного периода колебаний. Последовательность этих изменений представлена на рис. 5, a, b, c, d и e. Из них и следует закон формирования синусоидального характера изменения переменного напряжения.

Вполне естественно предположить, что при максимальном положительном напряжении все свободные электроны в проводе ориентированы одинаково и векторы их магнитных моментов и спинов направлены в сторону движения электронов вдоль провода (рис. 5, а) от южного полюса S (+) к северному N (-). В этот момент напряженность магнитного поля вокруг провода максимальна.

Рис. 5. Схемы изменения направления векторов магнитных моментов и спинов свободных электронов в проводе с переменным напряжением

Схема поворота векторов спинов и магнитных моментов электронов на и падение напряжения до нуля представлена на рис. 5, b. Вполне естественно, что в этом случае магнитное поле вокруг провода (рис. 3) отсутствует и напряжение равно нулю [1].

Когда векторы (рис. 5, с) спинов и магнитных моментов электронов повернутся на от исходного положения, то знаки магнитной полярности на концах провода (по существующим представлениям знаки электрического потенциала) поменяются на противоположные и направление магнитного поля вокруг провода (рис. 3) также изменится на противоположное, а амплитуда напряжения V примет максимальное отрицательное значение (рис. 5, с)

Через следующие четверть периода направления векторов магнитных моментов и спинов окажутся перпендикулярными оси провода (рис. 5, d). Магнитное поле вокруг провода (рис. 3) в этот момент исчезает, а величина напряжения V будет равна нулю (рис. 5, d).

Векторы магнитных моментов и спинов свободных электронов займут исходную позицию (рис. 5, а) через следующие четверть периода (рис. 5, е). В этот момент направление магнитного поля вокруг провода окажется соответствующим исходному положению (рис. 5, а) и амплитуды напряжения и напряжённости магнитного поля вокруг провода (рис. 3) максимальны. Так ведут себя свободные электроны в проводах, формируя синусоидальные законы изменения напряжения, тока и напряжённости магнитного поля вокруг провода. Это даёт нам основание написать уравнения их изменения в таком виде:

Вполне естественно предположить, что описанным процессом изменения ориентации электронов в проводах управляют магнитные полюса магнитов первичных источников питания, например, генераторов электростанций.

Главная особенность описанного процесса - синхронность синусоидального изменения напряжения U, тока I и напряженности H магнитного поля вокруг провода.

Дальше мы увидим, что при появлении в электрической цепи ёмкости и индуктивности синхронность изменения напряжения, тока и напряжённости магнитного поля нарушается.

Описанный процесс показывает, что при переменном напряжении количество электронов в рассматриваемом сечении провода не изменяется, а изменяется лишь их ориентация, которая изменяет направление магнитного поля вокруг провода, характеризуемого вектором (рис. 3).

Из описанного процесса поведения электронов в проводе с переменным напряжением обычной электрической сети следует, что свободные электроны меняют в ней своё направление с частотой сети, равной 50 Гц. Если сравнивать поведение свободных электронов в проводе с постоянным напряжением (рис. 4), где электроны не меняют свою ориентацию, то потери энергии в проводе с переменным напряжением больше, чем с постоянным. Это хорошо известный факт.

В проводе с переменным напряжением (рис. 5) расходуется дополнительная энергия на изменения направлений векторов спинов и магнитных моментов электронов, на периодичность формирования магнитного поля вокруг провода. Далее, резкое изменение направления векторов спинов и магнитных моментов свободных электронов изменяет скорость их вращения относительно своих осей, что приводит к излучению фотонов. При этом надо иметь в виду, что меняющаяся полярность магнитного поля вокруг провода действует не только на свободные электроны, но и на валентные электроны атомов в молекулах и электроны атомов, не имеющие валентных связей. В результате они тоже могут излучать фотоны и увеличивать потери энергии.

Наиболее простой пример явного проявления явления потерь энергии - спираль электрической лампочки накаливания или спираль электрической плиты. Переменные магнитные поля вокруг нитей спирали значительно больше шага спирали. В результате они перекрывают друг друга и таким образом увеличивают интенсивность действия на электроны атомов материала спирали и они, возбуждаясь, начинают излучать фотоны, накаливая спираль электрической печки или лампочки. При этом длина волны излучаемых фотонов (цвет спирали) зависит от приложенного напряжения и величины тока. Чем они больше, тем больше электронов проходит в единицу времени в каждом сечении провода спирали, которые увеличивают напряжённость магнитного поля, возникающего вокруг провода спирали, а это поле в свою очередь интенсивнее действует на электроны, заставляя их терять больше массы в одном акте излучения фотонов.

Известно, чем больше масса фотона, тем меньше длина его волны. Следовательно, процессом изменения длины волны излучаемых фотонов можно управлять, изменяя интенсивность воздействия магнитных полей на электроны соседних витков спирали. Эта экспериментально разработанная процедура, достигла, можно сказать, предельного совершенства в современной электронике, но теоретики далеки от понимания тонкостей этого совершенства.

4. Принципы работы электромоторов и электрогенераторов

Принципы работы электромотора и электрогенератора были открыты Майклом Фарадеем в начале 19-го века. Считается, что в его опытах наглядно проявилась связь между электрическими и магнитными явлениями. Однако, сейчас мы покажем, что эта наглядность оказалась ошибочной. Проводник с током перемещается в магнитном поле постоянного магнита не в результате взаимодействия электрического поля с магнитным, а в результате взаимодействия магнитного поля постоянного магнита и магнитного поля вокруг проводника, формируемого движущимися в нём электронами. Чтобы понять это, надо разобраться с процессом взаимодействия магнитных силовых линий, формируемых обычными стержневыми постоянными магнитами (рис. 6).

Рис. 6. Схема взаимодействия магнитных силовых линий стержневых магнитов

Как видно (рис. 6, а), у разноименных магнитных полюсов, сближающих друг друга, магнитные силовые линии в зоне контакта полюсов (рис. 6, а, точки а) направлены навстречу друг другу , а у одноименных магнитных полюсов, отталкивающих друг друга (рис. 6, b, точки b), направления магнитных силовых линий в зоне контакта полюсов совпадают .

Из описанного процесса взаимодействия магнитных полюсов постоянных магнитов следует, что если у двух параллельных проводов ток будет течь в одном направлении (рис. 7, а), то силовые линии магнитных полей, формирующихся в плоскости, перпендикулярной проводам, в зоне их контакта будут направлены навстречу друг другу и провода будут сближаться, как разноименные полюса магнитов (рис. 7, а).

Если же направление тока у параллельных проводов будет противоположно (рис. 7, b), то направления магнитных силовых линий образующихся при этом магнитных полей будут совпадать по направлению в зоне их контакта и такие провода будут удаляться друг от друга, как и одноименные полюса стержневых магнитов (рис. 7, b).

Рис. 7. Схема взаимодействия магнитных полей параллельных проводов с током

А теперь обратим внимание на взаимодействие силовых линий магнитного поля постоянного магнита с силовыми линиями магнитного поля, формируемого электронами, движущимися от плюса к минусу по проводу (рис. 8). В зоне D силовые линии направлены навстречу друг другу, поэтому они сближаются, как и силовые линии магнитных полей двух проводов с равнонаправленным током (рис. 7, а). В результате возникает сила , смещающая провод влево.

Рис. 8. Схема движения провода с током в магнитном поле

С другой стороны провода, в зоне А, направления силовых линий постоянного магнита и магнитного поля, сформированного движущимися по проводу электронами, совпадают по направлению. В этом случае, как следует из рис. 7, b, силовые линии отталкиваются и также формируют силу, направленную влево. Так формируется суммарная сила, перемещающая провод с током в магнитном поле.

Как видно, перемещение провода происходит в результате взаимодействия магнитных полей постоянного магнита и провода с током. Нет здесь взаимодействия электрического и магнитного полей, на котором базируется теория всей современной электротехники.

Если же в магнитном поле движется провод без тока (рис. 9), то в нём генерируется напряжение. Внешнее магнитное поле ориентирует свободные электроны в проводе так, чтобы магнитные силовые линии их суммарного магнитного поля вокруг провода формировали сопротивление его перемещению (рис. 9).

Движение электронов вдоль провода (рис. 9) от плюса к минусу возникает благодаря принудительному перемещению провода со скоростью в магнитном поле постоянного магнита в левую сторону.

Рис. 9. Схема генерирования тока в проводе, движущемся в магнитном поле

В зоне D магнитные силовые линии постоянного магнита и магнитные силовые линии провода с током направлены в одну сторону и будут отталкиваться друг от друга, препятствуя перемещению провода в левую сторону. В зоне А указанные силовые линии будут направлены навстречу друг другу и будут сближаться и также препятствовать перемещению провода в левую сторону (рис. 9). Из этого следует, что перемещение электронов вдоль провода от плюса к минусу возможно только при принудительном перемещении провода в левую сторону.

Таким образом, работа электромоторов и электрогенераторов базируется на взаимодействии только магнитных полей, но не магнитных и электрических, как считалось ранее.

Принцип работы диода

Ортодоксальная физика не имеет приемлемого варианта объяснения принципа работы диода. Он проясняется лишь при наличии модели электрона и знания законов его поведения в проводах с постоянным и переменным напряжением, которые мы уже описали.

Существующая интерпретация работы полупроводников и диодов базируется на понятии дырочной проводимости. Приводим текст определения понятия «дырка» из Физического энциклопедического словаря. М. «Советская энциклопедия» 1984г. 186с. «…..Дырка - положительный заряд , имеющий энергию, равную энергии отсутствующего электрона с обратным знаком».

Странное определение. Но надо учитывать, что это были первые представления о сути работы полупроводников. Теперь у нас есть возможность глубже проникнуть в эту суть. Для этого надо воспользоваться принципом последовательности анализа этого сложного явления.

Поскольку диод пропускает одни электроны и задерживает другие, то он делает это, учитывая два различных свойства электрона, а в заряде электрона заложено только одно свойство - отрицательный заряд. Поэтому надо включить в анализ поведения электрона в диоде и другие его характеристики. Так как электрон имеет отрицательный заряд и два магнитных полюса: северный и южный, то именно они и позволяют диоду выполнить функцию пропуска одних электронов и задержки других (рис. 10).

Рис. 10. а) схема пропуска диодом электронов, имитирующих положительное напряжение; b) схема задержки электронов, имитирующих отрицательное напряжение

В этом случае сохраняются представления о дырочной проводимости, если дырки, пропускающие и задерживающие электроны, наделить одноимённой магнитной полярностью (рис. 10).

Теперь нам известно, что электроны не имеют орбитальных движений в атомах. Они связаны с протонами ядер линейно. Поскольку протон тоже имеет северный и южный магнитные полюса, то возможна такая совокупность компоновки магнитных полюсов нейтронов, протонов и электронов, при которой на поверхности атома окажутся электроны, на внешней поверхности которых будут, например, южные магнитные полюса. Далее, возможно формирование таких молекул из этих атомов, которые создавали бы дырку, периметр которой и формировал бы дискретные магнитные поля одной полярности, например, южной (рис. 10, a).

Мы уже показали, что положительное напряжение соответствует ориентации электронов в проводе, показанной на рис. 10, a (слева). В этом случае к дырке диода с магнитным барьером, сформированным южными магнитными полюсами S атомов материала диода, подходят электроны с северными магнитными полюсами N, совпадающими с направлением движения этих электронов. Вполне естественно, что дырка диода с южным магнитным барьером пропустит электроны, пришедшие к ней со своими северными полюсами. Так электроны, формирующие напряжение с положительной амплитудой, пройдут через диод.

Во второй половине периода изменения направления векторов магнитных моментов и спинов электронов у диодной дырки окажутся электроны с южными магнитными полюсами, направленными в сторону их движения (рис. 10, b). Вполне естественно, что диодный барьер, сформированный из южных магнитных полюсов электронов атомов, не пропустит такие электроны. Неудачливым электронам придётся ждать ещё пол периода, а величина напряжения в этот момент на проводе за диодом будет равна нулю (V=0, рис. 12). После этого электроны окажутся повернутыми к диодной дырке северными магнитными полюсами и она пропустит их, как своих и осциллограмма напряжения (рис. 11, 12) зафиксирует этот факт.

Описанная закономерность работы диода следует из эксперимента, схема которого представлена на рис. 11. Обратим внимание на простоту электрической схемы рассматриваемого эксперимента. В ней нет ни ёмкости, ни индуктивности.

Осциллограммы напряжения и тока, выпрямленные диодом, показаны на рис. 12 и 13. Как видно, диод пропускает положительные значения переменного напряжения (рис. 12) и переменного тока (рис. 13), когда электроны, подошедшие к дырке, оказываются повернутыми к ней северными магнитными полюсами (рис. 10, а) и не пропускает отрицательные составляющие напряжения и тока, когда электроны оказываются повернутыми к дыркам южными магнитными полюсами (рис. 10, b).

Рис. 11. Схема формирования диодом выпрямленного напряжения

Рис. 12. Напряжение

Рис. 13. Ток

Зарядка диэлектрического конденсатора

Ошибочность существующей интерпретации работы конденсатора особенно очевидна. Она базируется на присутствии в электрической цепи положительных и отрицательных зарядов. Носители этих зарядов известны: протон и электрон. Однако, также известно, что они чувствуют присутствие друг друга на расстоянии в тысячу раз большем размера электрона и в миллион раз большем размера протона. Даже такое их далёкое соседство заканчивается процессом формирования атомов водорода, которые существуют лишь в плазменном состоянии при температуре более 5000 С. Это происходит, например, в процессах удаления электронов и протонов от Солнца и последующего объединения их в атомы водорода. Так что совместное присутствие протонов и электронов в свободном состоянии в проводниках полностью исключается, поэтому положительный и отрицательный потенциалы на пластинах диэлектрического конденсатора - ошибка физиков. Исправим её.

Сейчас мы увидим, что пластины диэлектрического конденсатора заряжаются не разноимённой электрической полярностью, а разноимённой магнитной полярностью. При этом функции плюса принадлежат южному магнитному полюсу электрона, а функции минуса - северному (рис. 1, a). Эти полюса и формируют полярность, но не электрическую, а магнитную. Проследим процесс зарядки диэлектрического конденсатора, чтобы увидеть, как магнитные полюса электрона формируют магнитную полярность его пластин. Известно, что между платинами диэлектрического конденсатора находится диэлектрик D (рис. 14, а). Схема эксперимента по зарядке диэлектрического конденсатора показана на рис. 14, а. Самое главное требование к схеме - ориентация её с юга (S) на север (N). Чтобы обеспечить полную изоляцию конденсатора от сети после его зарядки, желательно использовать электрическую вилку, включаемую в розетку сети с напряжением 220 V. Сразу после диода показан компас 1 (К), положенный на провод, идущий к конденсатору С. Стрелка этого компаса, отклоняясь вправо в момент включения вилки, показывает направление движения электронов (рис. 14) от точки S к нижней пластине конденсатора.

Рис. 14. Схема нашего эксперимента зарядки конденсатора

Выше компаса 1 (рис. 14) показана схема направления магнитного поля вокруг провода, формируемого движущимися в нём электронами. Эта схема аналогична схемам, показанным на рис. 2.

Таким образом, электроны, прошедшие через диод, приходят к нижней пластине конденсатора, сориентированными векторами спинов и магнитных моментов к её внутренней поверхности (рис. 14). В результате на этой поверхности формируется северный магнитный потенциал (N).

Вполне естественно, что к внутренней поверхности верхней пластины конденсатора электроны придут из сети, сориентированными южными магнитными полюсами (S). Доказательством этого служит экспериментальный факт отклонения стрелки верхнего компаса 2 (К) вправо (рис. 14). Это означает, что электроны, движущиеся из сети к верхней пластине конденсатора, ориентированы южными магнитными полюсами (S) в сторону движения (рис. 15).

Таким образом, ориентацию электронов на пластинах диэлектрического конденсатора обеспечивает проницаемость их магнитных полей через диэлектрик. Потенциал на пластинах конденсатора один - отрицательный и две магнитных полярности: северного и южного магнитных полюсов электронов.

На рис. 15 представлена схема, поясняющая ориентацию электронов, движущихся к пластинам конденсатора С. Электроны приходят к нижней пластине конденсатора, сориентированными северными магнитными полюсами (N) к её внутренней поверхности (рис. 15). К внутренней поверхности верхней пластины конденсатора приходят электроны, сориентированные южными магнитными полюсами (S). Это экспериментальный факт.

Рис. 15. Схема движения электронов к пластинам диэлектрического конденсатора

Так электроны - единственные носители электричества в проводах формируют на пластинах конденсатора не разноимённую электрическую полярность, а разноимённую магнитную полярность. Нет на пластинах диэлектрического конденсатора протонов - носителей положительных зарядов.

Разрядка диэлектрического конденсатора

Процесс разрядки диэлектрического конденсатора на сопротивление - следующее экспериментальное доказательство соответствия реальности выявленной модели электрона (рис. 1, a) и ошибочности сложившихся представлений о том, что на пластинах диэлектрического конденсатора формируются разноимённые электрические заряды (рис. 16) .

Схема отклонения стрелок компасов (К) 1, 2, 3 и 4 при разрядке конденсатора на сопротивление R в момент включения выключателя 5 показана на рис. 16.

Как видно (рис. 14 и 16), в момент включения процесса разрядки конденсатора, магнитная полярность на пластинах конденсатора изменяется на противоположную и электроны, развернувшись, начинают двигаться к сопротивлению R (рис. 15, 16).

Электроны, идущие от верхней пластины конденсатора, ориентируются южными магнитными полюсами в сторону движения, а от нижней - северными (рис. 17). Компасы 3 и 4, установленные на совокупности проводов ВА (рис. 16), сориентированных с юга на север, чётко фиксируют этот факт отклонением стрелок вправо, доказывая этим, что векторы спинов и магнитных моментов всех электронов в этих проводах направлены с юга на север (рис. 16, 17).

Рис. 16. Схема отклонения стрелок компасов (К) в момент разрядки конденсатора

Рис. 17. Схема движения электронов от пластин конденсатора к сопротивлению R при разрядке диэлектрического конденсатора

Таким образом, диэлектрический конденсатор заряжается электронами и на его пластинах формируются не положительные и отрицательные электрические заряды, а северные и южные магнитные полюса электронов.

Зарядка электролитического конденсатора

При анализе процесса зарядки электролитического конденсатора надо учитывать, что в электролитическом конденсаторе присутствуют ионы, имеющие положительный и отрицательный заряды, которые и управляют процессом формирования потенциалов на пластинах электролитического конденсатора. Сейчас мы увидим, что наличие электролита в конденсаторе не приводит к появлению в проводах положительных носителей заряда, то есть протонов.

Мы уже показали, что электрон представляет собой полый тор, который имеет два вращения: относительно оси симметрии и относительно кольцевой оси тора. Вращение относительно кольцевой оси тора формирует магнитное поле электрона, а направления магнитных силовых линий этого поля формируют два магнитных полюса: северный N и южный S (рис. 1, a).

Вращением электрона относительно центральной оси управляет кинетический момент - векторная величина. Магнитный момент электрона - тоже величина векторная, совпадающая с направлением вектора кинетического момента . Оба эти вектора формируют северный магнитный полюс электрона (N), а на другом конце центральной оси его вращения формируется южный магнитный полюс (S). Формированием столь сложной структуры электрона (рис. 1, a) управляют более 20 констант [1].

На рис. 18, а в качестве примера показана ориентация иона в электрическом поле. Положительно заряженный протон своим северным магнитным полюсом направлен к отрицательно (-) заряженной пластине. Так как векторы магнитных моментов электрона и протона в атоме водорода направлены противоположно, то осевые электроны 2 и 3 атома кислорода, соединяясь в цепочку с протонами и нейтронами ядра атома кислорода, формируют на концах оси иона одинаковую магнитную полярность (рис. 18, а). Эта закономерность магнитной полярности сохраняется и вдоль оси кластера, состоящего из этих ионов (рис. 18, b). Логичность всех процессов сохраняется лишь при условии, если действия зарядов и магнитных полей электрона и протона эквивалентны [1].

Рис. 18. а) - схема иона ; схема кластера из двух ионов

Обратим внимание на главную особенность структуры атома водорода: векторы магнитных моментов электрона и протона направлены вдоль оси атома в противоположные стороны. Обусловлено это тем, что сближение протона и электрона ограничивают их одноименные магнитные полюса. Распределение магнитных полей в структуре иона показано на рис. 18, а. Как видно, на концах оси этого иона северные магнитные полюса электрона и протона. Аналогичную полярность имеют и кластеры ионов (рис. 18, b). Вполне естественно, что количество кластеров ионов , формирующих электрическую цепь в диэлектрическом конденсаторе, очень велико.

Если роль электродов, представленных на рис. 18, а, выполняют пластины конденсатора, то при его зарядке, электроны, пришедшие из внешней сети, сориентируются южными магнитными полюсами у левой пластины конденсатора и северными магнитными полюсами у правой пластины. Обусловлено это тем, что электроны сближают их разноимённые магнитные полюса, а сближение электрона с протоном ограничивают одноимённые магнитные полюса.

На рис. 19, а в качестве примера показана ориентация иона в заряженном конденсаторе. Положительно заряженный протон своим северным магнитным полюсом направлен к нижней отрицательно (-) заряженной пластине конденсатора. Так как векторы магнитных моментов электрона и протона в атоме водорода (рис. 1, a) направлены противоположно, то осевые электроны 2 и 3 атома кислорода, соединяясь в цепочку с протонами и нейтронами ядра атома кислорода, формируют на концах оси иона одинаковую магнитную полярность (рис. 19, а). Эта закономерность магнитной полярности сохраняется и вдоль оси кластера, состоящего из этих ионов. Логичность всех процессов сохраняется лишь при условии, если действия зарядов и магнитных полей электрона и протона эквивалентны.

Рис. 19. а) схема ориентации иона в электролитическом конденсаторе; b) схема зарядки конденсатора

Обратим особое внимание на то, что у верхней пластины конденсатора (рис. 19, а) с обоих сторон присутствуют электроны и поэтому кажется, что они отталкивают друг друга. Однако, надо иметь ввиду, что при образовании кластеров электронов они соединяются друг с другом разноимёнными магнитными полюсами, а одинаковые электрические заряды ограничивают их сближение, поэтому контакт иона с верхней пластиной конденсатора обеспечивают разноимённые магнитные полюса электронов. У нижней пластины конденсатора - разноимённые электрические заряды, которые сближают протон атома водорода и электрон пластины конденсатора. Но это сближение ограничивается их одноимёнными магнитными полюсами. Так объясняются эти кажущиеся противоречия.

Таким образом, пластины электролитического конденсатора заряжаются разноимённой электрической полярностью и разноимённой магнитной полярностью одновременно. При этом функции плюса принадлежат южному магнитному полюсу электрона, а функции минуса - северному (рис. 1, a). Эти полюса формируют и электрическую, и магнитную полярности на пластинах конденсатора. Проследим процесс зарядки конденсатора, чтобы увидеть, как магнитные полюса электрона и протона формируют магнитную и электрическую полярности его пластин.

Схема эксперимента по зарядке конденсатора показана на рис. 19, b. Самое главное требование к схеме - ориентация её с юга (S) на север (N). Сразу после диода показан компас 1 (К), положенный на провод, идущий к конденсатору С. Стрелка этого компаса, отклоняясь вправо в момент включения напряжения, показывает направление движения электронов (рис. 19, b) от точки S к нижней пластине конденсатора С. Выше компаса показана схема направления магнитного поля вокруг провода, формируемого движущимися в нём электронами.

Таким образом, электроны, прошедшие через диод, приходят к нижней пластине конденсатора сориентированными векторами спинов и магнитных моментов к её внутренней поверхности (рис. 19, b). В результате на этой поверхности формируется северный магнитный потенциал (N), эквивалентный отрицательному потенциалу (-).

Вполне естественно, что к верхней пластине конденсатора электроны придут из сети сориентированными южными магнитными полюсами (S). Доказательством этого служит экспериментальный факт отклонения стрелки верхнего компаса 2 (К) вправо (рис. 19, b). Это означает, что электроны, движущиеся по проводу к верхней пластине конденсатора, ориентированы южными магнитными полюсами (S) в сторону движения.

Так электроны - единственные носители электричества в проводах формируют на пластинах электролитического конденсатора и разноимённую электрическую полярность (+ и -) и разноимённую магнитную полярность (S и N) одновременно.

Конденсатор + индуктивность

Конденсатор и индуктивность - основные элементы колебательных систем. Схематически они показываются просто (рис. 20, a). Считается, что одна пластина конденсатора С заряжена отрицательно, а другая положительно. Если конденсатор электролитический, то это соответствует реальности, так как указанные потенциалы формируют его ионы. Другое дело провод, по которому движутся электроны. В нём не могут присутствовать одновременно и электроны, и протоны, так как их соседство автоматически заканчивается образованием атомов водорода и плазмы с температурой более 5000 К.

Рис. 20. а) и b) схемы конденсатор + катушка индуктивности; с), d) и e) - закономерности изменения напряжения, тока и напряжённости магнитного поля при разрядке конденсатора на катушку индуктивности

Таким образом, процессы, протекающие в конденсаторах и индуктивностях, а также проводах, которые соединяют их, остаются скрытыми для понимания. Попытаемся раскрыть эту таинственность. Для этого представим пластины конденсатора и провода, подходящие к ним, в увеличенном масштабе и разместим в них модели электронов (рис. 20, b). Катушку индуктивности представим в виде полутора витков и покажем направления движения электронов 1 и 2 в витках при разрядке конденсатора (рис. 20, b).

А теперь попытаемся найти ответ на главный вопрос электродинамики: в чём сущность причины, формирующей колебательный процесс изменения напряжения в системе конденсатор - индуктивность (рис. 20, b)?

Чтобы найти ответ на поставленный вопрос, проследим за движением электронов к катушке индуктивности. Главное в этом процессе - направления движения электронов из конденсатора в катушку индуктивности. Мы уже показали, что эта задача решается вполне удовлетворительно с помощью древнейшего прибора - компаса. Установим эти приборы на провода, подходящие к катушке индуктивности, предварительно сориентировав их в направлении с юга на север (рис. 20, b).

Итак, проследим за движением электронов от конденсатора к катушке индуктивности вблизи клемм этой катушки. Обратим внимание на отличия в ориентации электронов в проводах, соединяющих конденсатор и активное сопротивление (рис. 17) и в проводах, соединяющих конденсатор и катушку индуктивности (рис. 20, b), зафиксированные отклонением стрелок компасов [1].

Теперь видно, что электроны от верхней и нижней пластин конденсатора встречаются в середине катушки индуктивности одноимёнными зарядами и одноимёнными южными магнитными полюсами. Это автоматически формирует процесс их отталкивания друг от друга и они устремляются вновь к пластинам конденсатора.

Когда конденсатор заряжен, то напряжение на его пластинах в момент включения выключателя 5 максимально и равно, например, 100 В (рис. 20, c). Совокупность магнитных полей всех электронов во всех витках катушки (рис. 20, c) формирует суммарное магнитное поле, направление силовых линий которого легко определяется по направлению спинов электронов 1 и 2. Эти электроны подходят к сечению К-К (рис. 20, b) с противоположно направленными векторами спинов и магнитных моментов. Это значит, что сформированные ими магнитные поля вокруг витков катушки в зоне встречи электронов (сечение К-К) направлены навстречу друг другу одноимёнными магнитными полюсами и тоже отталкиваются (рис. 20, b). Когда электроны, идущие от верхней и нижней пластин конденсатора С, встретятся в сечении К-К катушки, то конденсатор C полностью разрядится.

Итак, к моменту начала разрядки конденсатора напряжение V (рис. 20, с) на его клеммах имеет максимальное значение (рис. 20, c), ток I (рис. 20, d) и напряжённость (рис. 20, е) H магнитного поля катушки равны нулю. В момент прихода электронов к сечению К-К катушки и их остановки напряжение на клеммах конденсатора оказывается равным нулю (рис. 20, c), а величины тока и напряженности магнитного поля катушки - максимуму (рис. 20, d и e). Далее, напряжённость магнитного поля катушки начинает уменьшаться (рис. 20, c) и автоматически изменяет направление векторов спинов и магнитных моментов электронов на противоположные и они, двигаясь назад к конденсатору, формируют на его клеммах противоположную магнитную полярность. В момент прихода электронов к пластинам конденсатора отрицательное напряжение на его клеммах достигает максимума (рис. 20, с), а величины обратно направленных тока и напряженности магнитного поля принимают нулевые значения (рис. 20, d и e).

После этого начинается второе движение электронов от пластин конденсатора к катушке. При этом электроны меняют направления векторов магнитных моментов и спинов на противоположные. В результате величина противоположного (отрицательного) потенциала на пластинах конденсатора начинает уменьшаться до нуля (рис. 20, c) а величина тока, обусловленная движением электронов с противоположно направленными векторами спинов, увеличиваясь, уходит в отрицательную зону (рис. 20, d). Так же изменяется и напряженность противоположно направленного магнитного поля катушки (рис. 20, e) .

Когда электроны повторно придут к середине сечения К-К катушки, то напряжение на клеммах конденсатора станет равным нулю (рис. 20, c) а напряженность магнитного поля катушки, сформированная электронами с направлениями векторов спинов и магнитных моментов, противоположных первому приходу электронов к середине сечения К-К, и величина тока достигнут максимальных отрицательных значений (рис. 20, d и e). Так формируются синусоидальные законы затухающего напряжения, тока и напряжённости магнитного поля в колебательном контуре: конденсатор + катушка индуктивности.

Обратим внимание на то, что перезарядку конденсатора осуществляет один носитель электрического заряда - свободный электрон, без участия положительно заряженного протона, который не существует в проводах в свободном состоянии. Если конденсатор не электролитический, то у нас нет никакого права приписывать его пластинам разную электрическую полярность. Они получают разную магнитную полярность.

Итак, у нас появилась возможность составить уравнения изменения напряжения V (рис. 20, с), тока I (рис. 20, d), и напряжённости Н (рис. 20, е) магнитного поля в колебательном контуре конденсатор - катушка индуктивности. Поскольку в момент начала разрядки конденсатора напряжение V на его клеммах максимально, ток I и напряжённость магнитного поля Н минимальны, то уравнения их изменения запишутся так (рис. 20, а, с, d, e):

.

Это и есть исходные уравнения, заменяющие уравнения Максвелла при описании процессов, протекающих в колебательном контуре конденсатор + индуктивность [1].

Электростатика

Электростатика - древнейший раздел физики с обилием экспериментальных данных о положительных и отрицательных зарядах электричества. И только сейчас появились результаты исследований, доказывающих ошибочность таких представлений. Оказалось, что явления и процессы электростатики формируются кластерами электронов, имеющих отрицательный заряд, но два магнитных полюса: северный и южный, которым ошибочно приписаны знаки электрических зарядов: минус и плюс.

Французский исследователь Ш. Дюфэ опубликовал в Мемуарах Парижской Академии наук за 1733 г. результаты своих опытов, в которых он обнаружил, что существует стекляное и смоляное электричество. Главная особенность этих двух электричеств: отталкивать однородное с ним и притягивать противоположное.

В 1777 году известный американский физик и политический деятель Бенджамин Франклин предложил понятия положительного и отрицательного заряда электричества. Результаты своих опытов он обобщил и их главную суть сформулировал следующим образом.

1. Электрическая субстанция состоит из чрезвычайно малых частиц, так как она способна проникать в обыкновенную материю, даже в самые плотные металлы, с большой легкостью и свободой, не встречая при этом заметного сопротивления.

2. Частицы электрической субстанции взаимно отталкивают друг друга, но они сильно притягиваются всей прочей материей.

3. Обыкновенная материя содержит (как правило) столько электрической субстанции, сколько она может заключать в себе. Если прибавить ей еще этой субстанции, то она разместится на поверхности и образует то, что мы называем электрической атмосферой; в этом случае говорят, что предмет наэлектризован.

Франклин писал: “Чтобы электризовать плюс или минус, требуется знать лишь только то, что части трубки или шара, которые натираются, притягивают в момент трения электрический огонь и, значит, забирают его из предмета, которым производится натирание; эти же самые части, как только прекратится их натирание, стремятся отдать полученный ими огонь любому предмету с меньшим его количеством”.

В России подобными экспериментами занимались Георг Вильгелм Рихман и Михаил Васильевич Ломоносов, результаты их исследований начали публиковаться Петербургской академией наук в 1751г. Современные учебники по физике формируют представление о положительных и отрицательных электрических зарядах. При этом одноимённые заряды отталкиваются, а разноимённые притягиваются. Считается, что шерсть, мех, стекло, горный хрусталь и драгоценные камни имеют избыток положительных зарядов, а янтарь, смолы, сургуч, воск, сера, резина и пластмассы - отрицательных зарядов.

Угол отклонения лепестков электроскопа возрастает после нескольких касаний шарика электроскопа стеклянной палочкой (рис. 21, а). Считается, что это является следствием увеличения положительного заряда.

При скольжении о шарик электроскопа пластмассовой палочки его лепестки также отклоняются (рис. 21, b). Считается, что в результате этого электроскоп заряжается отрицательно. Если после этого прикоснуться шарика электроскопа, заряженного отрицательно (рис. 21, b), стеклянной палочкой, то отклонение стрелки электроскопа уменьшится. Что интерпретируется, как уменьшение отрицательного заряда электричества.

Рис. 21. Зарядка электроскопов

Ниже текст из школьного учебника «Физика и химия».

Аналогичная информация о положительных и отрицательных зарядах содержится и в других школьных учебниках. Например, в учебнике «Физика и химия» есть такой рисунок.

Вот как учебники по физике формируют представления школьников о положительных и отрицательных зарядах электричества (рис. 22).

Автор этого учебника руководствовался старыми знаниями, согласно которым в проводах могут присутствовать, как положительные заряды + (протоны), так и отрицательные заряды - (электроны). Он не знает, что протоны находятся глубоко в ядрах атомов. В свободном состоянии могут находиться лишь протоны атомов водорода в электролитических растворах и это состояние предельно краткосрочное.

Рис. 22. Взаимодействие положительных и отрицательных зарядов электричества

Эти же знаки (+) и (-) устанавливаются на клеммах аккумуляторов, батарей, конденсаторов, диодов, выпрямителей и т. д. Они понимаются, как положительные и отрицательные заряды электричества - протоны и электроны. Они же фигурируют и в неисчислимых трудах физиков - теоретиков, стремящихся описать их взаимодействия в различных физических явлениях и процессах.


Подобные документы

  • Исторический обзор путей развития электрического двигателя постоянного тока. Открытие явления электромагнитной индукции М. Фарадеем в 1831 году. Выявление основных направлений и идей, которые привели к созданию современной конструкции двигателя.

    отчет по практике [5,0 M], добавлен 21.11.2016

  • Фундаментальные взаимодействия в природе, их сравнительная характеристика: гравитационное, электромагнитное. Электростатика как раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем зарядов. Формулировка закона Кулона.

    презентация [1,1 M], добавлен 22.08.2015

  • Уравнения Максвелла. Идея о существовании электромагнитного поля. Магнитные явления, закон электромагнитной индукции Фарадея. Следствия уравнения непрерывности. Закон сохранения энергии, сила Лоренца. Дипольное, квадрупольное, магнито-дипольное излучение.

    курс лекций [3,9 M], добавлен 07.08.2015

  • Общие понятия, история открытия электромагнитной индукции. Коэффициент пропорциональности в законе электромагнитной индукции. Изменение магнитного потока на примере прибора Ленца. Индуктивность соленоида, расчет плотности энергии магнитного поля.

    лекция [322,3 K], добавлен 10.10.2011

  • История открытия явления электромагнитной индукции. Исследование зависимости магнитного потока от магнитной индукции. Практическое применение явления электромагнитной индукции: радиовещание, магнитотерапия, синхрофазотроны, электрические генераторы.

    реферат [699,1 K], добавлен 15.11.2009

  • Электромагнитная индукция - явление порождения вихревого электрического поля переменным магнитным полем. История открытия Майклом Фарадеем данного явления. Индукционный генератор переменного тока. Формула для определения электродвижущей силы индукции.

    реферат [634,5 K], добавлен 13.12.2011

  • Молекулярная физика как раздел физики, в котором изучаются свойства вещества на основе молекулярно-кинетических представлений. Знакомство с основными особенностями равновесной термодинамики. Общая характеристика молекулярно-кинетической теории газов.

    курсовая работа [971,8 K], добавлен 01.11.2013

  • Концепция динамических полей - классическая электродинамика Дж.К. Масквелла. Закон Ампера. Взаимодействие двух параллельных бесконечных проводников с током. Воздействие магнитного поля на рамку с током. Сила Лоренца. Циркуляция вектора магнитной индукции.

    презентация [9,7 M], добавлен 07.03.2016

  • История открытия электричества. Заряды как основа электрического поля, создание магнитного поля через их движение по проводнику. Характеристика величины электрического поля. Длина электромагнитной волны. Международная классификация электромагнитных волн.

    реферат [173,9 K], добавлен 30.08.2012

  • Значение деятельности Э. Ленца в развитии учения об электричестве. Дополнение Ленцем закона об электромагнитной индукции, лежащего в основе современной электротехники. Главнейшие результаты исследований Ленца, которые излагаются во всех учебниках физики.

    презентация [461,8 K], добавлен 06.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.