Современные проблемы построения технических средств энергосбережения в системах энергоэффективного теплоснабжения

Основные проблемы построения технических средств энергосбережения в автономно отапливаемых помещениях. Использование термоанемометров для учета возмущающего воздействия на объект теплоснабжения. Характеристика внешнего вида датчика солнечной радиации.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 23.01.2019
Размер файла 860,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Национальный исследовательский Мордовский государственный университет им. Н.П. Огарева

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ПОСТРОЕНИЯ ТЕХНИЧЕСКИХ СРЕДСТВ ЭНЕРГОСБЕРЕЖЕНИЯ В СИСТЕМАХ ЭНЕРГОЭФФЕКТИВНОГО ТЕПЛОСНАБЖЕНИЯ

Кабанов О.В.

На сегодняшний день большое количество компаний занимающиеся установкой автономных систем теплоснабжения и предлагают комплексные решения для создания единой системы управления данным видом системы теплоснабжения. Комплексность данного подхода предполагает всё, начиная с расчёта системы теплоснабжения и заканчивая системами коммутации и диспетчеризации [1].

Для создания энергоэффективной системы автономного теплоснабжения необходимо учитывать все возмущающие воздействия на тепловой режим отапливаемого помещения, либо объекта.

Тепловой режим отапливаемых помещений определяется как результат совокупного влияния непрерывно изменяющиеся внешних и внутренних возмущающих воздействий [2,3]. Решений являющихся оптимальными для самых различных условий и характеристик объектов управления просто быть не может. К внешним воздействиям относится изменения температуры наружного воздуха, скорость и направление ветра, интенсивности солнечной радиации, влажности воздуха. К внутренним возмущающие воздействия в жилых зданиях относятся выделения теплоты от работы электрических и осветительных приборов, тепло выделяемое людьми и т.д. [2-6].

Так же согласно [7-17] исследованиям проводимым в настоящее время необходимо знать теплофизические свойства (ТФС) ограждающих конструкций зданий и сооружений.

Оценка ТФС зданий важна не только для целей автоматизации и создание комфортного микроклимата и энергосбережения но, и например для определения допустимого времени устранение аварийных ситуаций, для определения тепло потерь здания при отсутствии проектной документации, и вообще каких-либо достоверных данных о материалах ограждений многослойных конструкций.

Так же согласно [1] инерционность зданий в большей степени влияет на результаты погодозависимого управления отоплением, современные контроллеры должны учитывать этот влияющие фактор.

Инерционность здание определяется значением постоянной времени здания, которая находится в диапазоне от 10 часов у панельных домов, до 35 часов у кирпичных домов [4,5]. Устройство управления определяет на основании постоянные временные здания комбинированную температуру наружного воздуха, которая используется в качестве корректирующего сигнала. Но так же необходимо учитывать тот фактор, что с течением времени ТФС объекта подвержены изменениям, следовательно постоянная времени объекта так же подвержена изменениям [7-17].

И так для учёта внешних воздействий, таких как температуры наружного воздуха, скорость и направление ветра, интенсивности солнечной радиации, влажности воздуха необходимо различное климатическое оборудование [2].

Согласно [1] ветер существенно влияет на температуру помещения, особенно в зданиях расположенных на открытых территориях, алгоритм управления учитывающий влияние ветра обеспечивает до 10 % экономии тёплой энергии.

Для учёта возмущающего воздействия на объект теплоснабжения - скорости воздушного потока используют термоанемометры.

Они предназначены для высокоточного измерения скорости воздушного потока [18].

Рабочий диапазон составляет от 0.3 м/с до 20 м/с.

Погрешность составляет 1 %.

Межповерочный интервал составляет - 1 год

На рис. 1 представлен внешний вид термоанемометра.

Для определения окружающей температуры за пределами объекта теплоснабжения в настоящее время с учётом импорта замещения большинство фирм используют термосопротивления для измерения температуры воздуха фирмы

Рис. 1 - Термоанемометр

ОВЕН. В основном это термопреобразователи сопротивления ДТС125Л с выходным сигналом в виде тока от 4 до 20 мА. На рис. 2 представлен внешний вид ДТС125л [19].

Рис. 2 - Термопреобразователи сопротивления ДТС125Л.

Выпускаются данные преобразователи нескольких типов: 50М,100М, 50П, 100П, Рt100, Рt500, Рt1000.

Погрешность от 0.5% до 1%.

Рабочий диапазон температур лежит в пределах от -50°С до 125 °С

Межповерочный интервал - 2 года

Так же для исключения неточности учёта при прямом или косвенном попадании солнечных лучей используются защитные экраны для данных датчиков температур [20]. На рис. 3 представлен экран для защиты от солнечных лучей. энергосбережение термоанемометр теплоснабжение датчик

Рис. 3 - Экран для защиты от солнечных лучей.

Для определения влажности воздуха вне отапливаемого объекта используют канальные датчики влажности пассивные или активные российской фирмы THERMOKON [21].

Канальный датчик влажности предназначен для измерения относительной влажности. Разработан для систем управления и мониторинга.

На рис. 4 представлен внешний вид датчика.

Рис.4- Внешний вид датчика определения влажности воздуха.

Рабочий диапазон составляет от 0%до 100%.

Погрешность составляет 2 %.

Межповерочный интервал составляет - 2 года

Для определения интенсивности солнечной радиации в диапазоне от 0 Вт/м2 до 1000Вт/м2 в основном применяются датчики QLS60.

На рис. 5 представлен внешний вид датчика по определению солнечной радиации.

Рис. 5 - Внешний вид датчика солнечной радиации.

Рабочий диапазон составляет от 0 Вт/м2 до 1000Вт/м2.

Погрешность составляет 1 %.

Межповерочный интервал составляет [21] - 1 год

В связи с дороговизной оборудования по определению солнечной радиации, в настоящее время используется пофосадное регулирование с учётом солнечной радиации поступающей в помещение.

Установка, настройка, а затем через определённое время поверка климатического оборудования учитывающего внешние возмущающие воздействия и дополнительного оборудования вносятся дополнительные затраты, что отражается на стоимости необходимого оборудования при его установке и эксплуатации.

Так же необходимо проведение поверки через межповерочный интервал, что бы убедиться в том, что датчики работают исправно и не вносят дополнительную погрешность в систему управления тепловым режимом объекта.

В нерабочее время в общественно-административных и производственных зданиях температура внутреннего воздуха может быть значительно снижена, то есть возможен так называемый режим прерывистого отопления, для реализация которого следует обеспечить восстановление нормируемой температуры к началу использования помещения или к началу рабочего дня при этом возникает вопрос оптимального способа разогрева с минимально допустимой температуры к оптимальной. То есть необходимо определить вид кривой по которой необходимо ввести температурный режим здания, чтобы потребления тепловой энергии в этом процессе были бы минимальны. Для выхода в нужный момент времени необходимо учитывать все влияющие факторы на тепловой режим здания, так как только в этом случае удастся достичь наиболее точного времени момента включения системы теплоснабжения на разогрев к нужному моменту времени [1]. На рис. 6 представлен температурный режим объекта при прерывистой системе теплоснабжения.

Рис. 6 - Температурный режим объекта при прерывистой системе теплоснабжения

В настоящее время на практике обычно применяют системы управления осуществляющие только учёт в основном возмущения температуры наружного воздуха это так называемые погодные регуляторы температуры, но при тепловизионом обследование объектов рис.7 наглядно видны участки ограждений, на которых здание особо сильно теряет тепло.

Рис.7 - Тепловизионное обследование объекта.

К таким участкам в первую очередь относятся окна. По данным [22] теплопотери через ограждающие конструкции распределяются следующим образом: стены - 30%, кровля - 14 %, пол -12 %, окна- 44%.

Данные потери в основном связаны с инфильтрацией. Теплопотери на инфильтрацию зависят как правило от инфильтрации в помещение холодного наружного воздуха и его температуры, а так же скорости воздушного потока снаружи. Воздух в помещение поступает через ограждающие конструкции, имеющие пористые структуры, но основная его часть поступает через неплотности окон, при учёте лишь окружающей температуры и не учёте остальных мало влияющих факторов могут возникнуть в некоторых условиях перетопы, а в других недотоп, что в свою очередь приведёт к неоптимальному регулированию теплового режима объекта.

Согласно данным [23] инфильтрация увеличивает градиент падения температуры на 0,4 - 1°С в час.

При использование данных видов климатического оборудования учитывающих внешние возмущающие воздействия в канал управления теплоснабжением вносится общая погрешность Х используемого климатического оборудования.

где - погрешность определённого средства измерения (датчик температуры, влажности, скорости ветра и т.д.)

Проведя расчёт вносимой погрешности с использованием климатического оборудования учитывающего внешние воздействия:

В следствии всего вышеописанного видятся следующие проблемы при построение технических средств энергосбережения. Для учёта всех возмущающих воздействий требуется дорогое климатическое оборудование которое требует установки, наладки и подключения к управляющему устройству, так же для исключения неправильности показаний климатического оборудования устанавливаемого вне отапливаемого объекта необходимо периодически проводить поверку данного оборудования что требует дополнительных вложений.

С учётом вышеизложенного мы пришли к выводу, что при исключении внешнего климатического оборудования можно уменьшить расходы на теплоснабжение не менее чем на 3%. При этом себестоимость установки и эксплуатации оборудования сократится.

Однако остаётся вопрос, каким образом без использования внешнего климатического оборудования учесть все влияющие факторы на тепловой режим объекта, при этом производить оптимальное управление его тепловым режимом.

Библиографический список

1. Панферов С. В., Телегин А. И., Панферов В. И. Некоторые проблемы энергосбережения и автоматизации в системах теплоснабжения зданий. Вестник ЮУрГУ. Серия: Компьютерные технологии, управление, радиоэлектроника. 2010. №22 (198) С.79-86.

2. Кабанов О.В., Панфилов С.А., Барычев В.И. Обзор современных методов определения теплофизических свойств материалов и объектов с использованием электротехнических устройств. Сб. науч. трудов. Развитие технических наук в современном мире. Выпуск II. Воронеж 2015. с.178 -180.

3. Кабанов О.В., Панфилов С.А. Современные методы определения теплофизических свойств объектов. XLIV Огаревские чтения. Материалы научной конференции: в 3 частях. Ответственный за выпуск П. В. Сенин.- Саранск: Мордов. гос. ун-т, 2016. С. 156-160.

4. Кабанов О.В., Панфилов С.А., Хрёмкин А.С., Бобров М.А. Разработка метода определения теплофизических свойств объектов. Научно-технический вестник Поволжья. №5 2015г. - Казань.с. 253-256.

5. Хремкин А. С. Кабанов О. В. Панфилов С. А. Способ определения теплофизических свойств строительных объектов. Вестник Восточно-Сибирского государственного университета технологий и управления. №5 (62). - Улан-Удэ 2016 г. - М.: Издательство ВСГУТУ. с.49-57.

6. Кабанов О.В., Панфилов С.А., Андронова О.А. Аналитический обзор методов оценки (измерения) теплофизических характеристик исследуемого объекта. Актуальные вопросы науки и техники. Сборник научных трудов по итогам III международной научно-практической конференции. Самара: ИЦРОН, 2016. С. 107-111.

7. Кабанов О.В., Панфилов С.А. Альтернативные источники энергии и их перспективы. Материалы XX научно-практической конференции молодых ученых, аспирантов и студентов Национального исследовательского Мордовского государственного университета им. Н. П. Огарёва. Саранск: НИ МГУ Огарева, 2016. С. 164-169.

8. Кабанов О.В., Панфилов С.А. Современных методов определения теплофизических свойств объекта. Материалы XX научно-практической конференции молодых ученых, аспирантов и студентов Национального исследовательского Мордовского государственного университета им. Н. П. Огарёва. Саранск: НИ МГУ Огарева, 2016. С. 169-174.

9. Кабанов О.В., Панфилов С.А. К вопросу использования альтернативных источников энергии. Актуальные проблемы энергетики АПК материалы VII международной научно-практической конференции. Саратов: ЦСА, 2016. С. 78-83.

10. Кабанов О.В., Панфилов С.А. Влияние качества электроэнергии на работу энергосберегающего оборудования. Проблемы и перспективы развития отечественной светотехники, электротехники и энергетики материалы XII Всероссийской научно-технической конференции с международным участием в рамках III Всероссийского светотехнического форума с международным участием. Саранск: ИП Афанасьев, 2015. С. 526-533.

11. Кабанов О.В., Панфилов С.А. Алгоритм автоматизированной системы управления системой теплоснабжения. Проблемы и перспективы развития отечественной светотехники, электротехники и энергетики материалы XII Всероссийской научно-технической конференции с международным участием в рамках III Всероссийского светотехнического форума с международным участием. Саранск: ИП Афанасьев, 2015. С. 534-538.

12. Panfilov S. A., Kabanov O. V. Energy Saving Algorithm for the Autonomous Heating Systems. International Journal of Advanced Biotechnology and Research (IJBR) ISSN 0976-2612, Online ISSN 2278-599X, Vol-7, Issue-4, 2016, pp. 1395-1402.

Аннотация

В данной статье сформулированы и раскрыты основные проблемы построения технических средств энергосбережения в автономно отапливаемых помещений.

Ключевые слова: автономность, проблемы., система теплоснабжения, теплоснабжение, энергосбережение, энергоэффективность

In this article, we formulated and disclosed the main problems of building energy saving in hardware independently heated premises.

Keywords: autonomy, efficiency, energy efficiency, heat supply, heating system, problem

Размещено на Allbest.ru


Подобные документы

  • Энергосбережение как энергетический ресурс; понятие, цели, принципы и задачи энергосбережения и повышения энергоэффективности. Проблемы, пути решения и современное состояние развития энергосбережения в России, направления эффективного энергопотребления.

    реферат [1,7 M], добавлен 27.07.2010

  • Организация энергосбережения в системах водоснабжения и водоотведения. Учет тепло- и водоподачи, затрат на энергоснабжение и сокращение их потерь. Нормирование требований к качеству отопления (температура в помещениях), горячей и холодной воды (напор).

    реферат [31,3 K], добавлен 27.11.2012

  • Автоматические системы энергосбережения в зданиях мегаполисов. Методы регулирования отпуска тепла в системах централизованного теплоснабжения. Технические требования и выбор аппаратуры учета теплопотребления зданием. Цифровой регулятор теплопотребления.

    дипломная работа [180,8 K], добавлен 10.01.2011

  • Эффективность водяных систем теплоснабжения. Виды потребления горячей воды. Особенности расчета паропроводов и конденсатопроводов. Подбор насосов в водяных тепловых сетях. Основные направления борьбы с внутренней коррозией в системах теплоснабжения.

    шпаргалка [1,9 M], добавлен 21.05.2012

  • Энергия солнца, ветра, вод, термоядерного синтеза как новые источники энергии. Преобразование солнечной энергии в электрическую посредством использования фотоэлементов. Использование ветродвигателей различной мощности. Спирт, получаемый из биоресурсов.

    реферат [20,0 K], добавлен 16.09.2010

  • Проблема энергосбережения как проблема мобилизации социального ресурса управления. А можем ли мы реализовать хотя бы половину? Городская дотация на теплоснабжение. Что даст предложенное изменение тарифной системы?

    реферат [18,5 K], добавлен 06.04.2007

  • Определение тепловой мощности объекта. Построение годового графика теплопотребления. Интенсивность прямой и рассеянной солнечной радиации. Площадь солнечных коллекторов. Годовой график теплопоступления. Подбор бака-аккумулятора и котла-дублера.

    курсовая работа [1,5 M], добавлен 11.01.2012

  • Изучение необходимости и сущности энергосбережения. Характеристика основных направлений эффективного энергопотребления: энергосбережение на предприятии, сокращение тепловых потерь в зданиях разного назначения. Современные технологии энергосбережения.

    реферат [14,6 K], добавлен 27.04.2010

  • Зарождение энергосбережения: энергия ветра и воды вместо физического труда. Получение воды и холода из вихревых потоков на Великом шелковом пути. Ветряные и водяные мельницы. Немецкие энергосберегающие дома "Фахверк". Современная история энергосбережения.

    реферат [439,2 K], добавлен 11.11.2012

  • Методы экономии электроэнергии и проблемы энергосбережения. Энергетический мониторинг квартиры и гимназии, оценка эффективности внедрения энергосберегающих мероприятий. Измерение электроэнергии и график потребления энергии в квартире и в гимназии.

    творческая работа [648,5 K], добавлен 18.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.