Анализ линейной электрической цепи
Практическое освоение современных методов количественного и качественного анализа линейной электрической цепи при различных воздействиях в переходном и установившемся режимах. Определение спектральных характеристик одиночного импульса воздействия.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 26.11.2018 |
Размер файла | 558,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оглавление
импульс электрический цепь спектральный
Введение
Задание на курсовую работу
1. Нормирование параметров и переменных цепи
2. Расчёт частотных характеристик цепи
3. Определение спектральных характеристик одиночного импульса воздействия
4. Определение спектра периодического входного сигнала
5. Приближённый расчёт реакции при периодическом воздействии
Выводы
Список литературы
Введение
В курсовой работе требуется:
1) произвести нормирование всех параметров и переменных цепи;
2) рассчитать операторную функцию, временные и частотные характеристики цепи;
3) произвести анализ цепи операторным методом при апериодическом воздействии;
4) проделать качественный анализ цепи спектральным методом при апериодическом воздействии;
5) проделать анализ цепи спектральным методом при периодическом воздействии.
Целью курсовой работы является практическое освоение современных методов количественного и качественного анализа линейной электрической цепи при различных воздействиях в переходном и установившемся режимах с применением вычислительной техники.
Задание на курсовую работу
Таблица 1
Вариант |
Схема |
Импульс |
||||
Форма |
||||||
Таблица 2
Рис. 1 Исследуемая схема
Рис. 2 Исследуемый сигнал
Рис. 3 Исследуемый периодический сигнал
1. Нормирование параметров и переменных цепи
Выбрав в качестве базисных параметров , , получим следующие значения нормированных параметров:
Для простоты записи знак нормировки в дальнейшем опускаем.
2. Расчёт частотных характеристик цепи
Исходная функция передачи
Обобщённая частотная характеристика
Амплитудно-частотная характеристика (АЧХ)
Фазочастотная характеристика (ФЧХ)
Графики АЧХ, ФЧХ и АФХ изображены на рисунках 4, 5 и 6 соответственно.
Рис. 4 АЧХ исследуемой цепи
Рис. 5 ФЧХ исследуемой цепи
Рис. 6 АФХ исследуемой цепи
Определим полосу пропускания по графику АЧХ на уровне . Полоса пропускания Из графика АЧХ видим, что имеем дело с полосовым фильтром. Значение АЧХ на нулевой частоте, , что равняется .Так же , что равняется . То есть эти значения соответствуют нашей исследуемой цепи.
Таблица 3
0 |
0 |
90 |
0 |
0 |
|
0.1 |
0.218 |
56.7 |
0.119 |
0.182 |
|
0.5 |
0.357 |
-25.7 |
0.322 |
-0.155 |
|
1 |
0.223 |
-55.8 |
0.125 |
-0.184 |
|
? |
0 |
-90 |
0 |
0 |
3. Определение спектральных характеристик одиночного импульса воздействия
Определим спектральные характеристики исходного одиночного импульса. Учитывая, что
то комплексный спектр сигнала будет выглядеть так
Амплитудный спектр входного сигнала
Рис. 7 Амплитудный спектр исследуемого сигнала.
Фазовый спектр входного сигнала
Рис. 8 Фазовый спектр входного сигнала
Найдём узлы амплитудного спектра - значения частот , при которых указанный спектр равен 0.
Таким образом,
Вычислим значение спектра на нулевой частоте.
Графики амплитудного и фазового спектров одиночного импульса воздействия показаны на рисунках 7, 8 соответственно. Ширина спектра импульсного входного сигнала, определённая по 10%-му критерию, .При прохождении через цепь входной сигнал будет сильно искажён, поскольку наш фильтр является полосовым. Большая часть спектра сосредоточена в зоне интегрирования фильтра, то есть следует ожидать, что выходной сигнал по форме будет похож на интеграл от входного сигнала. Поскольку при АЧХ равна нулю, то можно ожидать увеличения длительности переднего и заднего фронтов выходного импульса.
Таблица 4
0 |
0 |
90 |
|
0.785 |
25.465 |
-90 |
|
1.571 |
0 |
-270 |
|
2.356 |
8.488 |
-90 |
|
3.142 |
0 |
-270 |
|
3.927 |
5.093 |
-90 |
|
4.712 |
0 |
-270 |
|
5.498 |
3.638 |
-90 |
|
6.283 |
0 |
-270 |
|
7.069 |
2.829 |
-90 |
|
7.854 |
0 |
-270 |
4. Определение спектра периодического входного сигнала
Для получения спектральных характеристик входного периодического сигнала используем их связь со спектральными характеристиками входного одиночного импульса:
где - амплитудный спектр входного периодического сигнала; где - фазовый спектр входного периодического сигнала, ; -число гармоник ряда Фурье, используемых при расчёте; -частота основной гармоники.
Определим число необходимых гармоник (рис.9)
Запишем отрезок ряда Фурье, аппроксимирующий входное периодическое воздействие при :
Графики амплитудного и фазового дискретных спектров приведены на рисунках 9 и 10 соответственно (штриховыми линиями показаны графики спектров одиночного воздействия с учётом множителя ).
Рис. 9 Амплитудный спектр входного периодического сигнала
Рис. 10 Фазовый спектр входного периодического сигнала
На рисунке 11 приведены графики периодического воздействия (штриховая линия) и его аппроксимация отрезком ряда Фурье (сплошная линия).
Рис. 11 Аппроксимация исходного сигнала отрезком ряда Фурье
5. Приближённый расчёт реакции при периодическом воздействии
Запишем выражения для амплитудного и фазового дискретных спектров реакции при периодическом воздействии:
Полученные значения отсчётов дискретных спектров приведены в таблице 5.
Таблица 5
0 |
0 |
0 |
90 |
0 |
90 |
0 |
180 |
|
1 |
0.393 |
0.388 |
-12.1 |
3.183 |
0 |
1.235 |
-12.1 |
|
2 |
0.785 |
0.271 |
-47 |
3.183 |
-90 |
0.861 |
-137 |
|
3 |
1.178 |
0.194 |
-60.8 |
1.061 |
-180 |
0.205 |
-240.8 |
|
4 |
1.571 |
0.149 |
-67.9 |
0 |
-270 |
0 |
-337.9 |
|
5 |
1.963 |
0.121 |
-72.3 |
0.637 |
0 |
0.077 |
-72.3 |
|
6 |
2.356 |
0.101 |
-75.2 |
1.061 |
-90 |
0.107 |
-165.2 |
|
7 |
2.749 |
0.087 |
-77.3 |
0.455 |
-180 |
0.04 |
-257.3 |
|
8 |
3.142 |
0.076 |
-78.9 |
0 |
-270 |
0 |
-348.9 |
|
9 |
3.534 |
0.068 |
-80.1 |
0.354 |
0 |
0.024 |
-80.1 |
|
10 |
3.927 |
0.061 |
-81.1 |
0.637 |
-90 |
0.039 |
-171.1 |
|
11 |
4.32 |
0.056 |
-81.9 |
0.289 |
-180 |
0.016 |
-261.9 |
|
12 |
4.712 |
0.051 |
-82.6 |
0 |
-270 |
0 |
-352.6 |
|
13 |
5.105 |
0.047 |
-83.2 |
0.245 |
0 |
0.012 |
-83.2 |
|
14 |
5.498 |
0.044 |
-83.6 |
0.455 |
-90 |
0.02 |
-173.6 |
Отрезок ряда Фурье, аппроксимирующий реакцию, имеет вид:
Графики амплитудного и фазового дискретных спектров реакции на периодическое воздействие приведены на рисунках 12 и 13 соответственно (штриховыми линиями показаны графики спектров одиночного импульса воздействия с учётом множителя ).
Рис. 12 Амплитудный спектр выходного периодического сигнала
Рис. 13 Фазовый спектр выходного периодического сигнала
На рисунке 14 приведен график периодического воздействия (штриховая линия) и его аппроксимация отрезком ряда Фурье, а на рисунке 15 аппроксимация отрезком ряда Фурье выходного периодического сигнала.
Рис. 14 Аппроксимация исходного сигнала отрезком ряда Фурье
Рис. 15 Аппроксимация выходного периодического сигнала отрезком ряда Фурье
Выводы
Проделав курсовую работу, мы получили практическое освоение современных методов количественного и качественного анализа линейной электрической цепи при различных воздействиях в переходном и установившемся режимах с применением вычислительной техники.
Мы произвели нормирование всех параметров и переменных цепи; рассчитали операторную функцию, временные и частотные характеристики цепи; произвели анализ цепи операторным методом при апериодическом воздействии; проделали качественный анализ цепи спектральным методом при апериодическом воздействии; проделали анализ цепи спектральным методом при периодическом воздействии.
По передаточной функции цепи мы определили, что имеем дело с полосовым фильтром с полосой пропускания .
При прохождении через цепь одиночный входной сигнал будет сильно искажён, поскольку наш фильтр является полосовым. Большая часть спектра сосредоточена в зоне интегрирования фильтра, то есть следует ожидать, что выходной сигнал по форме будет похож на интеграл от входного сигнала. У периодического сигнала из 15 гармоник только 2 попадают в полосу пропускания фильтра, а все остальные лежат в полосе интегрирования фильтра. Следовательно, выходной сигнал будет несколько похож на интеграл от входного. Поскольку при АЧХ равна нулю, то можно ожидать увеличения длительности переднего и заднего фронтов выходного импульса.
Список литературы
1. Бычков Ю.А., Золотницкий В.М., Чернышев Э.П. Основы теории электрических цепей: Учебник для вузов. СПб.: Лань, 2002.
2. Бычков Ю.А., Золотницкий В.М., Чернышев Э.П. Сборник задач и практикум по основам теории электрических цепей. 2-е изд. СПб.: Питер, 2007.
3. Барков А.П., Бычков Ю.А., Дегтярев С.А. и др. Анализ электрических цепей. Учебное пособие к курсовой работе по электротехнике. СПб.: СПбГЭТУ «ЛЭТИ». 2011. 176 с.
Размещено на Allbest.ru
Подобные документы
Изучение метода анализа линейной электрической цепи при различных воздействиях в различных режимах с применением вычислительной техники. Проведение анализа заданной линейной разветвленной электрической цепи численным, операторным, частотным методами.
курсовая работа [1,3 M], добавлен 21.01.2012Расчет линейной электрической цепи постоянного тока с использованием законов Кирхгофа, методом контурных токов, узловых. Расчет баланса мощностей цепи. Определение параметров однофазной линейной электрической цепи переменного тока и их значений.
курсовая работа [148,1 K], добавлен 27.03.2016Расчет простейшей и сложной электрической цепи. Определение симметричного режима трехфазной цепи. Анализ синусоидального тока методом симметричных составляющих. Построение векторно-топографической диаграммы. Проверка баланса активных реактивных мощностей.
курсовая работа [2,2 M], добавлен 15.09.2014Проведение анализа линейной разветвленной электрической цепи при помощи численного метода интегрирования дифференциальных уравнений. Ознакомление со спецификой анализа цепи операторным и частотным методами при апериодическом и периодическом воздействиях.
дипломная работа [1,0 M], добавлен 28.12.2011Анализ электрической цепи без учета и с учетом индуктивных связей между катушками. Определение токов методом узловых напряжений и контурных токов. Проверка по I закону Кирхгофа. Метод эквивалентного генератора. Значения токов в первой и третьей ветвях.
лабораторная работа [1,2 M], добавлен 06.10.2010Моделирование электрической цепи с помощью программы EWB-5.12, определение значение тока в цепи источника и напряжения на сопротивлении. Расчет токов и напряжения на элементах цепи с использованием формул Крамера. Расчет коэффициента прямоугольности цепи.
курсовая работа [86,7 K], добавлен 14.11.2010Расчет линейной электрической цепи при несинусоидальном входном напряжении. Действующее значение напряжения. Сопротивление цепи постоянному току. Активная мощность цепи. Расчет симметричной трехфазной электрической цепи. Ток в нейтральном проводе.
контрольная работа [1016,8 K], добавлен 12.10.2013Определение комплексного коэффициента передачи напряжения. Определение параметров электрической цепи как четырехполюсника для средней частоты. Расчет параметров электрической цепи. Распределение напряжения вдоль линии при ее нагрузке на четырехполюсник.
курсовая работа [449,4 K], добавлен 24.11.2008Описание схемы и определение эквивалентного сопротивления электрической цепи. Расчет линейной цепи постоянного тока, составление баланса напряжений. Техническая характеристика соединений фаз "треугольником" и "звездой" в трехфазной электрической цепи.
контрольная работа [1,7 M], добавлен 27.06.2013Основные законы и методы анализа линейных цепей постоянного тока. Линейные электрические цепи синусоидального тока. Установившийся режим линейной электрической цепи, питаемой от источников синусоидальных ЭДС и токов. Трехфазная система с нагрузкой.
курсовая работа [777,7 K], добавлен 15.04.2010