Анализ ветроэнергетических установок применяемых в электроснабжении сельскохозяйственного производства
Применение ветроэнергетических установок как источников электроэнергии в сельскохозяйственных предприятиях, удаленных от электросетей. Обеспечение водоподъема, получение тепла и электропитания потребителей. Развитие ветроэнергетики в Республике Казахстан.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 06.12.2018 |
Размер файла | 519,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.Allbest.Ru/
Размещено на http://www.Allbest.Ru/
Размещено на http://www.Allbest.Ru/
Западно-Казахстанский аграрно-технический университет имени Жангир хана
Анализ ветроэнергетических установок применяемых в электроснабжении сельскохозяйственного производства
Е.Т. Ербаев ст. преподаватель
Аннотация
Ма?алада ауылшаруашылы? ?ндірісін электрмен ?амтамасыз етуінде ?олданылатын жел энергетикалы? ?ондыр?ыларыны? талдауы келтірілген. ?аза?стан Республикасыны? жел энергетикасыны? кешенді даму ал?ышарттары к?рсетілген.
В данной статье приведен анализ ветроэнергетических установок, применяемых в электроснабжении сельскохозяйственного производства. Указаны предпосылки перспективы развития ветроэнергетики Республики Казахстан.
The analysis of wind-electric sets, used in electric-supply of agricultural production is given in this article. The development perspectives of windenergetics of the Republic of Kazakhstan are shown.
Для электроснабжения автономных объектов сельскохозяйственного производства, удаленных от электрических сетей в мировой практике широко применяются ветроэнергетические установки. Применение ветроэнергетических установок как источников электроэнергии особенно актуальна для обеспечения водоподъема для сельскохозяйственных целей, получение тепла и электропитания отдельных потребителей в неэлектрофицированных районах и т.п.
Энерговооруженность общества - основа его научно-технического прогресса, база развития производительных сил. Её соответствие общественным потребностям - важнейший фактор экономического роста. Развивающееся мировое хозяйство требует постоянного наращивания энерговооруженности производства. Однако человечеству в последнее время постоянно не хватает энергии [1].
Если в конце XIX века энергия играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. Сейчас в мире производится около 60 тыс. миллиардов кВт·час. Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше. Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм.
Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются, в принципе, тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях. Правда, способы сжигания топлива стали намного сложнее и совершеннее. Возросшие требования к защите окружающей среды потребовали нового подхода к энергетике.
Все это привело к более глубокому изучению и использованию нетрадиционных возобновляемых источников энергии (НВИЭ). К ним относят энергию ветра, Солнца, геотермальную энергию, биомассу и энергию Мирового океана.
Основное преимущество возобновляемых источников энергии их неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Но также эти источники энергии имеют и отрицательные свойства. Это малая плотность потока (удельная мощность) и изменчивость во времени большинства НВИЭ. Первое обстоятельство заставляет создавать большие площади энергоустановок, перехватывающие поток используемой энергии (приемные поверхности солнечных установок, площадь ветроколеса, протяженные плотины приливных электростанций и т.п.). Это приводит к большой материалоемкости подобных устройств, а, следовательно, к увеличению удельных капиталовложений по сравнению с традиционными энергоустановками [3].
Огромная энергия движущихся воздушных масс, и мысль об ее использовании давно уже привлекала людей. Да и использовать эту энергию научились за тысячу лет до нашей эры. Энергия ветра помогала преодолевать просторы океанов, ветряные мельницы служили единственным источником энергии для тех человеческих поселений, где не было рек или моря. И теперь интерес к использованию энергии ветра, источника нескончаемого, не прошел, и, более того, техника ХХI века открыла для этого совершенно новые возможности. Активное использование экологически чистых источников энергии сейчас своего рода признак хорошего тона, всячески приветствуется как мировой общественностью, так и правительствами развитых стран. Признанным лидером в области ветроэнергетике являются США и ФРГ, где установленная мощность ветроэнергетических установок составила в 1997 году 1590 и 1550 МВт [5]. За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.
Солнце по-разному обогревает разные участки земной поверхности - горы и долины, океаны и сушу. Воздушный океан, на дне которого мы живем, всегда неспокоен. Постоянно и повсюду дуют ветры - от легкого ветерка, приносящего желанную прохладу в летний зной, до могучих и грозных ураганов.
Тем не менее, однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного «корма» [1]. Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти. И вот новый виток: в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже. Замена? Нужен новый лидер энергетики.
Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении. Энергетика очень быстро аккумулирует, ассимилирует, выбирает в себя все самые новейшие идеи, изобретения, достижения науки. Это и понятно: энергетика связана буквально со всем, и все тянется к энергетике, зависит от нее.
Ветроэнергетическая установка (ВЭУ) - предназначена для того, чтобы превращать кинетическую энергию ветра в энергию вращения ротора генератора, который, и вырабатывает электроэнергию [3]. Легко показать, что выходная мощность установки пропорциональна площади лопастей ветрового ротора и скорости ветра. Поэтому ветроэнергетические установки большой мощности, в мегаваттном диапазоне, должны быть по своим габаритам очень крупными, поскольку скорость ветра в среднем не бывает очень большой.
Первая ветроустановка (или, как иногда принято называть, ветрогенератор) был сконструирован в Дании в 1890 году, которая показана на рисунке 1.
Рисунок 1 - Ветроустановка (ветрогенератор)
ветроэнергетический сельскохозяйственный казахстан
Термин «ветроэнергетическая установка» более точен в отношении этих устройств, т.к. термины «ветряк», «ветрогенератор» означают фактически обратное действие - генерацию ветра [3].
В настоящее время технические средства промышленных ветроустановок включают два основных типа, которые показаны на рисунке 2 и 3: горизонтальные - с горизонтально осевой турбиной (ветроколесом), когда ось вращения ветроколеса параллельна воздушному потоку; вертикальные - с вертикально осевой турбиной (ротором), когда ось вращения перпендикулярна воздушному потоку [2].
Рисунок 2 - Горизонтально-осевые (с горизонтальной осевой турбиной)
Рисунок 3 - Вертикально-осевые ветроустановки (с вертикальной осевой турбиной)
Ветроколеса с горизонтальной осью делятся на однолопастные, двухлопастные, трехлопастные, многолопастные; с вертикальной осью различают следующие конструкции роторов: чашечный анемометр, ротор Савониуса, ротор Дарье, также имеются конструкции с концентратами (усилителями) ветрового потока, такие, как ротор Масгрува, ротор Эванса, усилители потока специальной конструкции [5]. Следует отметить, что ветроколеса с вертикальной осью вращения, в отличие от таковых с горизонтальной, находятся в рабочем положении при любом направлении ветра. Однако их принципиальными недостатками являются большая подверженность усталостным разрушениям из-за возникающих в них автоколебательных процессов и пульсация крутящего момента, приводящая к нежелательным пульсациям выходных параметров генератора. Из-за этого подавляющее большинство ветроагрегатов выполнено по горизонтально-осевой схеме, хотя продолжаются всесторонние проработки различных типов вертикально-осевых установок.
Удивительно разнообразны конструкции современных ветроустановок. Для эффективной работы ветроустановок необходимы определенные требования по их размещению. Так, для относительно постоянной работы ветроэнергетических установок требуется их размещение в местностях, где ветровой потенциал составляет 2500 часов в год.
Ветровые условия района применительно к ветроиспользованию и характеризуются ветроэнергетическим потенциалом. Который включает в себя различные показателя ветра, определяемые по результатам многолетних наблюдений: среднегодовые и среднемесячные скорости ветра; повторяемость скорости и направление ветра в течение года, месяца, суток, данные о порывистости; затишьях и максимальных значениях скорости ветра, изменения его с высотой и т.п.
Достоверность оценки ветрового потенциала местности - наиболее важный фактор, определяющий эффективность ветроэнергетических станций. В общем случае для его определения необходимо проведение непрерывных наблюдений в месте предполагаемого строительства ветроэнергетических станций продолжительностью не менее года. При проектировании большого количества ветроэнергетических станций эта задача требует огромных трудозатрат, поскольку для каждой ветростанции рассматривается несколько вариантов площадок.
Современные ветроэнергетические установки используют ветер приземного слоя на высоте 50-70 м, реже до 100 м от поверхности Земли, причем для мест строительства крупных ветроэнергетических станций, предназначенных для работы в мощных энергосистемах, среднегодовая скорость ветра на флюгера (10 м) должна составлять не менее 6 м/с. Следует учитывать, что наилучшим местом для размещения ветроустановки является гладкая, куполообразная, ничем не затененная возвышенность [4].
Далее стоит вопрос выбора расчетных параметров ветроэнергетических установок для заданного (определенного расчетным путем или экспериментально) ветрового потенциала, т.е. выбора экономически оптимального размера ветроэнергетической установки.
Ветроустановки классифицируются по следующим признакам:
- положению ветроколеса относительно направления ветра;
- геометрии ветроколеса;
- по мощности ветроустановки.
По мощности ветроустановки делятся на: малой мощности - до 100 кВт, средней - от 100 до 500 кВт, и большой (мегаваттного класса) - 0,5-4 МВт и более.
Во многих странах налажено серийное производство ветроустановок малой мощности. Например, в России НПО «Ветроэн» серийно выпускает установки мощностью 4 кВт с диаметром колеса 6 м. Следует отметить, что малая ветроэнергетика не требует больших территорий, ее можно развивать везде, где имеются для этого соответствующие условия [1].
Выбор характеристик ветроколеса для ветроустановки в конкретных ветровых условиях определяется целями, которые перед ней ставятся. Обычно это требование максимизации производства энергии за год, чтобы, например, уменьшить потребление топлива тепловыми станциями единой энергосистемы, либо обеспечение производства определенного минимума энергии даже при слабом ветре, чтобы, например, сохранить работоспособность насосов системы водоснабжения.
Одной из важнейших характеристик ветроколеса является его быстроходность, которая зависит от трех основных переменных: радиуса отметаемой ветроколесом окружности, скорости ветра, угловой скорости вращения колеса.
Основным недостатком ветроэнергетических станций является изъятие под их строительство больших площадей земельных ресурсов.
Перспектива развития ветроэнергетики в Республике Казахстан имеет все предпосылки:
- необходимость создания на местах перерабатывающих комплексов сельскохозяйственного производства;
- географическая отдаленность сельскохозяйственных объектов от электрических сетей;
- необходимость среднегодовой скорости ветра;
- наличие площадей земельных ресурсов под строительство ветроэнергетических станции;
- ежегодные повышение тарифов на электроэнергию, которое отрицательно сказывается на себестоимость продукции сельскохозяйственных производителей.
Анализ ветроэнергетических установок показывает, что для эффективного применения их в сельскохозяйственных предприятиях, удаленных от электрических сетей необходимо детально изучить ветровую карту региона и провести тестирование площадок путём установки измерительных мачт. Современные методы позволяют проводить непрерывный мониторинг ветровой обстановки со всех площадок одновременно с получением данных на компьютер посредством модема.
Эта проблема является одной из актуальных задач в области энергетики РК и требует дальнейшего исследования.
Литература
1. Брылёва, В.А. Нетрадиционные возобновляемые источники энергии / В.А. Брылёва, Л.Б. Воробьева. - Минск, 1996.
2. Ветроэнергетическая установка геликоидная: каталог инновационных проектов и разработок / Госкомитет по науке и технологиям Республики Беларусь. - Минск, 2000. - №6.
3. Жуков, Д.Д. Энергию ветра - на ветер? / Д.Д. Жуков, Н.А. Лаврентьев. - Архитектура и строительство, 1999. - №5
4. Лаврус, В.С. Источники энергии / В.С. Лаврус. - Киев: НиТ, 1997.
5. Энергетические ресурсы мира / под ред. П.С. Непорожного, В.И. Попков. - М.: Энергоатомиздат, 1995.
Размещено на allbest.ru
Подобные документы
Изучение особенностей использования ветроэнергетических установок в сельском хозяйстве. Анализ состояния российской энергетики, проблем энергосбережения. Расчет плоского солнечного коллектора и экономии топлива, биогазовой и ветродвигательной установок.
курсовая работа [261,7 K], добавлен 10.03.2013Механические характеристики ветротурбин. Производство электроэнергии с помощью ветроэнергетических установок. Построение математической модели силового полупроводникового преобразователя в составе электромеханической системы имитатора ветротурбины.
дипломная работа [4,3 M], добавлен 22.12.2010Анализ действия и оценка перспектив использования альтернативных методов получения электрической энергии в России. Вклад в обеспечение государства электроэнергией гидроэлектростанций, ветроэнергетических установок, солнечных и приливных электростанций.
контрольная работа [55,9 K], добавлен 11.04.2010Создание автономных источников тепла и электроэнергии, работающих на местных видах топлива и на сбросном тепле промышленных предприятий. Применение бутанового контура в составе парогазовых установок малой мощности и совместно с газопоршневыми агрегатами.
реферат [1,4 M], добавлен 14.11.2012Общее понятие энергии, ее виды, функции и роль в современном мире. Классификация первичных энергоресурсов. Основные преимущества солнечной энергетики. Основные перспективы использования в Беларуси гидроэлектростанций и ветроэнергетических установок.
курсовая работа [517,5 K], добавлен 12.01.2015Оценка валовых ветроэнергетических ресурсов Амурской области и возможности использования энергии ветра в различных точках рассматриваемого региона. Расчет и построение эмпирических кривых повторяемости скоростей ветра по базе данных "Погода России".
курсовая работа [882,0 K], добавлен 27.10.2011Изучение эксплуатационных показателей дизельных генераторных установок, средств внешнего электропитания зенитных ракетных систем. Применение асинхронизированного генератора для адаптации рабочих параметров двигателя внутреннего сгорания к новым условиям.
статья [144,7 K], добавлен 30.11.2014Использование солнечной энергии в Республике Беларусь, тепловые гелиоустановки. Биомасса как аккумулятор солнечной энергии, получение энергии из когенерационных установок. Описание работы гидроэлектростанций. Принцип действия ветроэлектрических установок.
курсовая работа [2,2 M], добавлен 11.03.2010Основні споживачі продуктів роботи газотурбінних установок. Принципіальна схема й ідеальний цикл газотурбінної установки з підведенням тепла при постійному тиску та об'ємі. Головні методи підвищення коефіцієнту підвищеної дії, регенерація теплоти.
курсовая работа [1,3 M], добавлен 16.03.2013Работа энергетических установок. Термодинамический анализ циклов энергетических установок. Изохорный, изобарный, изотермический, адиабатный и политропный процессы. Проведение термодинамического исследования идеального цикла теплового двигателя.
методичка [1,0 M], добавлен 24.11.2010