Моделирование редуцированных баз знаний при интеграции инвестиционных проектов в энергетике
Исследование методики оценки инвестиционных проектов на основе онтологической модели знаний. Разработка нейро-нечеткой модели многокритериальной оценки проектов. Исследование методики автоматического редуцирования баз знаний интегрируемых проектов.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 02.12.2018 |
Размер файла | 368,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
УДК 004.89; 004.942
1ФГБОУВПО «Ивановский государственный политехнический университет», г. Иваново, Российская Федерация
2ФГБОУВПО «Норильский индустриальный институт», г. Норильск, Российская Федерация
3ФГКВОУВПО «Военно-космическая академия имени А.Ф. Можайского», г. Санкт-Петербург, Российская Федерация
Моделирование редуцированных баз знаний при интеграции инвестиционных проектов в энергетике
Н.Н. Елин1, С.Г. Фомичева2, Т.Н. Елина2, В.А. Мыльников3
E-mail: yelinnn@mail.ru, mva_etn@mail.ru
Авторское резюме
инвестиционный нечеткий редуцирование знание
Состояние вопроса: Современные экспертные системы предусматривают формирование баз знаний экспертами априорно. При интеграции сложных проектов собрать группу экспертов по разным предметным областям часто не представляется возможным, в связи с этим актуальной является задача автоматического формирования баз знаний. В существующих решениях поставленной задачи исходная мощность аксиом равна декартовому произведению мощностей интегрируемых баз. Для снижения этого показателя необходима методика автоматического редуцирования исходных баз знаний.
Материалы и методы: Использованы иерархические нейро-нечеткие модели продукционных баз знаний.
Результаты: Предложена методика оценки инвестиционных проектов на основе онтологической модели знаний. Разработана нейро-нечеткая модель многокритериальной оценки проектов. Приведена методика автоматического редуцирования баз знаний интегрируемых проектов.
Выводы: Предложенные методы позволяют автоматизировать процессы поиска и отбора инвестиционных проектов, а также осуществлять оценку возможности и целесообразности их объединения с обеспечением согласованности и непротиворечивости знаний. Данный подход является наиболее эффективным для высокозатратных проектов энергетической отрасли.
Ключевые слова: моделирование, базы знаний, нейро-нечеткие информационные системы, онтологическая модель знаний, автоматизация, инвестиционная деятельность.
Abstract
Background: Modern expert systems provide for the a priori formation of expert knowledge bases. When integrating complex projects, it is often impossible to gather a group of experts in different subject areas, so it is quite urgent to solve the problem of automatic creation of knowledge bases. In the existing solutions to this problem, the initial capacity of the axioms is equal to the Cartesian product of the powers of the bases being integrated. Lowering this figure requires a technique of automatic reduction of initial knowledge bases.
Materials and methods: Hierarchical neuro-fuzzy models of productive knowledge bases were used.
Results: A method has been suggested to evaluate investment projects based on the ontological model of knowledge. A neuro-fuzzy model of the project multicriteria evaluation has been developed. A technique of automatic knowledge bases reduction of projects being integrated has been described.
Conclusions: The proposed methods automate the search and selection of investment projects and allow assessing the possibility and expediency of their integration ensuring the coherence and consistency of knowledge. This approach is most effective for high-cost projects in the energy industry.
Key words: simulation, knowledge bases, neuro-fuzzy information systems, ontological knowledge model, automation, investment activity.
В процессе инвестиционной деятельности компания неизбежно сталкивается с ситуацией отбора проектов с различными качественными и количественными характеристиками для наиболее полного достижения поставленных целей [1]. Часто возникает ситуация, когда потребность инвестора не может быть удовлетворена за счет реализации одного проекта. Представленные на рынке проекты могут пересекаться по некоторым признакам и удовлетворять лишь часть потребностей предприятия. В этом случае актуальной становится задача формирования комплексного проекта из нескольких, предлагаемых для инвестирования. Кроме того, учитывая высокую стоимость проектов в отраслях энергетики, объединение нескольких проектов в один значительно снизит затраты на их реализацию, в основном за счет снижения издержек на управление и сопровождение.
Оценка инвестиционных проектов проводится с применением онтологической модели знаний. Данная модель включает набор онтологий в виде графов типа «дерево» (O = (C,R), где C - набор вершин или понятий, R - набор ребер или отношений), представляющих собой детальное описание предметных областей, к которым относятся проекты. Онтологии предлагается строить на базе классификатора УДК. Онтологии верхнего уровня определяют принадлежность проекта к области знаний, например: математика, физика, философия, прикладные науки и т.д. Онтологии второго уровня ориентированы на конкретную предметную область в рамках указанной области знаний, например, для физики это может быть механика, оптика, термодинамика и т.д. Онтологии третьего уровня ориентированы на конкретную задачу, например, для термодинамики это может быть общая теория теплоты, теплопроводность, теория тепловых двигателей и др.
При оценке проекта определяется его принадлежность к конкретной онтологии On. Если потребности инвестора охватывают более, чем одну онтологию (рис. 1,а,б), проводится анализ совместимости проектов с применением метода объединения онтологий [2]. В результате объединения онтологии предметных областей двух проектов O1 и O2 создается новая онтология
О1+2 = О1 О2 = (С1 С2, R1 R2), которая представлена понятиями входных онтологий, но при этом может иметь дополнительные связи и ограничения. При оценке О1+2 возможны три варианта развития событий:
1) новая онтология будет отклонена в связи с логической несогласованностью, т. е. проекты объединить невозможно (методы оценки логической согласованности онтологий выходят за рамки данной статьи);
2) новая онтология является правильной и содержит качественно новое знание, удовлетворяющее требованиям инвестора, т. е. объединение проектов является актуальным (рис. 1,в);
3) новая онтология является правильной, но либо не удовлетворяет требованиям инвестора, либо является менее эффективной, чем использование O1 и O2 в отдельности, тогда проекты нужно реализовывать отдельно, без объединения (рис. 1,г).
Критерием эффективности объединения является степень соответствия комплексного проекта запросам инвестора, которая может быть выражена в долях единицы. Целевая функция в этом случае представлена следующим выражением:
(1)
где - множество понятий предметной области инвестиционного запроса; - множество понятий предметной области проекта; - множество критериев оценки проекта по требованиям инвестора; - множество критериев оценки инвестиционного проекта.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
а)б)
Размещено на http://www.allbest.ru/
в)
Размещено на http://www.allbest.ru/
г)
Рис. 1. Соответствие онтологий запросам инвестора: а - онтология O1; б - онтология O2; в - объединенная онтология О1+2, соответствующая запросам инвестора; г - объединенная онтология О1+2, не соответствующая запросам инвестора
Практическую реализацию как исходных, так и объединенных онтологий выполним в виде нейро-нечетких продукционных моделей.
Определение 1. Нечеткой продукционной моделью (Rule-Based Fuzzy Models System) будем называть множество нечетких продукционных правил вида «Если «А», то «В»» (где «А» - предпосылка (антецедент) и «В» - заключение (консеквент) данного правила в виде нечетких высказываний) для определения степени истинности заключений в зависимости от известной степени истинности предпосылок, основанных на следующих компонентах:
· схема нечеткого вывода заключений;
· база нечетких продукционных правил;
· процедура введения нечеткости (fuzzification);
· процедура агрегирования (aggregation) степеней истинности нечетких высказываний предпосылок по каждому из нечетких продукционных правил;
· процедура активизации (activation) заключений каждого из нечетких продукционных правил;
· процедура аккумулирования (accumulation) активизированных заключений всех нечетких продукционных правил для каждой выходной переменной;
· процедура приведения к четкости (defuzzification) для каждой аккумулированной выходной переменной;
· процедура параметрической оптимизации конечной базы нечетких правил.
Определение 2. Нейро-нечеткой продукционной моделью называется нечеткая продукционная модель, параметры базы правил которой адаптируются с помощью нейронной сети.
Отметим, что при объединении понятий входных онтологий резко возрастают как мощности множеств понятий предметной области, так и мощности критериев оценки проектов, что, очевидно, приводит к обострению проблемы «проклятия размерностей». В данном случае - к экспоненциальному росту количества продукционных правил. Поэтому важно на этапе проектирования архитектуры нечеткой продукционной модели априорно оценить мощность базы продукционных правил.
В целом ряде работ [3, 4] доказаны теоремы об универсальной аппроксимации нечетких продукционных моделей. Доказательства этих теорем опираются на теоремы Вейерштрасса и Стоуна-Вейерштрасса в том смысле, что в основе универсального характера аппроксимационных возможностей нечетких продукционных моделей лежит их способность аппроксимизировать любую полиномиальную функцию, которой, в свою очередь, можно аппроксимизировать любую непрерывную функцию.
Конструктивным результатом доказательства этих теорем является оценка необходимого количества правил модели для заданной точности аппроксимизации, которое определяется с помощью минимального расстояния между центроидами двух смежных нечетких множеств, представляющих заключения правил, обозначаемых как yi и yi+1:
(2)
где - точность аппроксимации; g - максимальное число перекрытий (overlapping) нечетких множеств входных переменных на компактном множестве Х (для одной входной переменной g = 2).
Для одной входной переменной необходимое количество правил определяется выражением . Очевидно, что при стремлении к нулю, количество правил неограниченно, но для заданного значения , количество правил может быть оценено с помощью (2).
Однако данные результаты не дают ответа на вопрос: какую конкретно модель необходимо выбрать и сколько должно быть правил для аппроксимации заданной функции. В нечетких продукционных моделях имеет место экспоненциальный рост количества правил при стремлении к нулю ошибки аппроксимации, что приводит к существенному росту вычислительной сложности и их практической неприменимости [5]. Так, при полном покрытии континуума предметных переменных модель должна иметь n mm нечетких продукционных правил, где m - количество входных переменных нечеткой продукционной модели. При m = 9 уже получаем 99 = 387420489 правил.
С практической точки зрения достаточно иметь приемлемую для адекватного принятия решения точность аппроксимации. В этом случае задача сводится к поиску компромисса между указанной точностью и количеством правил модели.
Отметим, что добиться существенного уменьшения количества правил можно путем формирования иерархических нечетких продукционных моделей (аддитивные m-входные иерархические нечеткие модели), включающих в себя (m-1) входных нечетких продукционных моделей. Доказано, что такие модели также являются универсальными аппроксиматорами.
Проведение полной многокритериальной оценки каждого поступающего в систему проекта осуществляется с использованием нейро-нечеткого классификатора, входящего в состав многоагентной информационной системы сопровождения проектов инновационных бизнес-инкубаторов [6].
Результирующая архитектура иерархий ANFIS-сетей нейро-нечеткого классификатора имеет вид, представленный на рис. 2. Редукция базы знаний произведена за счет композиции лингвистических входных переменных в иерархию деревьев решений с «легкими» узлами [7]. При этом необходимое количество правил для обеспечения согласованности соответствующей онтологии оценивается снизу значением n 3 33 + 10 22 = 81 + 40 = 121. Такое количество правил допускает настройку (адаптацию) их параметров в режиме реального времени.
Размещено на http://www.allbest.ru/
Рис. 2. Результирующая архитектура иерархий ANFIS-сетей нейро-нечеткого классификатора
На вход подаются атрибуты проектов, обозначенные векторами kP и oP как нечеткие лингвистические переменные с гауссовскими функциями принадлежности. Каждый узел UP системы нечеткого вывода типа ANFIS использует механизм нечеткого вывода Такаги-Сугено. Выходом классификатора является степень принадлежности проекта к определенной классификационной области Ol.
В результате оценки каждый проект представляется в виде многомерного нечеткого OLAP-куба с измерениями .
Каждый такой куб представляет собой нечеткую многомерную оценку проекта, относящегося к определенному онтологическому дереву Ol. Поскольку в рассматриваемой задаче запросы инвестора охватывают более чем одну онтологию, необходимо провести операцию объединения кубов . Полученный в результате этой операции комплексный проект представлен в виде нечеткого OLAP-куба с той же совокупностью измерений, относящийся к двум онтологиям .
Оценка соответствия значений критериев проекта и инвестиционного запроса рассчитывается как для критериев проекта и для оценки онтологического соответствия. Целевая функция (1) в этом случае примет следующий вид:
(3)
где hi - вес критерия, оцениваемый инвестором по 10-балльной шкале.
В качестве примера рассмотрим применение предлагаемой методики для инвестиционной деятельности ОАО «Норильско-Таймырская энергетическая компания» (НТЭК) в рамках «Запроса предложений на право заключения договоров на проектные работы по замене изношенного оборудования на объектах НТЭК» [8] (онтология 658.5;658.26;621.31).
Нечеткий поиск среди существующих инвестиционных проектов в рамках данного запроса определил возможность внедрения следующих проектов: P1 - «Моделирование и расчет теплового состояния трубопроводов в условиях низких отрицательных температур окружающей среды» [9]; P2 - «Разработка автономной адаптивной системы управления энергетической системой»; P3 - «Ветроэнергетические установки в условиях Крайнего Севера».
Проект P1 изначально относится к онтологии 658.26;004.942, P2 - 621.316.722.076.12; 658.26 и P3 - 658.26;65.011. Объединение онтологий проектов для удовлетворения инвестиционной потребности предприятия показало целесообразность формирования комплексного проекта P1+2 и самостоятельной реализации проекта P3.
Для оценки проектов и проведения операции P1 P2 выделим критерии, актуальные для данного инвестиционного предложения (см. таблицу).
Результат формирования нечетких многомерных кубов для P1 и P2 по трем измерениям {время; актуальность; степень готовности} представлен на рис. 3, а результат операции их объединения по измерениям {актуальность; степень готовности} при значении критерия «время», равном «сейчас», - на рис. 4. Очевидно, что за счет объединения проектов актуальность комплексного проекта повысилась. А итоговая оценка проекта составила f(C,K) = 0,98.
Значения нечетких критериев оценки проектов
Критерий |
Минимальное требуемое инвестором значение |
Вес |
Проект P1 |
Проект P2 |
|||
значение |
степень соответствия |
значение |
степень соответствия |
||||
Группа U1. Оценка проекта |
|||||||
Степень готовности |
0,8 «очень высокая» |
10 |
0,8 |
1 |
1 |
1 |
|
Степень актуальности |
0,9 «высокая» |
9 |
0,7 |
0,8 |
0,9 |
1 |
|
Степень устойчивости |
1 «абсолютная» |
10 |
1 |
1 |
1 |
1 |
|
Степень соответствия инвестиционной потребности |
1 «полное» |
10 |
0,7 |
0,7 |
0,8 |
0,8 |
|
Длительность |
0,3 «средняя» |
8 |
0,1 |
1 |
0,3 |
1 |
|
Степень корректности используемых моделей |
1 «очень высокая» |
9 |
1 |
1 |
1 |
1 |
|
Уникальность |
0,5 «средняя» |
6 |
0,8 |
1 |
0,6 |
1 |
|
Группа U2. Оценка разработчиков |
|||||||
Уровень квалификации исполнителей |
0,8 «высокий» |
9 |
0,9 |
1 |
0,7 |
0,9 |
|
Опыт разработки проектов |
0,5 «достаточный» |
7 |
0,7 |
1 |
0,4 |
0,8 |
|
Опыт внедрения проектов |
0,3 «небольшой» |
5 |
0,5 |
1 |
0 |
0 |
|
Наличие научных публикаций |
0,5 «среднее» |
5 |
0,7 |
1 |
0,5 |
1 |
|
Группа U3. Оценка полученных результатов |
|||||||
Степень надежности |
0,8 «высокая» |
8 |
0,8 |
1 |
0,9 |
1 |
|
Степень новизны |
0,5 «средняя» |
5 |
0,6 |
1 |
0,6 |
1 |
|
Группа U4. Экономическая оценка проекта |
|||||||
Эффективность инвестиций |
0,5 «средняя» |
7 |
0,5 |
1 |
0,8 |
1 |
|
Возможность адаптируемости |
0,7 «выше среднего» |
5 |
0,8 |
1 |
0,9 |
1 |
|
Возможность интеграции |
0,9 «очень высокая» |
8 |
1 |
1 |
1 |
1 |
|
Степень открытости |
0,5 «средняя» |
3 |
0,5 |
1 |
0,7 |
1 |
|
Группа U5. Соответствие онтологии проекта заявленной инвестором онтологии |
|||||||
Соответствие проекта предметной области инвестора |
1 «полное» |
10 |
1 |
1 |
1 |
1 |
|
Соответствие инвестиционного запроса предметной области проекта |
0,5 «частичное» |
10 |
0,3 |
0,6 |
0,2 |
0,4 |
|
Итоговая оценка f(C,K) |
0,93 |
0,89 |
Размещено на http://www.allbest.ru/
Рис. 3. Результаты многокритериальной оценки проектов Y1P и Y2P
Размещено на http://www.allbest.ru/
Рис. 4. Срез многомерного куба оценки комплексного проекта {степень готовности; актуальность} при значении времени «сейчас»
Рассмотренный метод оценки инвестиционных проектов с точки зрения их соответствия требованиям инвесторов на основе нечетких OLAP-кубов и технологии Data Mining [10] позволяет автоматизировать процессы поиска и отбора инвестиционных проектов, а также осуществлять оценку возможности и целесообразности их объединения. Формирование комплексных проектов с использованием предлагаемого подхода позволит поддерживать логическую согласованность и непротиворечивость понятий и связей между ними, что является основой для формирования единой проектной базы, которая позволит инвесторам осуществлять более качественный и быстрый поиск проектов, а разработчикам просматривать актуальные инвестиционные потребности.
Список литературы
1. Технико-экономическое обоснование выбора варианта эксплуатации теплоизолированных водоводов при надземной прокладке в условиях Крайнего Севера / В.Е. Мизонов, Н.Н. Елин, Т.Н. Елина, В.А. Мыльников // Промышленная энергетика. - 2014. - № 5. - С. 38-42.
2. Тузовский А.Ф. Метод объединения онтологий предметных областей знаний // Известия Томского политехнического университета. - 2006. - Т. 309, № 7. - С. 138-141.
3. Glimm J. Theorem 1, A Stone-Weierstrass Theorem for C*-algebras // Annals of Mathematics, Second Series. - Sep., 1960. - Vol. 72, No. 2. - P. 216-244. DOI: 10.2307/1970133.
4. Kosko B. Fuzzy Systems as Universal Approximators // IEEE Trans. on Computers. - 1994. - Vol. 43, № 11. - P. 1329 - 1333. DOI: 10.1109/12.324566.
5. Натекин А.Г. Оптимизация нечетких нейронных классификаторов с помощью модельно-ориентированного кластерного анализа // Идентификация систем и задачи управления: тр. IX Междунар. конф. SICPRO'12. Москва, 30 января - 2 февраля 2012 г. - М., 2012. - С. 520-546.
6. Мультиагентная информационная система сопровождения проектов инновационных бизнес-инкубаторов / С.Г. Фомичева, Т.Н. Елина, С.С. Панченко, И.С. Беляев // Современные тенденции в науке и образовании: сб. науч. тр. по материалам Междунар. науч.-практ. конф. 3 марта 2014 г. В 6 ч. Ч. II. - М.: АР-Консалт, 2014. - С. 126.
7. Рогозин О.В., Жиряков С.М. Метод повышения точности нечеткого вывода в слабо формализованных задачах // Приборы. - 2008. - № 4. - С. 48-52.
8. Закупочная деятельность ОАО «Норильско-таймырская энергетическая компания» http://www.oao-ntek.ru/index.php/zakupochnaya-deyatelnost/zakupki.html.
9. Моделирование теплового состояния поперечного сечения трубопровода при промерзании теплоизоляции / В.Е. Мизонов, Н.Н. Елин, А.В. Попелышко, В.А. Мыльников // Вестник ИГЭУ. - 2013. - Вып. 2. - С. 67-70.
10. Технологии анализа данных. Data Mining, Visual Mining, Text Mining, OLAP / А.А. Барсегян, М.С. Куприянов, В.В. Степаненко, И.И. Холод. - СПб.: БХВ-Петербург, 2007. - 384 с.
Елин Николай Николаевич,
ФГБОУВО «Ивановский государственный политехнический университет», доктор технических наук, профессор, зав. кафедрой гидравлики, теплотехники и инженерных сетей, е-mail: yelinnn@mail.ru
Фомичева Светлана Григорьевна,
ФГБОУВПО «Норильский индустриальный институт», кандидат технических наук, профессор, зав. кафедрой информационных систем и технологий, е-mail: levikha@rambler.ru
Елина Татьяна Николаевна,
ФГБОУВПО «Норильский индустриальный институт», кандидат экономических наук, доцент кафедры информационных систем и технологий, е-mail: elinatn@yandex.ru
Мыльников Владимир Аркадьевич,
ФГКВОУВПО «Военно-космическая академия имени А.Ф. Можайского», кандидат технических наук, доцент кафедры 63, е-mail: mva_etn@mail.ru
Размещено на Allbest.ru
Подобные документы
Теоретические основы инвестиционного проектирования. Виды эффективности и критерии оценки эффективности инвестиционных проектов для ТЭС. Обзор использования парогазовых установок в энергетике. Влияние внедрения проекта на стоимостные показатели станции.
дипломная работа [2,1 M], добавлен 09.06.2011Психолого-педагогические основы проверки знаний, умений и навыков по физике. Основные функции и формы проверки. Методика тестового контроля знаний, виды тестов по физике. Систематизация знаний по физике при подготовке к централизованному тестированию.
дипломная работа [3,6 M], добавлен 13.10.2009Определение капитальных вложений, ежегодных издержек передачи и распределения электрической энергии. Материальные затраты на все виды ремонтов и техническое обслуживание электросетей и электрооборудования. Экономическая оценка инвестиционных проектов.
курсовая работа [566,2 K], добавлен 19.11.2012Разработка методики и внедрение модели единой автоматизированной системы контроля качества электроэнергии (АСККЭ) в регионе на напряжение от 0,4 кВ до 220 кВ с одновременным и непрерывным контролем и управлением показателей качества электроэнергии (ПКЭ).
автореферат [2,6 M], добавлен 07.09.2010Электрический пробой газов и диэлектриков. Вольт-секундные характеристики изоляции. Разработка импульсного генератора высоких напряжений. Моделирование и построение математической модели, позволяющей проводить расчет электрического разряда в жидкости.
дипломная работа [3,4 M], добавлен 26.11.2011Построение рациональных эксплуатационных режимов асинхронного двигателя, выбор системы управления. Исследование двухмассового динамического стенда на базе математической модели. Техническая разработка лабораторного стенда на базе асинхронного двигателя.
магистерская работа [2,0 M], добавлен 20.10.2015Препятствия для внешнего финансирования энергосберегающих проектов со стороны финансовых учреждений. Типы технологий, которые дают значительный энергосберегающий эффект. Энергосберегающие технологии строительства в Беларуси. Пассивные дома в Европе.
реферат [25,8 K], добавлен 22.12.2012Структура и задачи промышленного комплекса в условиях рыночной конкуренции. Анализ объемов производства и потребления электроэнергии в мире. Проблемы и перспективы развития энергетики в России. Реализация проектов в области солнечно-дизельной генерации.
курсовая работа [52,8 K], добавлен 22.11.2019Выбор марки кабеля и проводов для линии от силового пункта до электроприемников. Расчет потерь электроэнергии за сутки во всех элементах схемы, токов однофазного короткого замыкания. Оценка отклонения напряжения низковольтной распределительной сети.
курсовая работа [6,6 M], добавлен 29.09.2014Вычисление и исследование магнитной восприимчивости двухмерной модели Хаббарда в приближении статических флуктуаций при наличии сильных корреляций в электронной подсистеме. Сравнение с точным решением одномерной модели Хаббарда в магнитном поле.
статья [245,1 K], добавлен 22.06.2015