Расчетный анализ потерь в стали асинхронных двигателей при питании от преобразователей частоты с несинусоидальным выходным напряжением
Спектр и амплитуды гармоник питающего напряжения. Применение конечно-элементного моделирования электромагнитных потерь в асинхронном двигателе с реализацией векторной модели магнитного гистерезиса с учетом перемагничивания стали по частичным циклам.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 02.12.2018 |
Размер файла | 67,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Расчетный анализ потерь в стали асинхронных двигателей при питании от преобразователей частоты с несинусоидальным выходным напряжением
Ю.Б. Казаков, Н.К. Швецов
ФГБОУВПО «Ивановский государственный энергетический университет имени В.И. Ленина»
г. Иваново, Российская Федерация
Авторское резюме
Состояние вопроса: В распространенных частотно-регулируемых электроприводах питание асинхронных двигателей осуществляется от преобразователей частоты с несинусоидальным выходным напряжением. В настоящее время расчет потерь в стали асинхронных двигателей при питании от источников несинусоидального напряжения производится по упрощенным методикам, не предполагающим разделение потерь в стали на составляющие, что не позволяет наиболее полно учесть потери в стали от высших гармоник питающего напряжения. В связи с этим необходима разработка более полной аналитической методики расчетного определения потерь в стали частотно-регулируемых асинхронных двигателей при питании от полигармонических источников напряжения с подтверждением результатами численного моделирования.
Материалы и методы: Спектр и амплитуды гармоник питающего напряжения определяются на основе гармонического анализа формы питающего напряжения. Для проверки предложенной методики использовано конечно-элементное моделирование электромагнитных потерь в асинхронном двигателе с реализацией векторной модели магнитного гистерезиса с учетом перемагничивания стали по частичным циклам.
Результаты: Предложена аналитическая методика расчета потерь в стали асинхронных двигателей при питании от полигармонических источников напряжения, включающая выявление спектра и амплитуд гармоник, разделение потерь в стали на потери от вихревых токов и гистерезис и определение потерь для каждой гармоники с учетом эффекта размагничивающего действия вихревых токов. Разработана конечно-элементная модель электромагнитных процессов в асинхронном двигателе при питании несинусоидальным напряжением с реализацией векторной модели магнитного гистерезиса и учетом перемагничивания стали по частичным циклам. Адекватность предложенной аналитической методики подтверждена результатами численного моделирования.
Выводы: Использование разработанной методики позволяет повысить точность расчета потерь в стали частотно-регулируемых асинхронных двигателей до 10 %, а также более точно определять электромеханические характеристики электродвигателей и их тепловое состояние.
Ключевые слова: асинхронный двигатель, широтно-импульсная модуляция напряжения, несинусоидальное питающее напряжение, потери в стали, вихревые токи, размагничивающее действие вихревых токов, магнитный гистерезис, частичные циклы перемагничивания.
Abstract
Background: Induction motors in widespread adjustable-frequency electrical drives are normally fed by frequency converters with non-sinusoidal output voltage. Steel losses in such induction motors are currently estimated by simplified techniques which cannot identify different types of steel losses including those caused by higher harmonics of supply voltage. This fact makes it urgent to develop a more complete analytical technique of steel loss calculation in adjustable-frequency induction motors fed by polyharmonic voltage sources, the results of which can be confirmed by numerical simulation methods.
Materials and methods: The spectra and magnitudes of supply voltage harmonics are determined based on wave-form analysis of the supply voltage. The developed technique has been verified by finite-element simulation of electromagnetic losses in the induction motor by implementing a vector model of magnetic hysteresis and taking into account partial cycle steel magnetization.
Results: An analytical method has been suggested to calculate steel losses in induction motors fed by polyharmonic voltage sources. The method enables determination of harmonics spectrum and magnitude, division of steel losses into eddy current losses and hysteresis losses, and estimation of these losses for each harmonic taking into account the eddy currents demagnetization effect. A finite-element model has been developed to simulate electromagnetic processes in the induction motor fed by non-sinusoidal voltage. The model development was based on implementing the vector model of magnetic hysteresis and taking into account partial cycle steel magnetization. The appropriateness of the suggested model was confirmed by numerical calculations.
Conclusions: The developed method makes it possible to increase the accuracy of steel loss estimation in adjustable-frequency induction motors up to 10 percent and to more precisely determine the electric drive electromechanical characteristics and thermal state.
Key words: induction motor, pulse-width voltage modulation, non-sinusoidal supply voltage, steel losses, eddy currents, demagnetization effect of eddy currents, magnetic hysteresis, partial magnetization cycles.
В настоящее время широкое распространение в промышленности получили частотно-регулируемые асинхронные электроприводы, в которых питание асинхронных двигателей (АД) производится от полупроводниковых преобразователей частоты (ПЧ), что позволяет регулировать амплитуду и частоту напряжения, частоту вращения и момент АД. Но часто полупроводниковые ПЧ на выходе имеют несинусоидальное напряжение. Отмечается, что потери в стали АД при несинусоидальном питающем напряжении больше, чем при синусоидальном напряжении. Величина потерь в стали АД влияет на точность определения их электромеханических характеристик и теплового состояния.
Гармонический спектр выходного напряжения ПЧ может быть очень широким [1], особенно при использовании в ПЧ широтно-импульсной модуляции (ШИМ) напряжения. Высшие гармоники питающего напряжения приводят к выделению дополнительных потерь в АД, в частности, дополнительных потерь в стали. Каждая из гармоник напряжения вызывает в стали АД потери на гистерезис и вихревые токи.
Точный расчет потерь в стали от высших гармоник несинусоидального напряжения сложен, поэтому его зачастую производят либо на основе усреднения мгновенных значений напряжения на периоде несущей частоты ШИМ [2], либо основываясь на упрощенном инженерном подходе определения потерь в стали, не предполагающем разделения потерь в стали на потери на вихревые токи и гистерезис, разработанном для синусоидального напряжения промышленной частоты [3]:
(1)
где pст.? - потери в стали от действия ?-й гармоники; f? - частота ?-й гармоники; = 1,3-1,5 - показатель степени частоты, зависящий от марки стали (данный показатель учитывает соотношение потерь на вихревые токи и гистерезис в конкретной марке стали при промышленной частоте; полные потери в стали определяются путем суммирования потерь от действия каждой гармоники).
В настоящее время расчет этих потерь в АД при питании от ПЧ производится по упрощенным методикам, не предполагающим разделение потерь в стали на составляющие, что не позволяет наиболее полно учесть потери в стали от высших гармоник напряжения. Данный подход не позволяет учитывать тот факт, что с ростом частоты соотношение потерь на вихревые токи и гистерезис не остается постоянным, поскольку потери на гистерезис пропорциональны частоте в первой степени, а потери на вихревые токи пропорциональны ее квадрату. С увеличением частоты гармоники потери в стали на вихревые токи возрастают быстрее, чем потери на гистерезис. Следовательно, показатель степени для каждой гармоники будет различен. Необходима разработка более полной методики расчетного определения потерь в стали АД при питании от полигармонических источников напряжения с подтверждением результатами численного моделирования. Для определения потерь в стали АД при питании от ПЧ с ШИМ напряжения целесообразно разделить их на вихретоковую и гистерезисную составляющие:
напряжение асинхронный двигатель сталь
(2)
где рст.осн - основные потери в стали; рг и рвх - потери на гистерезис и вихревые токи соответственно; Kг и Kвх - коэффициенты потерь на гистерезис и вихревые токи соответственно; Вэкв - эквивалентная величина магнитной индукции, усредненная по массе зубцов и ярма сердечника статора; f - частота; ma1 и mz1 - масса ярма и зубцов сердечника статора соответственно.
Эквивалентную усредненную величину магнитной индукции можно определить из соотношения
(3)
Из (3) следует
где pa1 и pz1 - потери в стали ярма и зубцов статора соответственно; Ba1 и Bz1 - магнитная индукция в ярме и зубцах статора соответственно.
Коэффициенты Кг и Квх могут зависеть от частоты и магнитной индукции [4, 5]. Данные зависимости имеют сложный характер, но в рабочем диапазоне индукций изменением указанных коэффициентов можно пренебречь.
Коэффициент потерь на вихревые токи рассчитывается по формуле [6]
(4)
где d - толщина листа стали, м; ст - удельное электрическое сопротивление стали, Ом*м; ст - плотность стали, кг/м3.
Считая величину потерь в стали от первой гармоники известной, коэффициент потерь на гистерезис можно выразить из (2) с учетом (4):
(5)
где mст - суммарная масса ярма и зубцов сердечника статора, кг.
Примем, что эквивалентная величина магнитной индукции в сердечнике статора от первой гармоники пропорциональна первой гармонике магнитной индукции в рабочем зазоре АД. Тогда
(6)
где B1 - амплитуда первой гармоники индукции в зазоре АД; U1 - амплитуда первой гармоники питающего напряжения; f1 - частота первой гармоники питающего напряжения; w - число витков обмотки статора; Sмаг площадь поперечного сечения магнитопровода на пути основного потока; kоб1 - обмоточный коэффициент; k - коэффициент пропорциональности.
Эквивалентная величина магнитной индукции в сердечнике статора АД от ?-й гармоники пропорциональна ?-й гармонике магнитной индукции в рабочем зазоре АД:
(7)
где B? - амплитуда ?-й гармоники магнитной индукции в зазоре; U? - амплитуда ?-й гармоники питающего напряжения.
Основные потери в стали от действия первой гармоники магнитной индукции составляют
(8)
Основные потери в стали от действия ?-й гармоники магнитной индукции составляют
(9)
где Кв = 2,5 - эмпирический коэффициент, учитывающий увеличение потерь в стали от высших гармоник вследствие перемагничивания по частичным циклам [7].
Для высших гармоник магнитной индукции, имеющих высокие частоты, имеет место эффект размагничивающего действия вихревых токов, заключающийся в вытеснении магнитного потока из середины листа стали к его поверхности [8]. Это приводит к уменьшению потерь от вихревых токов пропорционально величине
(10)
где ? - глубина проникновения электромагнитной волны в лист стали.
Для ?-й гармоники значение ? можно определить по формуле
(11)
где - статическая магнитная проницаемость стали, определенная для первой гармоники магнитной индукции.
Тогда основные потери в стали от ?-й гармоники магнитной индукции (9) с учетом размагничивающего действия вихревых токов составляют
(12)
Коэффициент увеличения основных потерь в стали с учетом (8) и (12) составит
(13)
где Kг определяется по соотношению (5).
С учетом добавочных потерь коэффициент суммарного увеличения потерь в стали рассчитывается как
(14)
где рст.доб - сумма добавочных потерь в стали.
Согласно данной методике был произведен расчет увеличения потерь в стали в тяговом АД мощностью 170 кВт при питании от ПЧ с ШИМ напряжения с параметрами: число импульсов на полупериоде основной частоты N = 10; относительная скважность импульсов = 0,542. Расчет проводился для двух форм импульсного напряжения - с постоянной шириной импульсов и с синусоидально изменяющейся шириной импульсов (синусоидальная ШИМ) (см. рисунок).
Результаты расчета сведены в табл. 1.
Таблица 1. Коэффициенты увеличения потерь в АД при питании импульсным напряжением
Форма импульсного напряжения |
Kст |
|
С постоянной шириной импульсов |
1,124 |
|
Синусоидальная ШИМ |
1,056 |
Очевидно, что при питании АД от ПЧ с синусоидальной ШИМ потери в стали увеличиваются в меньшей степени, чем при питании импульсами постоянной ширины.
Предложенная аналитическая методика основывается на предполагаемом распределении магнитной индукции в АД с использованием эквивалентной усредненной величины ВЭКВ. Точное распределение магнитной индукции и, следовательно, точное определение потерь в стали можно получить при численном расчете магнитного поля в АД. Конечно-элементная модель АД с определением электромагнитных потерь в стали была разработана в пакете Ansys Maxwell. В модели реализована векторная модель магнитного гистерезиса, что позволяет учитывать перемагничивание стали по частичным циклам. Это особенно важно для точного учета потерь на гистерезис при несинусоидальном изменении напряженности магнитного поля. Расчет потерь на гистерезис в конечно-элементной модели АД производится исходя из полученной площади петли гистерезиса, а расчет потерь на вихревые токи основывается на определении вихретоковой компоненты уравнения Штеймеца с использованием коэффициента Kвх.
С использованием конечно-элементной модели АД был проведен ряд расчетов нестационарного магнитного поля в АД при питании от источника синусоидального напряжения и от ПЧ с ШИМ напряжения. Для установившегося режима работы АД были определены величины потерь на вихревые токи (pвх), потерь на гистерезис (pг), суммарных потерь в стали (pст) при указанных формах питающего напряжения (см. рисунок). Результаты расчетов сведены в табл. 2. Следует отметить, что подробная численная конечно-элементная модель требовала для своего расчета значительного времени работы ПК (нескольких часов расчетного времени, по сравнению с несколькими десятками секунд при расчете по предложенной аналитической методике).
Таблица 2. Результаты определения потерь в стали на основе численного расчета электромагнитного поля
Форма напряжения |
рвх, Вт |
ргс, Вт |
рст, Вт |
|
Синусоидальное питание |
321,1 |
850,0 |
1171,1 |
|
Постоянная ширина импульсов |
333,2 |
879,2 |
1212,4 |
|
Синусоидальная ШИМ |
554,3 |
1108,2 |
1662,5 |
Размещено на http://www.allbest.ru/
Определено расхождение между результатами, полученными аналитическим методом и с помощью численного расчета. По рассчитанным величинам потерь в стали были определены коэффициенты увеличения потерь в стали (Kчис), рассчитана относительная погрешность между Kчис и коэффициентами увеличения потерь, рассчитанными с использованием аналитического метода: Kан - коэффициент увеличения потерь в стали без учета разделения потерь (по методике, приведенной в [3]); Kан.разд - с учетом разделения потерь; ан - погрешность аналитического метода без учета разделения потерь относительно численного метода; ан.разд - относительная погрешность аналитического метода с учетом разделения потерь. Результаты расчетов сведены в табл. 3.
Таблица 3. Коэффициенты увеличения потерь в стали при несинусоидальном питании
Форма напряжения |
Kчис |
Kан |
Kан.разд |
ан,% |
ан.разд,% |
|
Постоянная ширина |
1,420 |
1,237 |
1,309 |
12,9 |
7,8 |
|
Синусоидальная ШИМ |
1,035 |
1,087 |
1,139 |
5,0 |
10,0 |
Численный расчет показал увеличение потерь в стали АД при питании импульсами постоянной ширины на 42 %, по сравнению с увеличением на 3,5 % при питании от ПЧ с синусоидальной ШИМ. Максимальное расхождение коэффициентов увеличения потерь, полученных аналитически с учетом разделения потерь и полученных численным методом, не превышает 10 %. При расчете без учета разделения потерь максимальное расхождение результатов не превышает 12,9 %, при значительно меньшем расчетном времени.
Заключение
Расчетный анализ потерь в стали асинхронных двигателей при питании от преобразователей частоты с несинусоидальным выходным напряжением необходимо проводить с выявлением спектра и амплитуд гармоник напряжения, разложением потерь в стали на вихретоковую и гистерезисную составляющие и определением потерь для каждой гармоники с учетом эффекта размагничивающего действия вихревых токов и перемагничивания стали по частичным циклам.
Разработанная методика определения потерь в стали частотно-регулируемых асинхронных двигателей при питании от полигармонических источников напряжения позволяет повысить точность расчета потерь в стали асинхронных двигателей до 10 %, а также более точно определять электромеханические характеристики электродвигателей и их тепловое состояние.
Список литературы
1. Казаков Ю.Б., Швецов Н.К. Моделирование энергоэффективности тягового асинхронного двигателя при питании от преобразователя частоты с широтно-импульсной модуляцией напряжения // Вестник ИГЭУ. - 2013. - Вып. 3. - С. 23-27.
2. Браславский И.Я. Энергосберегающий асинхронный электропривод. - М.: Изд. центр «Академия», 2004. - 256 с.
3. Казаков Ю.Б. Энергоэффективность работы электродвигателей и трансформаторов при режимных и конструктивных вариациях. - М.: Изд. дом МЭИ, 2013. - 152 с.
4. A. Boglietti, A. Cavagnino, D.M. Ionel. A general model to predict the iron losses in inverter fed induction motors // IEEE Transactions Industrial Applications. - 2010. - Vol. 46, No. 5. - Р. 1882-1890.
5. Popescu M., Miller T. A general model for estimating the laminated steel losses under PWM voltage supply // IEEE Transactions Industrial Applications. - 2010. - Vol. 46, No. 4. - Р. 1389-1396.
6. Радин В.И., Брускин Д.Э., Зорохович А.Е. Электрические машины: Асинхронные машины: учеб. для электромех. спец. вузов / под ред. И.П. Копылова. - М.: Высш. шк., 1988. - 328 с.
7. Васютинский С.Б. Вопросы теории и расчета трансформаторов. - Л.: Энергия, 1970. - 432 с.
Размещено на Allbest.ru
Подобные документы
Виды потерь мощности в асинхронной машине (АСМ), особенности их определения. Электрические (переменные) и магнитные (постоянные) потери. Расчет потерь в меди статора и ротора, в стали статора, механические потери. Регулирование частоты вращения АСМ.
презентация [1,7 M], добавлен 21.10.2013Методика учета потерь на корону. Зависимость потерь на корону от напряжения для линии электропередачи при заданных метеоусловиях. Расчет и анализ исходного режима без учета короны. Схемы устройств регулирования напряжения в электрических сетях.
дипломная работа [7,7 M], добавлен 18.03.2013Основные законы электротехники. Принцип действия электрического генератора. Образование вращающегося магнитного поля в асинхронном двигателе. Потери мощности в асинхронных машинах. Электромагнитный момент машины. Пусковой момент электродвигателя.
презентация [1,6 M], добавлен 21.10.2013Расчет электрических нагрузок промышленных предприятий. Выбор сечений проводов и определение потерь напряжения в кабельных линиях КЛ-1 и КЛ-2. Определение глубины провала напряжения при пуске асинхронных двигателей. Вычисление токов коротких замыканий.
курсовая работа [837,8 K], добавлен 11.10.2021Определение мгновенных значений напряжения и тока. Комплекс входного сопротивления линии. Режимы и основные уравнения однородной линии без потерь. Понятие стоячих волн. Нахождение индуктивной и емкостной нагрузки, амплитуды падающей и отраженной волн.
презентация [390,7 K], добавлен 28.10.2013Функционирование асинхронных машин в режиме генератора. Устройство асинхронных двигателей и их основные характеристики. Получение вращающегося магнитного потока. Создание вращающего момента. Частота вращения магнитного потока статора и скольжения.
реферат [206,2 K], добавлен 27.07.2013Структура электрических сетей, их режимные характеристики. Методика расчета потерь электроэнергии. Общая характеристика мероприятий по снижению потерь электроэнергии и определение их эффективности. Зависимость потерь электроэнергии от напряжения.
дипломная работа [2,0 M], добавлен 18.04.2012Теоретическое описание разогрева жала паяльника с учетом потерь тепла на излучение. Средства среды MathCAD для моделирования исследуемого процесса. Решение задачи в данной среде. Составление графика зависимостей температуры, соответствующих параметрам.
контрольная работа [129,4 K], добавлен 17.12.2014Предварительный расчет трансформатора и выбор соотношения основных размеров с учетом заданных значений. Определение потерь короткого замыкания, напряжения, механических сил в обмотках. Расчёт потерь холостого хода. Тепловой расчет обмоток и бака.
курсовая работа [665,1 K], добавлен 23.02.2015Разработка алгоритма и программы, реализующей расчет нагрузочных потерь активной мощности и электроэнергии. Использование среднеквадратического тока линии. Учет параметров П-образной схемы замещения. Определение суммарных годовых потерь электроэнергии.
курсовая работа [3,4 M], добавлен 28.08.2013