Опыт внедрения газоимпульсной очистки на энерготехнологических котлах и котлах промышленной и коммунальной энергетики

Рассмотрение нетрадиционных технических решений, позволяющих экономить топливо, повышать эффективность и долговечность работы оборудования. Повышение эффективности работы паровых и водогрейных котлов путем внедрения газоимпульсной очистки агрегатов.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 29.11.2018
Размер файла 532,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Опыт внедрения газоимпульсной очистки на энерготехнологических котлах и котлах промышленной и коммунальной энергетики

А. П. Погребняк

заведующий лабораторией, к.т.н.

С.И. Воеводин

ведущий научный сотрудник,

В.Л. Кокорев

главный конструктор проекта,

А.Л. Кокорев

ведущий инженер,

ОАО «НПО ЦКТИ», г. Санкт-Петербург

В нынешних экономических условиях, когда большинство предприятий решают вопросы максимального повышения эффективности своего оборудования, в т.ч. и принадлежащих им котельных, с целью снижения себестоимости производимой продукции в условиях постоянно растущих цен на энергоносители, особое внимание уделяется нетрадиционным техническим решениям, позволяющим экономить топливо, повышать эффективность и долговечность работы оборудования.

Одним из основных направлений экономии различных видов жидкого и твердого топлива (мазут, дизтопливо, уголь, торф, сланец, древесные отходы и др.) является повышение эффективности работы паровых и водогрейных котлов, технологических агрегатов, сжигающих эти виды топлива, за счет предотвращения загрязнения их поверхностей нагрева золовыми отложениями.

Длительный опыт эксплуатации паровых и водогрейных котлов, котлов-утилизаторов и других технологических агрегатов, оборудованных традиционными средствами очистки поверхностей нагрева, показали их недостаточную эффективность и надежность, что в значительной мере снижает экономичность работы (уменьшение КПД на 2-3%) и требует больших трудозатрат на производство ручной очистки. Кроме того, эти способы очистки обладают рядом других существенных недостатков, а именно:

* паровая обдувка, наряду со значительными энерго- и трудозатратами, способствует коррозионному и эрозионному износу поверхностей нагрева, особенно при сжигании высокосернистого топлива, что сокращает срок их службы в 1,5-2 раза; наличие влаги способствует затвердеванию отложений на трубах за счет сульфатизации, следствием чего являются частые остановки котлоагрегатов для ручной очистки;

* дробеочистка является сложным и энергозатратным способом очистки, требующим значительных трудозатрат в процессе его применения и при ремонте используемого оборудования, и не обеспечивающим при этом эффективной и надежной очистки из-за больших потерь дроби, а также застревания дроби в трубной системе устройства очистки и в поверхностях нагрева;

* виброочистка и ударная очистка вызывают механические повреждения очищаемых поверхностей нагрева.

Этих недостатков лишены разработанные в ОАО «НПО ЦКТИ» на основе собственных исследований, системы газоимпульсной очистки (ГИО) с малогабаритными импульсными камерами, которые предназначены для очистки от отложений конвективных поверхностей нагрева промышленных котлоагрегатов (ДКВР, ДЕ, КВ-ГМ, ПТВМ, ГМ, БКЗ и др.), а также котлов коммунальной энергетики малой мощности (от 0,5 МВт и выше). Разработанные системы ГИО обладают различной степенью автоматизации, вплоть до полностью автоматизированных.

Принцип работы системы ГИО заключается в воздействии на отложения, образующиеся на поверхностях нагрева направленных ударных и акустических волн, генерируемых за счет взрывного горения ограниченного объема газовоздушной смеси (0,01-0,1 м3), осуществляемого в импульсной камере, размещаемой вне газохода котла. За счет истечения из импульсной камеры со сверхзвуковой скоростью продуктов сгорания происходит комплексное волновое и термогазодинамическое воздействие на наружные отложения, теплообменные и ограждающие поверхности.

В качестве рабочих компонентов в системе используются: природный газ, топливный или баллонный газ (пропан) и воздух от собственного вентилятора.

Основными конструктивными элементами системы ГИО являются: импульсные камеры, сопловые блоки, коллекторы, технологический блок, блок зажигания и управления (БЗУ), комплекс управления системой (автоматизированный вариант).

Фото 1. Импульсные камеры системы ГИО

газоимпульсная очистка котел

Импульсная камера (фото 1) предназначена для организации процесса взрывного горения и представляет собой цилиндрическую емкость диаметром 159-325 мм (в зависимости от характеристик очищаемой поверхности и вида топлива) и высотой не более 1 м. Импульсная камера соединяется с газоходом котла при помощи соплового блока, который предназначен для ввода продуктов взрыва газовоздушной смеси в газоход котла и направления создаваемых ударных волн на поверхность нагрева.

Фото 2. Технологический блок системы ГИО

Технологический блок ГИО имеет габариты 250x1300 мм (фото 2) и устанавливается непосредственно около котла и выполняет все технологические функции в соответствии с алгоритмом работы системы очистки. Технологический блок включает в себя вентилятор, узел подготовки и зажигания смеси, газовую линию с арматурой и манометром.

Управление элементами технологического блока осуществляется при помощи БЗУ (фото 3), который соединен кабелем с электросетью и имеет разъемы для соединения с запальником, вентилятором и электромагнитным клапаном. БЗУ задает количество импульсов и интервал между ними.

В автоматизированном варианте ГИО комплекс управления состоит из блока управления и одного или нескольких исполнительных блоков, которые выполняют функции БЗУ. При этом запуск системы в работу осуществляется «от кнопки», а остановка и приведение в исходное состояние всех элементов системы происходит автоматически.

Периодичность очистки - от нескольких раз в сутки для котлов, работающих на твердом топливе (уголь, сланец, торф и т.п.), до одного раза в неделю при работе на природном газе. Продолжительность цикла очистки - 10-15 мин, расход газа (пропана) на цикл очистки - 0,5-2,5 кг.

Работа ГИО не оказывает вредных воздействий на обслуживающий персонал и конструктивные элементы котла.

Генерируемые импульсными камерами ударные волны распространяются во все точки газохода котла, что обеспечивает равномерную очистку поверхностей нагрева. ГИО может использоваться для очистки поверхностей нагрева, работающих в среде как нейтральных, так и агрессивных газов (SO2, HF и др.).

Система ГИО надежна в работе и проста в управлении и обслуживании, в промежутках между ревизиями котлов не требует профилактических ремонтов. Ее можно устанавливать не только на сооружаемых котлах, но и на котлах, находящихся в эксплуатации. Время простоя котла для монтажа ГИО составляет 5-10 сут. и зависит от количества монтируемых импульсных камер.

Применение ГИО кроме экономии электроэнергии за счет улучшения аэродинамики газохода и сокращения затрат за счет исключения ручной очистки, позволяет значительно повысить эффективность работы конвективных поверхностей нагрева котлов (см. таблицу). КПД паровых и водогрейных котлов, работающих на жидком и твердом топливе, за счет применения ГИО повышается на 1,5-2%, что позволяет достичь значения близкого к расчетному.

Применение ГИО на котлах различных типов дает экономический эффект, позволяющий окупать затраты на внедрение только за счет экономии топлива, в срок от полугода до года.

Фото 3. Блок зажигания и управления

В настоящее время разработана и внедряется также малогабаритная передвижная система ГИО для малых котлов предприятий коммунальной энергетики.

Размещено на Allbest.ru


Подобные документы

  • Особенности отложения примесей в паровых котлах, методы химических очисток и их влияние на надежность эксплуатации оборудования. Технологии некоторых химических очисток котлов и результаты их проведения, выполненных в ОАО "Сибтехэнерго" в разное время.

    магистерская работа [1,9 M], добавлен 02.08.2015

  • Характеристика котлов по способу организации движения рабочего тела: паровые с естественной циркуляцией; прямоточные. Схема контура естественной циркуляции. Структура потока пароводяной смеси в трубах. Сепарация как метод очистки пара от примесей.

    реферат [221,7 K], добавлен 16.05.2010

  • Классификация паровых и водогрейных котлов. Достоинства и недостатки различных конструктивных решений. Особенности двухбарабанных и жаротрубных паровых агрегатов. Схема газотурбинной установки с котлом-утилизатором и с утилизационным теплообменником.

    презентация [187,9 K], добавлен 07.08.2013

  • Особенности и принцип работы современных паровых котлов. Выбор и обоснование перевода работы котельной авиационного завода им. В.П. Чкалова на более оптимальное топливо - уголь. Расчёт теплового баланса котельного агрегата и коэффициентов избытка воздуха.

    дипломная работа [3,7 M], добавлен 31.01.2012

  • Рассмотрение истории развития способов сжигания мазута и аппаратуры, используемой для этого. Теоретические основы горения топлива. Форсунки для сжигания жидкого топлива. Конструктивные особенности паровых котлов на жидком топливе, их совершенствование.

    реферат [971,0 K], добавлен 12.06.2019

  • Общие сведения и понятия о котельных установках, их классификация. Основные элементы паровых и водогрейных котлов. Виды и свойства топлива, сжигаемого в отопительных котельных. Водоподготовка и водно-химический режим. Размещение и компоновка котельных.

    контрольная работа [572,2 K], добавлен 16.11.2010

  • Вывод тепловых сетей и водогрейных котельных на период летнего простоя. Пуск водогрейных котлов и тепловых сетей на зимний режим работы. Режимы оборудования ТЭЦ. Работа тепловых установок с промышленным и теплофикационным отбором пара и конденсацией.

    презентация [1,6 M], добавлен 23.07.2015

  • Расширение номенклатуры котлов для промышленной энергетики. Внедрение котлов с кипящим слоем при атмосферном и повышенном давлении и с циркулирующим кипящим слоем. Топочная камера котлоагрегата БКЗ-320-140 полуоткрытого типа. Расчет водяного экономайзера.

    дипломная работа [375,1 K], добавлен 12.04.2016

  • Устройство котельного и турбинного оборудования, паровых и водогрейных котлов. Классификация циркуляционных насосов. Назначение элементов тепловых схем источников и систем теплоснабжения, особенности его эксплуатации. Основные типы теплообменников.

    отчет по практике [1,2 M], добавлен 19.10.2014

  • Краткая характеристика предприятия ОАО "Куйбышевский нефтеперерабатывающий завод". Назначение и устройство оборудования котельного цеха. Тепловая схема ТЭЦ. Подготовка питательной воды. Характеристика и краткое описание котлоагрегата БКЗ100-39ГМА.

    отчет по практике [29,8 K], добавлен 05.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.