Опыт внедрения газоимпульсной очистки на энерготехнологических котлах и котлах промышленной и коммунальной энергетики
Рассмотрение нетрадиционных технических решений, позволяющих экономить топливо, повышать эффективность и долговечность работы оборудования. Повышение эффективности работы паровых и водогрейных котлов путем внедрения газоимпульсной очистки агрегатов.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 29.11.2018 |
Размер файла | 532,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Опыт внедрения газоимпульсной очистки на энерготехнологических котлах и котлах промышленной и коммунальной энергетики
А. П. Погребняк
заведующий лабораторией, к.т.н.
С.И. Воеводин
ведущий научный сотрудник,
В.Л. Кокорев
главный конструктор проекта,
А.Л. Кокорев
ведущий инженер,
ОАО «НПО ЦКТИ», г. Санкт-Петербург
В нынешних экономических условиях, когда большинство предприятий решают вопросы максимального повышения эффективности своего оборудования, в т.ч. и принадлежащих им котельных, с целью снижения себестоимости производимой продукции в условиях постоянно растущих цен на энергоносители, особое внимание уделяется нетрадиционным техническим решениям, позволяющим экономить топливо, повышать эффективность и долговечность работы оборудования.
Одним из основных направлений экономии различных видов жидкого и твердого топлива (мазут, дизтопливо, уголь, торф, сланец, древесные отходы и др.) является повышение эффективности работы паровых и водогрейных котлов, технологических агрегатов, сжигающих эти виды топлива, за счет предотвращения загрязнения их поверхностей нагрева золовыми отложениями.
Длительный опыт эксплуатации паровых и водогрейных котлов, котлов-утилизаторов и других технологических агрегатов, оборудованных традиционными средствами очистки поверхностей нагрева, показали их недостаточную эффективность и надежность, что в значительной мере снижает экономичность работы (уменьшение КПД на 2-3%) и требует больших трудозатрат на производство ручной очистки. Кроме того, эти способы очистки обладают рядом других существенных недостатков, а именно:
* паровая обдувка, наряду со значительными энерго- и трудозатратами, способствует коррозионному и эрозионному износу поверхностей нагрева, особенно при сжигании высокосернистого топлива, что сокращает срок их службы в 1,5-2 раза; наличие влаги способствует затвердеванию отложений на трубах за счет сульфатизации, следствием чего являются частые остановки котлоагрегатов для ручной очистки;
* дробеочистка является сложным и энергозатратным способом очистки, требующим значительных трудозатрат в процессе его применения и при ремонте используемого оборудования, и не обеспечивающим при этом эффективной и надежной очистки из-за больших потерь дроби, а также застревания дроби в трубной системе устройства очистки и в поверхностях нагрева;
* виброочистка и ударная очистка вызывают механические повреждения очищаемых поверхностей нагрева.
Этих недостатков лишены разработанные в ОАО «НПО ЦКТИ» на основе собственных исследований, системы газоимпульсной очистки (ГИО) с малогабаритными импульсными камерами, которые предназначены для очистки от отложений конвективных поверхностей нагрева промышленных котлоагрегатов (ДКВР, ДЕ, КВ-ГМ, ПТВМ, ГМ, БКЗ и др.), а также котлов коммунальной энергетики малой мощности (от 0,5 МВт и выше). Разработанные системы ГИО обладают различной степенью автоматизации, вплоть до полностью автоматизированных.
Принцип работы системы ГИО заключается в воздействии на отложения, образующиеся на поверхностях нагрева направленных ударных и акустических волн, генерируемых за счет взрывного горения ограниченного объема газовоздушной смеси (0,01-0,1 м3), осуществляемого в импульсной камере, размещаемой вне газохода котла. За счет истечения из импульсной камеры со сверхзвуковой скоростью продуктов сгорания происходит комплексное волновое и термогазодинамическое воздействие на наружные отложения, теплообменные и ограждающие поверхности.
В качестве рабочих компонентов в системе используются: природный газ, топливный или баллонный газ (пропан) и воздух от собственного вентилятора.
Основными конструктивными элементами системы ГИО являются: импульсные камеры, сопловые блоки, коллекторы, технологический блок, блок зажигания и управления (БЗУ), комплекс управления системой (автоматизированный вариант).
Фото 1. Импульсные камеры системы ГИО
газоимпульсная очистка котел
Импульсная камера (фото 1) предназначена для организации процесса взрывного горения и представляет собой цилиндрическую емкость диаметром 159-325 мм (в зависимости от характеристик очищаемой поверхности и вида топлива) и высотой не более 1 м. Импульсная камера соединяется с газоходом котла при помощи соплового блока, который предназначен для ввода продуктов взрыва газовоздушной смеси в газоход котла и направления создаваемых ударных волн на поверхность нагрева.
Фото 2. Технологический блок системы ГИО
Технологический блок ГИО имеет габариты 250x1300 мм (фото 2) и устанавливается непосредственно около котла и выполняет все технологические функции в соответствии с алгоритмом работы системы очистки. Технологический блок включает в себя вентилятор, узел подготовки и зажигания смеси, газовую линию с арматурой и манометром.
Управление элементами технологического блока осуществляется при помощи БЗУ (фото 3), который соединен кабелем с электросетью и имеет разъемы для соединения с запальником, вентилятором и электромагнитным клапаном. БЗУ задает количество импульсов и интервал между ними.
В автоматизированном варианте ГИО комплекс управления состоит из блока управления и одного или нескольких исполнительных блоков, которые выполняют функции БЗУ. При этом запуск системы в работу осуществляется «от кнопки», а остановка и приведение в исходное состояние всех элементов системы происходит автоматически.
Периодичность очистки - от нескольких раз в сутки для котлов, работающих на твердом топливе (уголь, сланец, торф и т.п.), до одного раза в неделю при работе на природном газе. Продолжительность цикла очистки - 10-15 мин, расход газа (пропана) на цикл очистки - 0,5-2,5 кг.
Работа ГИО не оказывает вредных воздействий на обслуживающий персонал и конструктивные элементы котла.
Генерируемые импульсными камерами ударные волны распространяются во все точки газохода котла, что обеспечивает равномерную очистку поверхностей нагрева. ГИО может использоваться для очистки поверхностей нагрева, работающих в среде как нейтральных, так и агрессивных газов (SO2, HF и др.).
Система ГИО надежна в работе и проста в управлении и обслуживании, в промежутках между ревизиями котлов не требует профилактических ремонтов. Ее можно устанавливать не только на сооружаемых котлах, но и на котлах, находящихся в эксплуатации. Время простоя котла для монтажа ГИО составляет 5-10 сут. и зависит от количества монтируемых импульсных камер.
Применение ГИО кроме экономии электроэнергии за счет улучшения аэродинамики газохода и сокращения затрат за счет исключения ручной очистки, позволяет значительно повысить эффективность работы конвективных поверхностей нагрева котлов (см. таблицу). КПД паровых и водогрейных котлов, работающих на жидком и твердом топливе, за счет применения ГИО повышается на 1,5-2%, что позволяет достичь значения близкого к расчетному.
Применение ГИО на котлах различных типов дает экономический эффект, позволяющий окупать затраты на внедрение только за счет экономии топлива, в срок от полугода до года.
Фото 3. Блок зажигания и управления
В настоящее время разработана и внедряется также малогабаритная передвижная система ГИО для малых котлов предприятий коммунальной энергетики.
Размещено на Allbest.ru
Подобные документы
Особенности отложения примесей в паровых котлах, методы химических очисток и их влияние на надежность эксплуатации оборудования. Технологии некоторых химических очисток котлов и результаты их проведения, выполненных в ОАО "Сибтехэнерго" в разное время.
магистерская работа [1,9 M], добавлен 02.08.2015Характеристика котлов по способу организации движения рабочего тела: паровые с естественной циркуляцией; прямоточные. Схема контура естественной циркуляции. Структура потока пароводяной смеси в трубах. Сепарация как метод очистки пара от примесей.
реферат [221,7 K], добавлен 16.05.2010Классификация паровых и водогрейных котлов. Достоинства и недостатки различных конструктивных решений. Особенности двухбарабанных и жаротрубных паровых агрегатов. Схема газотурбинной установки с котлом-утилизатором и с утилизационным теплообменником.
презентация [187,9 K], добавлен 07.08.2013Особенности и принцип работы современных паровых котлов. Выбор и обоснование перевода работы котельной авиационного завода им. В.П. Чкалова на более оптимальное топливо - уголь. Расчёт теплового баланса котельного агрегата и коэффициентов избытка воздуха.
дипломная работа [3,7 M], добавлен 31.01.2012Рассмотрение истории развития способов сжигания мазута и аппаратуры, используемой для этого. Теоретические основы горения топлива. Форсунки для сжигания жидкого топлива. Конструктивные особенности паровых котлов на жидком топливе, их совершенствование.
реферат [971,0 K], добавлен 12.06.2019Общие сведения и понятия о котельных установках, их классификация. Основные элементы паровых и водогрейных котлов. Виды и свойства топлива, сжигаемого в отопительных котельных. Водоподготовка и водно-химический режим. Размещение и компоновка котельных.
контрольная работа [572,2 K], добавлен 16.11.2010Вывод тепловых сетей и водогрейных котельных на период летнего простоя. Пуск водогрейных котлов и тепловых сетей на зимний режим работы. Режимы оборудования ТЭЦ. Работа тепловых установок с промышленным и теплофикационным отбором пара и конденсацией.
презентация [1,6 M], добавлен 23.07.2015Расширение номенклатуры котлов для промышленной энергетики. Внедрение котлов с кипящим слоем при атмосферном и повышенном давлении и с циркулирующим кипящим слоем. Топочная камера котлоагрегата БКЗ-320-140 полуоткрытого типа. Расчет водяного экономайзера.
дипломная работа [375,1 K], добавлен 12.04.2016Устройство котельного и турбинного оборудования, паровых и водогрейных котлов. Классификация циркуляционных насосов. Назначение элементов тепловых схем источников и систем теплоснабжения, особенности его эксплуатации. Основные типы теплообменников.
отчет по практике [1,2 M], добавлен 19.10.2014Краткая характеристика предприятия ОАО "Куйбышевский нефтеперерабатывающий завод". Назначение и устройство оборудования котельного цеха. Тепловая схема ТЭЦ. Подготовка питательной воды. Характеристика и краткое описание котлоагрегата БКЗ100-39ГМА.
отчет по практике [29,8 K], добавлен 05.12.2013