Молекулярно-динамическое моделирование осаждения металлического нанокластера на подложку
Рассмотрение зависимости полной кинетической температуры кластера и температуры в области контакта кластера от числа шагов по времени. Анализ начального и конечного положения кластера и подложки. Ознакомление с результатами численных экспериментов.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 29.10.2018 |
Размер файла | 157,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Институт теоретической и прикладной механики им. С.А. Христиановича
Молекулярно-динамическое моделирование осаждения металлического нанокластера на подложку
Физическая система и метод исследования
А.В. Уткин, И.Ф. Головнев, В.М. Фомин e-mail:utkin@itam.nsc.ru
630090, Новосибирск
При помощи метода молекулярной динамики было проведено исследование влияния скоростей и углов падения нанокластера на процесс осаждения на подложку.
Материал нанокластеров и подложки был выбран одинаковым (медь), а взаимодействие атомов как внутри подложки и нанокластера, так и между атомами подложки и нанокластера описывалось многочастичным EAM (метод внедренного атома) потенциалом [1]. В численных экспериментах моделирование проводилось для кластеров диаметром в интервале скоростей от 10 до 800 м/с. В приводимых ниже численных экспериментах подложка состояла из 111656 атомов. Для имитации бесконечной подложки, положение которой в пространстве не меняется, использовался хорошо апробированный в численных экспериментах прием искусственной вязкости, которая действовала на атомы подложки [2]. Это также позволило имитировать диссипацию энергии, приносимой кластером, в бесконечную подложку. В начальный момент времени задавалась скорость кластера, которая являлась контролируемым внешним параметром. В качестве основных характеристик, позволяющих проанализировать процесс осаждения кластеров на подложку, были выбраны следующие физические параметры: кинетические температуры (этот термин используется для подчеркивания неравновесности состояния кластера в процессе столкновения), определяемые из кинетической энергии хаотического движения атомов; кинетическая температура в области контакта и компоненты скорости центра масс кластера. Оценка величины кинетической температуры в области контакта позволяет определить наличие плавления вещества после ударного взаимодействия с подложкой и определяется на основе физического анализа системы атомов кластера, попавших в полусферу радиусом с центром в точке контакта нанокластера и подложки.
Для решения поставленной задачи были созданы два расчетных кода на основе схемы второго порядка точности по временному шагу [3]: параллельный код в среде MPI и параллельный код основанный на технологии NVIDIA CUDA.
Результаты. В результате численных экспериментов было выявлено, что нанокластеры и подложка образуют связанное состояние при нормальном ударе во всем исследуемом интервале скоростей. В качестве иллюстрации на рис. 1 представлены зависимости полной кинетической температуры и температуры в области контакта от времени для скорости кластера 500 м/с.
Рис.1 Зависимость полной кинетической температуры кластера (А) и температуры в области контакта кластера (В) от числа шагов по времени.
Рис.2 Начальное и конечное положение кластера 2 и подложки с ранее осажденным кластером 1 в плоскости XY.
Следует отметить, что в области контакта наблюдается быстрый рост температуры (почти 900 K) в момент столкновения, а затем резкое падение (времена порядка 0.1-1 пс.) за счет теплопередачи в подложку.
В рамках изучения различных аспектов осаждения нанокластеров на подложку, были проведены численные эксперименты по осаждению двух и группы нанокластеров. На рис.2 представлено изображение проводимого численного эксперимента. На подложку с уже напыленным кластером 1 осаждался кластер 2 со скоростью 500 м/с. Направление движения кластера 2 было перпендикулярно подложке, однако кластер 2 был смещен относительно кластера 1 с целью моделирования более реалистичного случая касательного удара.
Результаты численного моделирования представлены на рис.3. В первую очередь необходимо отметить образование связанной структуры, что подтверждается зависимостью расстояния между центрами масс кластеров (рис.3, В). Из зависимостей кинетической температуры от времени (рис.3, А) следует, что при ударном взаимодействии летящего кластера с уже осажденнным кластером, в последнем происходит резкое возрастание кинетической температуры, за времена порядка 1 пс., с ее последующим плавным снижением за счет диссипации энергии в подложку. Одновременно с этим в новом нанокластере (рис.3, А) происходит плавный рост кинетической температуры и через определенное время релаксации значения кинетических температур обоих кластеров выходят на одинаковые асимптотические значения. При этом плавления кластера не происходит. Следует отметить, что нормальные составляющие массовой скорости обоих кластеров выравниваются значительно быстрее.
Моделирование осаждения двух кластеров, позволило более обоснованно подойти к численному моделированию осаждения группы кластеров на подложку. В качестве физической системы рассматривался ансамбль, состоящий из 30 кластеров диаметром . Положения этих кластеров в начальный момент времени задавались случайным образом, а начальные скорости составляли 500 м/с. Как и во всех предыдущих численных экспериментах для анализа результатов на микроуровне использовались такие физические характеристики, как компоненты кинетической температуры и скорости компоненты центров масс ансамбля кластеров.
Рис.3 Зависимость полной кинетической температуры кластера (А, 1- уже осажденный кластер, 2 - осаждаемый в рассматриваемом эксперименте кластер), расстояния между центрами масс кластеров (В), составляющие массовой скорости (C - уже осажденный кластер 1, D - летящий кластер 2). Начальная скорость кластера 2 - 500 м/с.
Рис.4 Зависимость компонентов кинетических температур ансамбля кластеров от числа шагов по времени.
Из представленных на рис.4 зависимостей кинетической температуры от времени видно, что в момент начала столкновения кластеров с подложкой в первую очередь начинается сильный рост Y компоненты кинетической температуры (кластеры движутся в направлении оси Y). Рост компоненты Y существенно опережает рост компоненты X и Z однако не превышает порогового значения температуры плавления вещества. В дальнейшем по мере развития процесса происходит снижение и выравнивание всех компонент кинетической температуры за счет диссипации энергии в подложку.
Схожие растянутые во времени зависимости демонстрируют компоненты скорости центров масс ансамбля кластеров (X, Y, Z) от времени. Как и в экспериментах по осаждению одного и двух кластеров, после осаждения на подложку скорости флуктуируют около нулевого значения, однако по мере развития процесса диссипации энергии величина флуктуаций уменьшается.
Так же было проведено численное моделирование взаимодействия кластера с подложкой при различных скоростях и углах падения, отличных от нормального. Как и в проведенных исследованиях по осаждению кластера, который двигался перпендикулярно подложке, было установлено существование режимов, при которых образуется связанное состояние между кластером и материалом подложки, что подтверждается зависимостями скорости центра масс кластера от времени.
В качестве примера на рис.5,6 для скорости кластера 500 м/с и угла падения приводятся значения кинетической температуры кластера и кинетической температуры в области контакта, которые не достигают порогового значения температуры плавления.
Рис.5 Начальное и конечное положение кластера и подложки в плоскости XY
Рис.6 Зависимость полной кинетической температуры кластера (А) и температуры в области контакта кластера (В) от числа шагов по времени.
Детализированные исследования влияния угла падения в широком диапазоне значений позволили обнаружить критический минимальный угол между вектором скорости и поверхностью, меньше которого осаждение кластеров не происходит. Численные эксперименты показали, что увеличение скорости напыляемого кластера ведет к уменьшению критического угла. Так для скорости кластера 500 м/с критический угол падения , для скорости 300 м/с критический угол падения , для 400 м/с - , для 700 м/с - а для 800 м/с - .
Выводы
В рамках метода молекулярной динамики было проведено исследование влияния скоростей и углов падения кластера на процесс осаждения на подложку.
Численные эксперименты по осаждению кластера, который двигался перпендикулярно подложке, показали, что, во всем исследуемом интервале скоростей, образуется связанное состояние между кластером и материалом подложки. кинетический температура кластер
Детализированные исследования влияния угла падения в широком диапазоне значений позволили обнаружить критический минимальный угол между вектором скорости и поверхностью, меньше которого осаждение кластеров не происходит. Было установлено, что увеличение скорости напыляемого кластера ведет к уменьшению критического угла.
Проведенный анализ поверхности подложки после осаждения кластеров позволил сделать вывод о появлении областей концентраторов напряжений, как под адсорбированными кластерами, так и под «следами», оставленными кластерами на поверхности. Образование таких структур при внешних механических нагрузках, может приводить к снижению механических характеристик материала и к зарождению в этих местах очагов разрушения материала.
Список литературы
Johnson R.A., Alloy models with the embedded-atom method // Phys. Rev. B 39. 1989. Р.12554-12559
Golovnev I.F.,Golovneva E.I., Fomin V.M., Simulation of quasi-static processes in the crystals by molecular dynamics method // Physical mesomehanics. Vol.6. Issue 5-6. 2003. Р. 41-45.
Allen M.P., Tildesley D.J. Computer Simulation of Liquids. // Oxford Science Publications, 2000. 385p.
Размещено на Allbest.ru
Подобные документы
Особенности частичного насыщения поверхностных атомов кремния метильными группами и методов моделирования кластера минимального размера. Иммобилизация метильных групп на поверхность димеризованного гидрогенизированного кластера в различных соотношениях.
доклад [1,1 M], добавлен 26.01.2011Понятие и основные положения молекулярно-кинетической теории. Диффузия как самопроизвольное перемешивание соприкасающихся веществ. Броуновское движение – беспорядочное движение частиц. Молекула - система из небольшого числа связанных друг с другом атомов.
презентация [123,0 K], добавлен 06.06.2012Установление методами численного моделирования зависимости температуры в точке контакта от угла метания пластины при сварке взрывом. Получение мелкозернистой структуры и расчет параметров пластины с применением программного расчетного комплекса AUTODYN.
дипломная работа [6,2 M], добавлен 17.03.2014Изучение сущности, вероятностных характеристик идеального газа, выведение его уравнения. Рассмотрение понятий теплообмена и температуры. Ознакомление с плотностью равновесного распределения молекул в потенциальном силовом поле и распределением Максвелла.
курс лекций [86,0 K], добавлен 29.03.2010Проведение экспериментального исследования по определению зависимости изменения сопротивления медного проводника от повышения температуры. Построение графической зависимости этих величин. Табличные значения термических коэффициентов других проводников.
презентация [257,5 K], добавлен 18.09.2013Анализ модели температуры в радиально бесконечном пласте. Моделирование давления и температуры сигнала, связанного с переменной скоростью. Определение сигнала температуры отдельного слоя связанного с постоянной скоростью добычи слабо сжимаемой жидкости.
курсовая работа [770,7 K], добавлен 20.02.2021Анализ теорий, устанавливающих связи между измеряемыми на опыте величинами и свойствами молекул. Идеальный газ как газ, взаимодействие между молекулами которого пренебрежимо мало. Причины возникновения давления газа в молекулярно-кинетической теории.
презентация [151,4 K], добавлен 08.01.2015Применение теории перколяции (возникновения бесконечных связных структур) в процессах гелеобразования, для описания магнитных фазовых переходов и в исследованиях газочувствительных датчиков. Определение порога протекания как размера критического кластера.
реферат [30,7 K], добавлен 09.06.2011Определение линейного теплового потока методом последовательных приближений. Определение температуры стенки со стороны воды и температуры между слоями. График изменения температуры при теплопередаче. Число Рейнольдса и Нусельта для газов и воды.
контрольная работа [397,9 K], добавлен 18.03.2013Определение цветовой температуры кинопроекционной лампы, напряжение на которой меняется с помощью переменного резистора. Снятие показаний фотоэлемента для синего и красного фильтров. Построение зависимости цветовой температуры лампы от напряжения.
лабораторная работа [241,0 K], добавлен 10.10.2013