Identification of modal parameters using Kalman filter

An analysis of the methodology for identifying the modal parameters of a dynamic system of structures using the Kalman filter, which is a powerful tool of modern control theory. Evaluation of the effectiveness of the method for identifying the structure.

Рубрика Физика и энергетика
Вид статья
Язык английский
Дата добавления 24.07.2018
Размер файла 392,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

1

Политехнический университет им. Ким Чака, г. Пхеньян, Корейская Народно-Демократическая Республика

Identification of modal parameters using Kalman filter

Kim Kwang Ju

Аннотация

identifying modal kalman filter

Определение модальных параметров с использованием фильтра Калмана

Ким Кван Чжу

Применение системы идентификации для вибрационных структур состоит в определении модальных параметров (собственных частот, демпфирующих коэффициентав и формы колебаний) из данных о вибрации. Для динамических характеристик, теория управления, основанная на передаточной функции представления, называется классической теорией управления, в отличие от методологии линейной теории систем на основе анализа временных рядов с помощью фильтра Калмана, и представление пространства состояний называется современной теорией управления. В этой статье мы рассмотрим методику идентификации модальных параметров динамической системы структур с помощью фильтра Калмана, который является мощным средством современной теории управления. Эффективность этого метода идентификации структуры оценивается через моделируемый анализ нескольких степеней свободы вибрации.

Ключевые слова: фильтр Калмана, модальный анализ, собственная частота, формы колебаний, коэффициент демпфирования

Abstract

The application of system identification to vibrating structures consists of identifying the modal parameters (eigenfrequencies, damping ratios and mode shapes) from vibration data. For the dynamic characteristics, the control theory based on the transfer function representation is called the classical control theory, in contrast with, the methodology of the linear system theory based on the analy- sis of the time series by kalman filter and the representation of the state space is called modern control theory. In this paper, we consider the methodology of identifying the mode parameters of the dynamic system of structures by using the Kalman filter, which is a powerful means of modern control theory. The effectiveness of this structure identification method is evaluated through simulated analysis of multi - degrees of freedom vibration sytem.

Keywords: kalman filter, modal analysis, normal frequence, mode shap, damping ratio.

1. State-space model

The equations of motion for an nd degrees-of-freedom (DOF) linear, time invariant, viscously damped system subjected to external excitation are expressed as

(1)

Where are the mass, damping and stiffness matrices, respectively; is the excitation influence matrix that relates the -dimensional input vector to the -dimensional response vector; is the -dimensional displacement response vector; dot denotes taking derivatives with respect to time.

By defining the state vector , equation (1) can be converted into the continuous state space form

(2)

Where

(3)

In practice, only a limited number of measurements are available; therefore, the dimension of the measurement output is less than or equal to the total number of degrees of freedom.

The -dimensional output vector can be expressed as

(4)

Where are the measurement location matrices corresponding to the displacement, velocity and acceleration responses of the structural system.

We can rewrite the output vector into the continuous state space form,

(5)

Where

, (6)

In practical application, accelerations are often used commonly, so in this work, only accelerations are considered. Therefore, the Cc of equations (6) is as simple as follows.

(7)

Equations 2 and 5 define the state space equation in continuous time:

(8a)

(8b)

Equation (8a) is known as the State Equation and equation (8b) is known as the Observation Equation. But measurements are taken in discrete time instants, so equations must be expressed in discrete time too.

Typical for the sampling of a continuous-time equation is a Zero-Order Hold assumption, which means that the input is piecewise constant over the sampling period, that is

(9)

Under this assumption, the continuous time state-space model (8a) and (8b) is converted to the discrete time state-space model:

(10a)

(10b)

Where xk is the discrete time state vector containing the sampled displacements and velocities; uk and yk are the sampled input and output; A is the discrete state matrix; B is the discrete input matrix; C is the discrete output matrix; D is the discrete direct transmission matrix. They are related to their continuous-time counterparts as ([2])

(11)

, (12)

In system identification, system response disturbance might be caused by different phenomena. The most obvious one is noise generated by the sensors, or noise arising from round off errors during A/D conversion.

It is necessary to extend the state space model (10a) and (10b) including stochastic components, so stochastic state space model is obtained.

(13a)

(13b)

Where is the process noise due to disturbances and modeling inaccuracies; is the measurement noise due to sensor inaccuracy.

We assume they are both independent and identically distributed, zero-mean normal vectors.

(14)

2. The Kalman filter

Due to the noise present in the stochastic state space Equations (13), it is only possible to predict the response in term of probability. For state space systems, this prediction is accomplished by the construction of the associated Kalman filter.

For the state space model specified in (13) with initial conditions and , for k = 1,2,...,N

(15)

(16)

With (17)

(18)

Wher (19)

(20)

(21)

is called the Kalman gain and are the innovations.

Under stationary conditions,

(22)

(23)

(24)

3. System identification and modal analysis in a state-space model

The natural frequencies and modal damping ratios can be retrieved from the eigenvalues of A, and the mode shapes can be evaluated using the corresponding eigenvectors and the output matrix C. The eigenvalues of A come in complex conjugate pairs and each pair represents one physical vibration mode.

Assuming low and proportional damping, the second order modes are uncoupled and the jth eigenvalue of A has the form

(25)

Where are the natural frequencies, are damping ratios, and ?t is the time step.

Natural frequencies and the damping ratios are given by

(26)

The jth mode shape evaluated at sensor locations can be obtained using the following expression:

(27)

Where is the complex eigenvector of A corresponding to the eigenvalue

4. Verification through numerical simulation

In order to verify the validity of the proposed method in this paper, a three degree of freedom vibration structure system as following (figure 1).

Fig. 1. 3 degrees of freedom vibration structure system

In figure 1, external excitation is applied through point m3 and is expressed as u(t).

The physical parameters in the given structure vibration system are set as follows.

m1=10kg, m2=15kg, m3=20kg k1=10kg, k2=15kg, k3=20kg

c1= 3n/s, c2 = 5n/s, c3=10n/s

As the external excitation u(t), we used triangluar form signal as shown in figure 2.

Fig. 2. External excitation diagram according to time

Random noise with a covariance corresponding to 10% of nominal values was added in viscous coefficiances c1, c2, c3. At the same time,a random noise with a variance corresponding to 5% of the excitation maximum value was added in excitation. We added random noise corresponding with the measurement noise level of low cost acceleration sensors to measurement values.

From table 1, it can be seen that relative error between theorical values and identification results is less than 15% in damping ratio and less than 10% in the eigenfrequences and mode shape. That is, modal parameters were well identificated even in the presence of process noise and measurement noise.

From now on, the validity of the method proposed in this paper was proved. Comparison of theorical value and identification result Table 1

Table 1. Shows the results of the identification of the modal parameters obtained by using the Kalman filter algorithm

Normal frequence, Hz

theory

identification

relative error,%

1th

2.1014

1.9901

5.4785

2th

7.9821

8.5580

7.2147

3th

11.9635

11.2068

6.3254

Damping ratio,%

theory

identification

relative error,%

1th

6.5

5.89

9.5

2th

0.4

0.443

10.8

3th

0.4

0.459

14.8

Mode shape

theory

identification

relative error,%

1th

(0.5878

0.8875

1.000)

(0.6063

0.8354

1.000)

(3.1457

5.8741

0)

2th

(1.000

0.3070

-0.4982)

(0

0.2875

-0.4796)

(0

6.3651

3.7415)

3th

(-0.8693

1.000

-0.4102)

(-0.9436

0

-0.3818)

(8.5417

0

6.9214)

Conclusion

In this paper, we proposed the methodology to indentify modal parameters of a structure vibration system by using kalman filter algorithm, which becomes one of the powerful methods of modern control theory.

By using the kalman filter algorithm, it is possible to identify modal parameter optimally even in the presence of process noise and measurement noise exists.

The performance and validity of the proposed methodology was verificated through simulation application.

References

1. Potter R. and Richardson M. H. "Identification of the Modal Properties of an Elastic Structure from Measured Transfer Function Data" 20th International Instrumentation Symposium, Albuquerque, New Mexico, May 1974.

2. Grant P. M., Cowan C. F. N., Mulgrew B. and Dripps J. H. “Analogue and Digital Signal Processing and Coding”, Chartwell-Bratt Ltd, 1989.

3. Catlin. D. E. Estimation, Control and the Discrete Kalman Filter. In Applied Mathematical Sciences 71, page

84. Springer-Verlag, 1989.

4. Shumway R. H. and Stoffer D. S. Time series analysis and its applications. Springer, 2006.

5. Verhaegen M., Verdult V. Filtering and System Identification. A least squares approach Cambridge University Press., 2007.

Размещено на Allbest.ru


Подобные документы

  • The principles of nonlinear multi-mode coupling. Consider a natural quasi-linear mechanical system with distributed parameters. Parametric approach, the theory of normal forms, according to a method of normal forms. Resonance in multi-frequency systems.

    реферат [234,3 K], добавлен 14.02.2010

  • Study of synthetic properties of magnetic nanoparticles. Investigation of X-ray diffraction and transmission electron microscopy of geometrical parameters and super conducting quantum interference device magnetometry of magnetic characterization.

    реферат [857,0 K], добавлен 25.06.2010

  • The overall architecture of radio frequency identification systems. The working principle of RFID: the reader sends out radio waves of specific frequency energy to the electronic tags, tag receives the radio waves. Benefits of contactless identification.

    курсовая работа [179,1 K], добавлен 05.10.2014

  • Completing of the equivalent circuit. The permeance of the air-gaps determination. Determination of the steel magnetic potential drops, initial estimate magnetic flux through the air-gap. Results of the computation of electromagnet subcircuit parameters.

    курсовая работа [467,8 K], добавлен 04.09.2012

  • A cosmological model to explain the origins of matter, energy, space, time the Big Bang theory asserts that the universe began at a certain point in the distant past. Pre-twentieth century ideas of Universe’s origins. Confirmation of the Big Bang theory.

    реферат [37,2 K], добавлен 25.06.2010

  • The danger of cavitation and surface elements spillway structures in vertical spillway. Method of calculation capacity for vortex weirs with different geometry swirling device, the hydraulic resistance and changes in specific energy swirling flow.

    статья [170,4 K], добавлен 22.06.2015

  • The Rational Dynamics. The Classification of Shannon Isomorphisms. Problems in Parabolic Dynamics. Fundamental Properties of Hulls. An Application to the Invertibility of Ultra-Continuously Meager Random Variables. Fundamental Properties of Invariant.

    диссертация [1,6 M], добавлен 24.10.2012

  • Defining the role of the microscope in studies of the structure of nanomaterials. Familiarization with the technology of micromechanical modeling. The use of titanium for studying the properties of electrons. Consideration of the benefits of TEAM project.

    реферат [659,8 K], добавлен 25.06.2010

  • Background to research and investigation of rural electrification. Method of investigation, plan of development, Rampuru, a typical rural South African village. Permanent magnet generator, properties of permanent magnets and evidence of wind resource.

    курсовая работа [763,2 K], добавлен 02.09.2010

  • Стереоскопічна картинка та стереоефекти: анаглофічний, екліпсний, поляризаційний, растровий. Нові пристрої 3D: Prespecta, Depth Cube, Cheoptics360. Пристрої запису: Minoru 3D, FinePix Real 3D System, OmegaTable. Принцип дії поляризатора та голографії.

    реферат [355,0 K], добавлен 04.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.