Некоторые вопросы о расширении Вселенной и постоянной Хаббла

Первые сведения о расширении Вселенной, которые предоставила астроспектрография. Четыре причины красного смещения, их применение для объяснения закона Хаббла. Гипотезы старения света, их эволюция. Образование космологического красного смещения.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 17.07.2018
Размер файла 302,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Казахский национальный университет им. аль-Фараби

Некоторые вопросы о расширений вселенной и постоянной Хаббла

Искаков Бахтияр Абуталипович

магистр, доцент, доцент

Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным. История науки знает немало случаев, когда вокруг идей, считавшихся глубоко альтернативными и малоинтересными, неожиданно формировалась новая мощная исследовательская программа. И, быть может, нынешняя разрозненная альтернативная космология несет в себе зародыш будущего переворота в картине мира.

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности.

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Четверть века спустя эту возможность по-новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро). К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера-Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями. Хаббл не знал, как эти закономерности связаны друг с другом, но что об этом говорит сегодняшняя наука?

Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера-Физо справедлива только для небольших смещений спектра.

А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V=HD), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V - вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить, только если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла Н в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают Н0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.

Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1+z раз меньшими, нежели в нашу эпоху, Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна - де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают Н0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Рисунок 1. Линейную зависимость скорости от расстояния

Статья Хаббла "Связь между расстоянием и лучевой скоростью внегалактических туманностей" с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.

В том же 1931 году Леметр опубликовал краткое (и без всякой математики) описание еще одной модели Вселенной, объединявшей в себе космологию и квантовую механику. В этой модели начальным моментом выступает взрыв первичного атома (Леметр также называл его квантом), породивший и пространство, и время. Поскольку тяготение тормозит расширение новорожденной Вселенной, его скорость уменьшается - не исключено, что почти до нуля. Позднее Леметр ввел в свою модель космологическую постоянную, заставившую Вселенную со временем перейти в устойчивый режим ускоряющегося расширения. Так что он предвосхитил и идею Большого взрыва, и современные космологические модели, учитывающие присутствие темной энергии. А в 1933 году он отождествил космологическую постоянную с плотностью энергии вакуума, о чем до того никто еще не додумался. Просто удивительно, насколько этот ученый, безусловно достойный титула первооткрывателя расширения Вселенной, опередил свое время! (1)

В 2006 году международная группа из трех десятков астрономов проверяла, растягиваются ли во времени взрывы далеких сверхновых звезд, как того требует модель Фридмана. Они получили полное согласие с теорией: вспышки удлиняются ровно во столько раз, во сколько уменьшается частота приходящего от них света - замедление времени в ОТО одинаково сказывается на всех процессах. Этот результат мог бы стать очередным последним гвоздем в крышку гроба теории стационарной Вселенной (первым лет 40 назад Стивен Хокинг назвал космический микроволновый фон), но в 2009 году американский астрофизик Эрик Лернер опубликовал прямо противоположные результаты, полученные другим методом. Он использовал тест поверхностной яркости галактик, придуманныи Ричардом Толманом еще в 1930 году, специально чтобы сделать выбор между расширяющейся и статической Вселенными. В модели Фридмана поверхностная яркость галактик очень быстро падает с ростом красного смещения, а в евклидовом пространстве с «усталым светом» ослабление идет гораздо медленнее. Проверка показала, что данные почти идеально совпадают с моделью «усталого света» и сильно расходятся с фридмановской.

И все-таки, как бы ни вдохновляли космологических «диссидентов» подобные примеры, на сегодня не существует какой-то целостной и хорошо проработанной теории строения и эволюции Вселенной, отличной от стандартной LCDM. То, что собирательно называют альтернативной космологией, состоит из ряда претензий, которые справедливо ставятся на вид сторонникам общепринятой концепции, а также набора перспективных идей разной степени проработанности, которые могут пригодиться в будущем, если появится сильная альтернативная исследовательская программа. Многие сторонники альтернативных взглядов склонны придавать слишком большое значение отдельным идеям или контрпримерам. Они надеются, что, наглядно показав трудности стандартной модели, можно добиться отказа от нее. Но, как утверждал философ науки Имре Лакатос, теорию не могут уничтожить ни эксперимент, ни парадокс. Теорию убивает только новая лучшая теория. Тут пока альтернативной космологии предложить нечего. (2)

Существуют четыре причины красного смещения. Какую из них выбрать для объяснения закона Хаббла - зависимости красного смещение от расстояния?

Таблица 1. Четыре причины красного смещения

Изменение частоты

Изменение энергии

Проверено в лаборатории

Эффект Доплера.

Возникает, когда источник излучения удаляется. Его световые волны поступают в наш приемник чуть реже, чем испускаются источником. Эффект широко применяется в астрономии для измерения скоростей движения объектов вдоль луча зрения.

Гравитационное красное смещение

Когда квант света выбирается из гравитационного колодца, он расходует энергию на преодоление сил тяготения. Уменьшение энергии соответствует уменьшению частоты излучения и его сдвигу в красную сторону спектра.

Не проверено в лаборатории

Расширение пространства

Согласно общей теории относительности, свойства самого пространства могут меняться во времени. Если в результате этого расстояние между источником и приемником увеличивается, то световые волны растяги-ваются так же, как в эффекте Доплера.

Усталость света

Возможно, движение светового кванта в пространстве сопровождается своего рода «трением», то есть потерей энергии пропор-ционально пройденному пути. Это была одна из первых гипотез, выдвинутых для объяснения космологического красного смещения.

Рисунок 2. Четыре причины красного смещения.

Гипотезы старения света - класс опровергнутых гипотез, выдвинутых в качестве альтернативного объяснения зависимости красного смещения от расстояния до объекта (закона Хаббла). В отличие от теорий Большого взрыва и стационарной Вселенной, эти гипотезы не предполагают расширения Вселенной.

Концепция впервые была предложена Фрицем Цвикки в 1929 году, который предположил, что фотоны теряют энергию в результате взаимодействия с гравитационным полем. Альтернативные модели гравитации стационарной Вселенной зачастую используют старение света для объяснения закона Хаббла; среди авторов таких теорий были Эрвин Финлей-Фройндлих и Макс Борн. Среди сторонников теории старения света были пулковский астрофизик Аристарх Белопольский и одно время сам Эдвин Хаббл.

Сейчас такие гипотезы представляют только исторический интерес, так как противоречат наблюдениям и не могут объяснить весь комплекс имеющихся данных, например, таких как:

независимость красного смещения от длины волны;

отсутствие рассеивания света от далёких источников;

наблюдаемая зависимость длительности таких космических событий как вспышки сверхновых от расстояния до них;

распространённость лёгких элементов;

спектр излучения реликтового излучения, совпадающий со спектром абсолютно чёрного тела;

зависимость поверхностной яркости галактик от красного смещения, согласующаяся с традиционной интерпретацией красного смещения.

В физике, гравитационное красное смещение является проявлением эффекта изменения частоты испущенного некоторым источником света (вообще говоря, любых электромагнитных волн) по мере удаления от массивных объектов, таких как звёзды и чёрные дыры; оно наблюдается как сдвиг спектральных линий близких к массивным телам источников в красную область спектра. Свет, приходящий из областей с более слабым гравитационным полем, испытывает гравитационное синее смещение.

Эффекты смещения не ограничиваются исключительно электромагнитным излучением, а проявляются во всех периодических процессах вдали от массивного объекта де-бройлевские частоты элементарных частиц (фотонов, электронов, протонов) выше, чем на его поверхности, и все процессы идут с большей скоростью. Данный эффект является одним из частных проявлений гравитационного замедления времени.

Ослабление энергии света, излучаемого звёздами с сильной гравитацией, было предсказано Джоном Митчелломещё в 1783 году, на основе корпускулярного представления о свете, которого придерживался Исаак Ньютон. Влияние гравитации на свет исследовали в своё время Пьер-Симон Лаплас и Иоганн фон Зольднер (1801) задолго до того, как Альберт Эйнштейн в статье 1911 года о свете и гравитации вывел свой вариант формулы для этого эффекта.

Филипп Ленард обвинил Эйнштейна в плагиате за то, что он не процитировал более раннюю работу Зольднера - однако, принимая во внимание, насколько эта тема была забыта и заброшена до того момента, как Эйнштейн вернул её к жизни, практически не подлежит сомнению, что Эйнштейн не был знаком с предыдущими работами. В любом случае, Эйнштейн пошёл намного дальше своих предшественников и показал, что ключевым следствием из гравитационного красного смещения является гравитационное замедление времени. Это была очень оригинальная и революционная идея. Эйнштейн впервые предположил, что потерю энергии фотоном при переходе в область с более высоким гравитационным потенциалом можно объяснить через разность хода времени в точках приёма и передачи сигнала. Таким образом, если время для приёмника и передатчика течёт с разной скоростью, наблюдаемая частота излучения, а вместе с ней и энергия отдельных квантов, тоже будет различной для приёмника и передатчика. В 2010 году физикам удалось измерить эффект замедления в лабораторных условиях.

В нестационарном же случае вообще точным и инвариантным образом отделить «гравитационное» смещение от «доплеровского» невозможно, как например, в случае расширения Вселенной. Эти эффекты - одной природы, и описываются общей теорией относительности единым образом. Некоторое усложнение явления красного смещения для электромагнитного излучения возникает при учёте нетривиального распространения излучения в гравитационном поле (эффекты динамического изменения геометрии, отклонений от геометрической оптики, существования гравитационного линзирования, гравимагнетизма, увлечения пространства и так далее, которые делают величину смещения зависящей от траектории распространения света), но эти тонкости не должны затенять исходной простой идеи: скорость хода часов зависит от их положения в пространстве и времени.

Постоянная Хаббла - коэффициент, входящий в закон Хаббла, который связывает расстояние до внегалактического объекта (галактики, квазара) со скоростью его удаления. Обычно обозначается буквой H. Имеет размерность, обратную времени (H ? 2,2·10?18 с?1), но выражается обычно в км/с на мегапарсек.

Наиболее надёжная оценка постоянной Хаббла на 2013 год составляет 67,80 ± 0,77 (км/с)/Мпк. В 2016 году эта оценка была уточнена до 66,93 ± 0,62 (км/с)/Мпк. Таким образом, в современную эпоху две галактики, разделённые расстоянием в 1 Мпк, в среднем разлетаются со скоростью около 70 км/с. В моделях расширяющейсяВселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова. Возраст Вселенной в рамках модели LCDM составляет около (4,354 ± 0,012)·1017 с или (13,798 ± 0,037)·109лет.

Величина, обратная постоянной Хаббла (хаббловское время tH = 1/H), имеет смысл характерного времени расширения Вселенной на текущий момент. Для современного значения постоянной Хаббла, равного 66,93 ± 0,62 (км/с)/Мпк, хаббловское время равно (4,61 ± 0,05)·1017 с или (14,610 ± 0,016)·109 лет. Часто используют также ещё одну производную константу, хаббловское расстояние, равное произведению хаббловского времени на скорость света: DH = ctH = c/H. Для вышеуказанного значения постоянной Хаббла хаббловское расстояние равно (1,382 ± 0,015)·1026 м или (14,610 ± 0,016)·109 световых лет

Часто космологическое красное смещение связывают с эффектом Доплера, который связывают с движением галактик друг относительно друга. Однако на самом деле, космологическое красное смещение происходит несколько по-другому, оно связано с расширением пространства согласно ОТО. В наблюдаемое красное смещение от галактик вносит вклад как космологическое красное смещение из-за расширения пространства Вселенной, так и красное или фиолетовое смещения эффекта Доплера вследствие собственного движения галактик. При этом на больших расстояниях вклад космологического красного смещения становится преобладающим.

Образование космологического красного смещения можно представить так: рассмотрим свет - электромагнитную волну, идущую от далёкой галактики. В то время как свет летит через космос, пространство расширяется. Вместе с ним расширяется и волновой пакет. Соответственно, изменяется и длина волны. Если за время полёта света пространство расширилось в два раза, то и длина волны и волновой пакет увеличивается в два раза

Смысл постоянной Хаббла. Смысл этой постоянной означает, что постоянная Хаббла - это величина, на которую уменьшается частота фотона за один колебание вне зависимости от длины волны. В данный момент известно, что постоянная Хаббла H0=67,8±0,77 (км/с)/Мпс. В системе СИ это H0=(2,197±0,025)Ч10-18 с-1.

Итак, нам известно, то что при каждом колебании уменьшается частота колебания фотона за счет расширения Вселенной. Мы знаем, что раз изменяется частота, значит, меняется и энергия фотона, тем самым меняется и длина волны. Это означает, что длина волны электромагнитных волн постоянно изменяется, а точнее уменьшается. Куда уходит энергия при уменьшений частоты? Закон сохранения энергии говорит, что энергия просто так не исчезает, она переходит из одного вида в другой. При каждом колебании фотон теряет энергию согласно формуле:

красный смещение расширение вселенная хаббл

Отсюда можно сделать вывод, что при каждом колебании фотон испускает энергию. Вот в каком виде нам не известно. Можно предположит, что это вид излучения или неизвестная науке частица, но при этом можно оценит примерное значение данной энергии.

Дж.

Это у нас постоянное число, т.е. определенная константа, существующая в природе. Мы можем называть эту константу постоянной материи, так как это энергия мельчайшей вида материи. Так как это постоянное число, согласно корпускулярно-волновой теории, можно считать, что это частица. Массу частицы, которую мы будем называть частицей А, определим согласно формуле , и m=1,616Ч10-68 кг. Согласно корпускулярно-волновой теории это и частица и волна, длина волны которой 1,365Ч1026 м, согласно . . Это частица 5,6Ч1037 раза легче электрона. Связи с этим можно предположит, что все известные нам частицы состоит из этой частицы А. Все зависит от конфигурации этой частицы в составе других. Может быть существуют множество видов частицы А, но пока не будем забегать так далеко.

Итак, мы установили, что свет за счет потери энергии, при колебание фотона теряет энергию. Связи с этим длина волны света увеличивается и таким образом мы получаем свет разного цвета от фиолетового до красного. Думаю, это относиться и другим видам электромагнитных волн, т.е. они тоже при колебании теряет малую часть энергии и увеличивается длина волны. В то же время нам стало известно, что в природе может существовать мельчайшая частица А, из которых, может быть, состоит все остальные элементарные частицы во Вселенной.

Список литературы

Алексей Левин, "Популярная механика"

Александр Райков, Александр Сергеев, журнал "Вокруг света"

википедиа

http://elementy.ru/posters/spectrum/history

Сивухин Д. В. Общий курс физики. - М.: Наука, 1977. - Т.3. Электричество. С .364- 688 с.

https://astronet.ru

А.В. Засов, К.А. Постнов. Галактики и скопления галактик//Общая астрофизика.- Фрязино: Век 2, 2006. - с.412 - ISBN 5-85099-169-7.

Размещено на Allbest.ru


Подобные документы

  • Распространение света в пространстве–времени c нарушенной Лоренц-инвариантностью. Дисперсионные соотношения и энергия покоя частиц в пространственно-временной пене. Зависимость наблюдаемых эффектов теории от красного смещения внегалактических объектов.

    контрольная работа [416,6 K], добавлен 05.08.2015

  • Регуляризация квантового поля Паули–Вилларса. Закон тяготения в искривленном пространстве-времени. Уравнение состояния космического вакуума. Эволюция Вселенной в эпоху после рекомбинации. Космологические термины; уравнения Эйнштейна для Вселенной.

    контрольная работа [113,0 K], добавлен 20.08.2015

  • Физический вакуум: понятие, его частицы. Сущность космологического принципа. Закон всеобщего разбегания галактик. Общий вид закона Хаббла. Поперечная и продольная составляющая волны. Ненулевые эталоны параметров. Двухмерность и трёхмерность величин.

    статья [23,6 K], добавлен 04.09.2013

  • Физическая теория материи, многомерные модели Вселенной. Физические следствия, вытекающие из теории многомерных пространств. Геометрия Вселенной, свойства пространства и времени, теория большого взрыва. Многомерные пространства микромира и Вселенной.

    курсовая работа [169,4 K], добавлен 27.09.2009

  • Электромагнитное излучение, которое занимает спектральный диапазон между концом красного света и коротковолновым радиоизлучением. История открытия инфракрасного излучения, его основные свойства. Применение в медицине. Воздействие на организм человека.

    презентация [1,5 M], добавлен 20.02.2013

  • Вопрос о среде. Масса. Строение вещества. Химические связи. Некоторые следствия. Электропроводность. Захват, излучение фотона. Эффект антигравитации. Красное смещение, постоянная Хаббла. Нейтронные звёзды, чёрные дыры. Тёмная материя. Время, Вселенная.

    статья [368,0 K], добавлен 21.09.2008

  • Изучение бокового смещения светового пучка при полном отражении. Комплексный вектор рефракции. Возникновение и поляризация неоднородных волн. Их плотность и поток энергии. Полное отражение. Вещественная и мнимая часть комплексного вектора рефракции.

    курсовая работа [585,1 K], добавлен 01.05.2013

  • Определение цветовой температуры кинопроекционной лампы, напряжение на которой меняется с помощью переменного резистора. Снятие показаний фотоэлемента для синего и красного фильтров. Построение зависимости цветовой температуры лампы от напряжения.

    лабораторная работа [241,0 K], добавлен 10.10.2013

  • Сценарий развития Вселенной после Большого Взрыва. Современные представления об элементарных частицах как первооснове строения материи Вселенной. Классификация элементарных частиц. Корпускулярно-волновой дуализм в современной физике. Теория атома Н. Бора.

    реферат [49,0 K], добавлен 17.05.2011

  • Внутренняя энергия тел и основные способы ее измерения. Работа газа и пара при расширении. Определение удельной теплоемкости вещества. Расчет удельной теплоты плавления и отвердевания. Сущность первого закона термодинамики. Основные виды теплопередачи.

    курсовая работа [564,6 K], добавлен 17.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.