Снижение потерь энергии путем оптимизации противобоксовочных устройств в системе "колесо-рельс"

Управление физическими свойствами системы "колесо-рельс" для поддержания постоянства предельных значений силы тяги, влияние внешних факторов на эти свойства. Прогнозирование боксования колесных пар локомотива по характеристикам динамических процессов.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 16.07.2018
Размер файла 197,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СНИЖЕНИЕ ПОТЕРЬ ЭНЕРГИИ ПУТЕМ ОПТИМИЗАЦИИ ПРОТИВОБОКСОВОЧНЫХ УСТРОЙСТВ В СИСТЕМЕ «КОЛЕСО-РЕЛЬС»

Пугачев А.А., Измеров О.В., Волохов С.Г.

Россия, г.Брянск, БГТУ

Рассмотрена задача снижения потерь энергии вследствие скольжения колеса по рельсу. В результате анализа установлено, что для решения проблемы необходимо в перспективе изменение функций противобоксовочной системы, задачей которой должно стать управление физическими свойствами системы «колесо-рельс» для поддержания постоянства предельных значений силы тяги и прогнозирование влияния внешних факторов на эти свойства

Энергетической стратегией ОАО "РЖД" на перспективу до 2030 года предусмотрено сокращение удельного расхода топлива и электроэнергии в поездной работе в электрической тяге на 15%, и в тепловозной тяге - на 11%. Значительным резервом для этого является снижение потерь энергии в системе «колесо-рельс», которые, согласно [1], составляют 10% - 30% расходуемых на тягу поездов топливно-энергетических ресурсов. Такой высокий уровень потерь в значительной мере обусловлен самой природой фрикционной передачи, где создание тяги всегда сопровождается относительным скольжением. Дальнейшее повышение тяговых свойств локомотивов требует выбора оптимальной величины скольжения, обеспечивающей максимум передаваемой силы тяги, которая, как показывают исследования [2], при мокрых и замасленных рельсах может достигать 15%. Высокий уровень скольжения, обусловленный необходимостью реализации силы тяги при плохом сцеплении, ведет к быстрому износу бандажей колес локомотива и быстрому износу рельс, что требует дополнительного расхода металла, энергетических и иных ресурсов. В России в начале 80-х гг. срок службы бандажей колесных пар локомотивов составлял 6-7 лет, а в 90-е гг. ХХ века он сократился уже до 2-3 лет [3]. Продолжение работы по повышению к.п.д самого локомотива, систем электроснабжения вступает в противоречие со стихийным характером изменения коэффициента сцепления и возникакет потребность научно предвидеть, будут ли противобоксовочные системы развиваться в рамках существующих технологий, или их ждет скачок, связанный с переходом на новые физические принципы действия. Для решения проблемы был использован модифицированный метод непараметрического прогнозирования развития технических систем (ТС), изложенный в [4], согласно которому эволюция ТС рассматривается, как эволюция ее функций. Отсюда вытекают следующие особенности процесса развития ТС:

1. Эволюция ТС представляет собой ряд устойчивых структур на функциональном уровне, каждая из которых отражает определенное состояние рынка сбыта, характеризуемое совокупностью условий производства и эксплуатации изделия.

2. За время существования устойчивого состояния ТС происходит выявление и осмысление потребителем и производителем проблем в использовании ТС, которые с развитием ситуации становятся более острыми и необходимость их решения осознается как потребность в создании нового состояния производства и эксплуатации.

3. Описание потребности на техническом уровне приводит к определению новой функциональной структуры изделия или переопределению существующей.

4. Реализация новой функциональной структуры в виде технических решений приводит к тому, что складывается новое состояние рынка сбыта, для которого возникают новые проблемы.

На основании этих принципов предложена следующая периодизация развития функций противобоксовочных систем и их практической реализации (рис.1).

Отправной точкой эволюции можно считать появление паровых локомотивов, не имеющих противобоксовочных устройств. В этих машинах боксование уже появилось, как явление, однако оно могло быть легко прекращено ручным регулированием.

Рис.1. Эволюция функций противобоксовочных систем и способов их практической реализации.

физический колесо рельса локомотив

Первым этапом развития можно считать появление локомотивов с электроприводом. Оно выявило проблему, связанную с боксованием - возможность повреждения коллектора и якорных обмоток тягового электродвигателя (ТЭД) при разносном боксовании. Возникла потребность в реализации новой функции - ввести сигнализацию о начале боксования для ручного регулирования тяги, подачи песка и т.п. Пока нагруженность электрических машин была невысокой, а электротяга существовала лишь на отдельных участках, это решало проблему.

Второй этап обусловлен массовым распространением на железных дорогах электровозов и тепловозов с электропередачей. Это привело к росту мощности коллекторных ТЭД, и повышению нагрузки на колесно-моторный блок. Появилась новая проблема: фрикционные автоколебания, возникающие при боксовании, могут вызывать повреждения механизмов передачи тяги от ТЭД к колесам. Это вызвало потребность в новой функции противобоксовочной ситемы - автоматически ограничивать скорость скольжения колеса по рельсу.

Третий, современный этап, был обусловлен внедрением бесколлекторных тяговых двигателей, в частности, асинхронных (АТД), которые полностью сняли ограничение силы тяги по параметрам двигателя. Тяговые свойства локомотива стали полностью определяться усилием трения колеса по рельсу, которое зависит от различных случайных факторов, а также от скорости скольжения колеса по рельсу. Это привело к созданию локомотивов, имеющих примерно в полтора-два раза более высокую силу тяги в сравнении с локомотивами предыдущего этапа. Это изменило основную функцию противобоксовочной системы вместо ограничения скорости скольжения основной функцией стала оптимизация этой скорости, поддержания величины, при которой реализуется максимально возможная по условиям сцепления силы тяги.

Основная проблема на данном этапе порождена противоречием между необходимостью стабильного повышения тяговых свойств локомотива и стихийным изменением величины сцепления в зависимости от внешних условий. Как указывалось, выше, оптимальное по величине силы тяги скольжение может достигать 15%, что сводит на нет усилия по снижению потерь в электрической и тепловозной тяге. Возникает потребность в новой функции - сделать сам физический коэффициент сцепления управляемым, чтобы снизить его зависимость от внешних случайных факторов. Данная функция на физическом уровне реализуема, по меньшей мере, двумя известными способами - с помощью воздействия на контакт колеса с рельсом с помощью магнитного поля и (или) электрического тока [5-6]. Назовем техническое устройство, в котором реализован один или оба этих эффекта, усилителем сцепления (УС).

Введение в систему «колесо-рельс» усилителя сцепления должно привести к новому изменению функций системы управления противобоксовочной системой. Функцией системы управления ТЭД становится задание некоего тягового усилия, которое можно стабильно поддерживать с помощью УС, а функцией противобоксовочной системы становится управление самим УС с целью обеспечения стабильности сцепных свойств. Очевидно, что простое слежение за процессом потери сцепления колеса с рельсом в этом случае теряет смысл (ухудшение сцепных свойств не допускается благодаря введению УС). Таким образом, система регулирования УС должна не следить за процессом развития боксования, а прогнозировать его заранее.

На сегодняшний день известны по крайней мере два возможных направления практической реализации системы. Первое из них рассмотрено в [7], где в качестве информативного признака для прогнозирования боксования приняты продольные ускорения буксы. На существование второго направления указывают результаты исследований мгновенного нагрева поверхности катания колеса рельсового экипажа (трамвая), приведенные в [8], которые показали, что путем регистрации изменения потока инфракрасного излучения от определенных участков поверхности колесной пары можно отслеживать быстропротекающие (с частотой порядка 400 Гц) изменения интенсивности тепловыделения в точке контакта «колесо-рельс» вследствие изменения величины скольжения.

Из изложенного можно сделать вывод, что существенное снижение потерь энергии в системе «колесо-рельс» возможно путем создания противобоксовочных устройств следующего поколения, в которых реализовано управление физическими свойствами колеса и рельса в точке контакта с помощью усилителей сцепления, регулирование которых осуществляется на основе прогнозирования изменения указанных свойств под влиянием внешних факторов.

Литература

1. Воробьев А. А. Исследование напряженного состояния пятна контакта колеса и рельса/А. А. Воробьев, П. Г. Сорокин // Новые материалы и технологии в машиностроении. -Брянск: БГИТА, 2004. т.Вып. 3.-С.8-18

2. Лонгстон мл., Итами. Исследования явления трения-крипа для локомотива: статья. - Труды Амер. Общ. инж.-мех.: Конструирование и технология машиностроения. 1980, №3, том 102, с 241-248.

3. Буйносов А.П. Методы повышения ресурса бандажей колесных пар: автореф. дисс. … на соискание уч. ст. доктора технических наук. - Екатеринбург, 2011, - 44 с.

4. Техническая инновационика. Методы изобретательского творчества: монография./[О.В. Измеров и др.]. - Орел: Госуниверситет - УНПК, 2011. -213 с.

5. Рудяков, З.З. Резервы увеличения весовых норм поездов: статья. Железнодорожный транспорт, 2, 1962 г, с. 28-31.

6. Тихомиров, В.П. Моделирование сцепления колеса с рельсом: монография / В.П. Тихомиров, В.И. Воробьев, Д.В. Воробьев, Г.В. Багров, М.И. Борзенков, И.А. Бутрин. - Орел: ОрелГТУ, 2007. - 127 с.-ил.

8. Коропец, П. А. Прогнозирование боксования колесных пар локомотива по характеристикам динамических процессов в системе "экипаж - тяговый привод - путь": автореф. дисс. … канд. техн. Наук, Ростов-на-Дону, 2007 - 20 c.

8. Гойхман Л. В. К прогнозированию коэффициента сцепления колеса с рельсом / Гойхман Л., Дронов А. - М. 1980. Труды Академии коммунального хозяйства. - No 175. - С. 98-108.

Размещено на Allbest.ru


Подобные документы

  • Физический аспект образования сил тяги и торможения поезда. Форма и величина опорной поверхности, в которой колесо опирается на рельс. Ориентация опорной поверхности в форме эллипса, ее размеры. Классификация сил сопротивления движению, его составляющие.

    презентация [213,0 K], добавлен 14.08.2013

  • Методика расчета и выбора основных параметров, характеристик, принципиальных схем электрической передачи по расчетным характеристикам и справочных данных серийных тяговых электрических машин. Выбор расчетных значений силы тяги и скорости локомотива.

    курсовая работа [2,1 M], добавлен 06.01.2013

  • Определение переходного электрического сопротивления "рельс–накладка". Определение потерь электрической энергии в рельсовом токопроводящем стыке. Расчет тарельчатых пружин для рельсовых стыков. Присоединение дроссель–трансформаторов к рельсовой сети.

    курсовая работа [849,8 K], добавлен 26.11.2012

  • Снижение потерь путем принудительного изменения потокораспределения. Суммарные потери мощности в сети. Способы создания принудительного экономического потокораспределения. Снижение коммерческих потерь электрической энергии, система контроля потребления.

    презентация [2,2 M], добавлен 26.10.2013

  • Составление дифференциальных уравнений, описывающих динамические электромагнитные процессы, применение обобщенных приемов составления математического описания процессов электромеханического преобразования энергии. Режимы преобразования энергии.

    курсовая работа [2,5 M], добавлен 22.09.2009

  • Структура электромеханической системы. Приемы составления математического описания процессов электромеханического преобразования энергии. Анализ свойств двигателей в системах электропривода. Условия коммутации тока на коллекторе машин постоянного тока.

    реферат [2,5 M], добавлен 03.01.2010

  • Системы тока и напряжения, применяемые в электрической тяге. Силы, действующие на поезд в различные периоды движения. Основные преимущества электрической тяги по сравнению с тепловой. Общие недостатки электрической тяги. Наличие блуждающих токов.

    презентация [356,4 K], добавлен 14.08.2013

  • Выбор основного силового оборудования системы электропривода. Технологии процесса и требования к электроприводу магистральных насосов. Расчет мощности и выбор системы электропривода. Анализ динамических процессов разомкнутой системы электропривода.

    дипломная работа [3,4 M], добавлен 12.11.2012

  • Характеристика устройств преобразования различных видов энергии в электрическую и для длительного хранения энергии. Использование мускульной силы человека для обеспечения автономного функционирования систем электрического питания при помощи велотренажера.

    научная работа [270,6 K], добавлен 23.02.2013

  • Классификация потерь в системе электроснабжения промышленного предприятия. Влияние коэффициента мощности сети на потери электроэнергии. Пути уменьшения потерь в системе электроснабжения промышленных предприятий за счет компенсации реактивной мощности.

    дипломная работа [2,4 M], добавлен 08.06.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.