Учет влияния конусности на нелинейное деформирование токонесущей ортотропной конической оболочки, обладающей ортотропной электропроводностью в нестационарном магнитном поле

Исследование связанных задач магнитоупругости для токонесущей ортотропной конической оболочки в нестационарном магнитном поле. Влияние конусности на напряженно-деформированное состояние оболочки. Получение системы уравнений в нормальной форме Коши.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 06.03.2018
Размер файла 449,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Учет влияния конусности на нелинейное деформирование токонесущей ортотропной конической оболочки, обладающей ортотропной электропроводностью в нестационарном магнитном поле

Развитие теории сопряженных полей и, в частности, теории электромагнитного взаимодействия с деформируемой средой считается одним из главных направлений развития современной механики твердого тела. Механизм взаимодействия упругой среды с электромагнитным полем разнообразен и обусловлен геометрическими характеристиками и физическими свойствами рассматриваемого тела. В частности, этот механизм получает некоторые специфические особенности, когда рассматриваем проблемы относительно тонких пластин и оболочек, обладающих анизотропной электропроводностью, магнитной и диэлектрической проницаемостями.

Задачи электромагнитоупругости анизотропных пластин и оболочек обладающей анизотропной электропроводностью, магнитной и диэлектрической проницаемости представляет научный интерес, как сточки зрения теории, так и приложений. Дело в том, что в случае тонких анизотропных или изотропных тел с анизотропной электропроводностью можно ставить и решать оптимальные задачи магнитоупругости путем вариации всех физико-механических параметров материала тела. В частности, при постоянных механических и геометрических параметрах задачи, с помощью изменения анизотропных электродинамических параметров можно получить конструктивные элементы с качественно новым механическим поведением. Отметим, что в последнее время созданы материалы и наноматериалы с новыми электромагнитными свойствами. Эти материалы могут эффективно использоваться в различных областях новой техники при разработке новых технологий.

Нелинейная постановка задачи. Получение разрешающей системы уравнений в нормальной форме Коши

Будем рассматривать гибкие токонесущие конические оболочки переменной вдоль меридиана толщины, находящихся под действием нестационарных электромагнитных и механических полей. Пренебрегая влиянием процессов поляризации и намагничивания, а также температурными напряжениями считаем, что к торцу оболочку подводится переменный электрический ток от внешнего источника. Предполагается, что сторонний электрический ток в невозмущенном состоянии равномерно распределен по телу (плотность тока не зависит от координат). Упругие свойства материала оболочки считаются ортотропными, главные направления, упругости которого совпадают с направлениями соответствующих координатных линий, электромагнитные же свойства материала характеризуются тензорами электрической проводимости , магнитной проницаемости , диэлектрической проницаемости . При этом, исходя из кристаллофизики, для рассматриваемого класса проводящих ортотропных сред с ромбической кристаллической структурой считаем, что тензоры , и принимают диагональный вид. В этом случае произвольная поверхность второго порядка обладает тремя взаимно перпендикулярными осями второго порядка и можно расположить эти оси параллельно кристаллографическим осям второго порядка, а также характеристическая поверхность второго порядка обладает всеми элементами симметрии, которые могут быть у классов орторомбической системы. Предположим, что геометрические и механические характеристики тела таковы, что для описания процесса деформирования применим вариант геометрически нелинейной теории тонких оболочек в квадратичном приближении. Также предполагаем, что относительно напряженности электрического поля и напряженности магнитного поля выполняются электромагнитные гипотезы [1]:

, , ,

,

(1)

Эти допущения являются некоторым электродинамическим аналогом гипотезы недеформируемых нормалей и вместе с последней составляют гипотезы магнитоупругости тонких тел. Принятие этих гипотез позволяет свести задачу о деформации трехмерного тела к задаче о деформации выбранной произвольным образом координатной поверхности. Координатную поверхность в недеформированном состоянии отнесем к криволинейной ортогональной системе координат и , где длина дуги образующей (меридиана), отсчитываемая от некоторой фиксированной точки, центральный угол в параллельном круге, отсчитываемый от выбранной плоскости. Координатные линии и являются линиями главных кривизн координатной поверхности. Выбирая координату по нормали к координатной поверхности вращения, относим оболочки к координатной пространственной системе координат . Предполагаем, что на поверхности конической оболочки известен вектор магнитной индукции, а также поверхностные механические силы.

При получении разрешающей системы в нормальной форме Коши выберем в качестве основных функций Выбрав именно эти функции, в дальнейшем можно выбирать различные комбинации закрепления конуса. Дифференциальная система уравнений в основных функциях, описывающая напряженно-деформированное состояние токонесущих оболочек в магнитном поле при учете геометрической нелинейности и ортотропной электропроводностью, магнитной и диэлектрической проницаемостями разрешается относительно первой производной искомых функций по одной из координат. Предполагаем, что все компоненты возбужденного электромагнитного поля и поля перемещений входящие в уравнения задачи магнитоупругости не зависит от координаты , а также считаем, что упругие и электромагнитомеханические характеристики материала оболочки не изменяются вдоль параллели.

После соответсвующих преобразований [3, 4, 6, 8] получаем полную систему нелинейных дифференциальных уравнений магнитоупругости в форме Коши, которая описывает напряженно-деформированное состояние токонесущей ортотропной конической оболочки обладающей ортотропной электропроводностью, магнитной и диэлектрической проницаемостями при нестационарном воздействии механического и магнитного полей.

(2)

В соотношениях (1), (2) использованы общепринятые в теории оболочек и теории электромагнитоупругости обозначения. Кроме того, здесь введены такие обозначения: - тангенциальные составляющие индукции магнитного поля на поверхностях токонесущей конической оболочки. Решение краевых задач магнитоупругости связано с определенными трудностями. Это объясняется тем, что разрешающая система (2) является системой дифференциальных уравнений гиперболо-параболического типа восьмого порядка с переменными коэфициентами.

Составляющие силы Лоренца учитывают скорость деформирования оболочки, внешнее магнитное поле, величину и напряженность тока проводимости относительно внешнего магнитного поля, механическую и электромагнитную ортотропию материала [3, 4, 6, 8, 9].

Добавив к полученной системе уравнений начальные и граничные условия, имеем краевую задачу. Разработанный методики к численному решению новых класс связанных задач магнитоупругости теории ортотропных конических оболочек вращения обладающей ортотропной электропроводностью, основан на последовательном применении конечноразностной схемы Ньюмарка, метода квазилинеаризации и дискретной ортогонализации [2-7, 10-12].

Для эффективного использования предложенной методики предполагаем, что при появлении внешнего магнитного поля не возникает резких скин-эффектов по толщине оболочки и электромагнитный процесс по координате быстро выходит на режим, близкий к установившемуся. Отметим что, применяя схему Ньюмарка, весь интервал изменения времени разобьем на отдельные малые по времени интервалы и историю деформирования проследим, последовательно решая задачи на каждом временном слое.

Числовой пример

Проведем исследование напряженно-деформированного состояния гибкой ортотропной конической оболочки из бороалюминия постоянной толщины , находящейся под действием механической нагрузки . Оболочка находится во внешнем магнитном поле и к ней подводится сторонний электрический ток плотности а также оболочка имеет конечную ортотропную электропроводность . Считаем, что сторонний электрический ток в невозмущенном состоянии равномерно распределен по оболочке, т.е. плотность стороннего тока не зависит от координат.

Исследуем влияние угла конусности на напряженно-деформированное состояние ортотропной конической оболочки обладающей ортотропной электропроводностью, учитывая, что угол дополняет угол ц при основании конуса до .

В этом случае граничные условия запишем в виде

Начальные условия принимают вид

.

При решении задачи параметры принимают следующие значения:

, , , , . , , , , , , , , , , .

Отметим, что в рассматриваемом случае анизотропия удельного электрического сопротивления равно .

Решение задачи определено на интервале времени , шаг интегрирования по времени принять равным: при ста точках интегрирования по длине оболочки.

На рис. 1 приведено распределение максимального прогиба при шаге по времени . Графики отвечают соответственно углам = ; ; ; ; . Здесь и в дальнейшем в качестве длины образующей конуса вводим текущую координату по формуле где (N=1, 2,…, 11). В качестве изменения времени вводим текущую координату по формуле , где (N=0, 1, 2,…, 10). В соответствии с начальными условиями во всех графиках значения механических и электромагнитных параметров при t=0 (N=0) равняются нулю.

Максимальные значения прогибов достигаются на пятой итерации по времени при , что согласуются с видом нагрузки. С уменьшением угла значения прогиба увеличиваются.

На рис. 2 - 4 показаны графики изменения , , для рассмотренных выше значений угла при , что отвечает максимальным значениям прогиба на рис. 1.

Исходя из приведенных данных, можно судить о влиянии угла конусности на напряженно-деформированное состояние токонесущей оболочки (номера кривых 1 - 6 соответствуют принятым на рис. 1). Здесь , - механические и магнитные напряжения на внешней поверхности ортотропной конической оболочки.

Рассматривая графики, видим, что при в точке = напряжения существенно возрастают. Резкое изменение напряжений при ; в точках , , , объясняется влиянием граничных условий. На левом конце конуса приложена перерезывающая сила и нормальная компонента индукции магнитного поля и их взаимодействие вызывает появление экстремальных значений.

На рис. 5 представлено изменение составляющей напряженности электрического поля при изменении угла конусности. Как и в предыдущих случаях, с уменьшением угла конусности напряженность электрического поля увеличивается.

На рис. 6 показано распределение нормальной составляющей магнитной индукции при для углов, указанных выше. Следует отметить, что значения магнитной индукции увеличиваются с уменьшением угла конусности и остаются монотонными.

Угол раствора конуса равный шести градусам оказался критическим для геометрически нелинейной теории при подобранных нагрузках. Дальнейшее уменьшение приводит к потере устойчивости оболочки.

Рис. 1 Рис. 2

Рис. 3 Рис. 4

Рис. 5 Рис. 6

Литература

магнитный поле коши ортотропный

1. Амбарцумян С.А., Багдасарян Г.Е., Белубекян М.В. Магнито-упругость тонких оболочек и пластин. - Москва: Наука, 1977. - 272 с.

2. Mol`chenko L.V., Loss I.I., Indiaminov R.SH. Nonlinear Deformation of Conical Shells in Magnetic Fields // International Applied Mechanics. - New York, 1997. - Vol. 33. No.3. - P. 221-226.

3. Mol`chenko L.V., Loss. I.I., Indiaminov R.SH. The magnetoelastisity of conical shells mith ortotropic elektroconductivity in nonlinear position // Bulletin of the University of Kiev. Series: Physics & Mathematics. - 2007. N.2. P.85-90.

4. Mol`chenko L.V., Loss. I.I., Indiaminov R.SH. Determining the Stress State of Flexible Orthotropic Shells of Revolution in Magnetic Field // International Applied Mechanics. - 2008.-Vol. 44. No.8. P.882 - 891.

5. Indiaminov R.SH. On the absence of the tangential projection of the Lorenz force on the ax symmetrical stressed state of current-carrying conic shells // International Journal Computational Technologies 2008. - Vol.13. N.6. P. 65 - 77.

6. Индиаминов Р.Ш. Исследование деформирования токонесущей ортотропной конической оболочки в нестационарном магнитном поле // Узбекский журнал «Проблемы механики». - Ташкент, 2009, - №5-6. - С. 13-18.

7. Мольченко Л.В, Индиаминов Р.Ш. Магнитоупругое деформирование токонесущей ортотропной конической оболочки переменной толщины в магнитном поле // Современные проблемы механики: Материалы междунар. научно-техн. конф. - Ташкент, 2009. - С. 392-396.

8. Индиаминов Р.Ш. Решение задач магнитоупругости ортотропных конических оболочек // Современные проблемы механики: Материалы междунар. научно-техн. конф. Т. 1. - Ташкент, 2009. - С: 302-306.

9. Индиаминов Р.Ш. Решение связанных динамических задач магнито-упругости токонесущих ортотропных конических оболочек // Сборник статьей Одиннадцатой междунар. научно-практ. конф. «Фундаментальные и прикладные исследования, разработка и применение высоких технологий в промышленности». 27-29 апреля 2011 г., г. Санкт-Петербург, Россия. Т. 3. - Санкт-Петербург, 2011. - С: 152-158.

10. Индиаминов Р.Ш. Исследования напряженного состояния токонесущей ортотропной конической оболочки в магнитном поле // Проблемы современной математики: Тр. научной конф. - Карши, 2011. - С. 388-392.

11. Индиаминов Р.Ш. Математическое моделирование магнитоупругих колебаний токонесущей ортотропной оболочки в магнитном поле // Современное состояние и перспективы информационных технологий: Материалы Республ. научно - практ. конф. Т. 1. - Ташкент, 2011. - С: 96-102.

12. Индиаминов Р.Ш. Учет влияния угла конусности на напряженно-деформированное состояние конической оболочки, находящейся в магнитном поле // Инфокоммуникационные и вычислительные технологии в науке, технике и образовании: Материалы междун. конф. - Ташкент, 2004. - С. 208-210.

Размещено на Allbest.ru


Подобные документы

  • Эквивалентность движения проводника с током в магнитном поле. Закон Фарадея. Угловая скорость вращения магнитного поля в тороидальном магнитном зазоре. Фактор "вмороженности" магнитных силовых линий в соответствующие домены ферромагнетика ротора, статора.

    доклад [15,5 K], добавлен 23.07.2015

  • Исследование особенностей движения заряженной частицы в однородном магнитном поле. Установление функциональной зависимости радиуса траектории от свойств частицы и поля. Определение угловой скорости движения заряженной частицы по круговой траектории.

    лабораторная работа [1,5 M], добавлен 26.10.2014

  • Ознакомление с основами движения электрона в однородном электрическом поле, ускоряющем, тормозящем, однородном поперечном, а также в магнитном поле. Анализ энергии электронов методом тормозящего поля. Рассмотрение основных опытов Дж. Франка и Г. Герца.

    лекция [894,8 K], добавлен 19.10.2014

  • Работа по перемещению проводника с током в магнитном поле. Изучение явления электромагнитной индукции. Способы получения индукционного тока в постоянном и переменном магнитном поле. Природа электродвижущей силы электромагнитной индукции. Закон Фарадея.

    презентация [339,8 K], добавлен 24.09.2013

  • Решение уравнений, которые описывают совокупное волновое поле, создающее напряженно-деформированное состояние в окрестности кругового отверстия на безграничной тонкой упругой пластине. Основные методы применения цилиндрических функции Бесселя и Ханкеля.

    курсовая работа [792,3 K], добавлен 25.11.2011

  • Магниторезистивный эффект (магнетосопротивление) — изменение электрического сопротивления материала в магнитном поле. Качественное объяснение эффекта. Тензор проводимости двумерного дырочного газа в магнитном поле и отрицательное магнетосопротивление.

    контрольная работа [208,7 K], добавлен 21.02.2009

  • Исследование растворов глюкозы, малахитового зеленого, метилового красного и фуксина с добавлением нанопорошка железа. Изучение процесса снижения концентрации указанных веществ за счет адсорбции на поверхности наночастиц и их осаждением в магнитном поле.

    дипломная работа [3,8 M], добавлен 05.09.2012

  • Расчет напряженно-деформированного состояния ортотропного покрытия на упругом основании. Распределение напряжений и перемещений в ортотропной полосе на жестком основании. Приближенный расчет напряженного состояния покрытия из композиционного материала.

    курсовая работа [3,3 M], добавлен 13.12.2016

  • Методика измерения магнитных свойств веществ в переменном и постоянном магнитном поле на примере магнитной жидкости. Исследование изменения магнитного потока, пронизывающего витки измерительной катушки при быстром извлечении из нее контейнера с образцом.

    лабораторная работа [952,5 K], добавлен 26.08.2009

  • Открытие связи между электричеством и магнетизмом, возникновение представления о магнитном поле. Особенности магнитного поля в вакууме. Сила Ампера, магнитная индукция. Магнитное взаимодействие параллельных и антипараллельных токов. Понятие силы Лоренца.

    презентация [369,2 K], добавлен 21.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.