Устройство трансформаторов
Краткая история изобретения трансформатора. Использование трансформаторов с разомкнутым сердечником для распределения электроэнергии. Передача электрической энергии переменным током высокого напряжения. Принцип действия и классификация трансформаторов.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.01.2018 |
Размер файла | 809,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. История изобретения трансформатора
2. Основные определения, принцип действия и классификация трансформаторов
3. Устройство трансформаторов
Заключение
Библиографический список
Введение
Важнейшей задачей, стоящей перед энергетикой, является создание эффективных и энергосберегающих систем передачи энергии.
Сверхпроводимость - свойство, которое проявляется у некоторых материалов в виде резкого падения удельного электрического сопротивления вплоть до нуля при температуре ниже определённого значения. Выгода от широкого использования явления сверхпроводимости очевидна: радикальное снижение потерь электроэнергии при ее выработке и передаче, уменьшение в разы размеров генерирующего оборудования и двигателей, создание новых электронных приборов, разработка сверхмощных электромагнитов для научных исследований и промышленности, разработка новых направлений в медицине, использование эффекта левитации на железной дороге.
Считается, что сверхпроводящие трансформаторы имеют преимущества перед традиционными трансформаторами в полной стоимости срока службы благодаря сокращению потерь мощности. Однако КПД обычных трансформаторов в настоящее время уже достаточно высок, поэтому нельзя принимать решение о введении сверхпроводящих трансформаторов в существующую энергосистему исходя только из уровня их эффективности; необходимо показать и другие преимущества. Стоит отметить, что сверхпроводящие трансформаторы выполнены на основе бессердечниковых сверхпроводящих трансформаторов. Преимуществами сверхпроводящих трансформаторов являются такие возможности, как ограничение максимальных токов на основе использования нормального перехода сверхпроводящей обмотки, более высокий КПД, уменьшение массы и другие.
1. История изобретения трансформатора
Восьмидесятые годы XIX в. вошли в историю электротехники под названием периода «трансформаторных битв». Такое необычное название они получили потому, что изобретение трансформатора явилось одним из сильнейших аргументов в пользу переменного тока. А настоящая битва шла между сторонниками систем постоянного и переменного токов и отражала поиски путей выхода из назревшего энергетического кризиса, связанного с проблемой централизованного производства электроэнергии и передачи ее на большие расстояния.
Первым простейшим трансформатором с разомкнутым магнитопроводом была индукционная катушка. Ее изобретение в 30-40-х гг. XIX в. связано с именами ряда ученых и изобретателей, но наибольшую известность получил немецкий механик Генрих Румкорф (1803-1877), создавший в 1848 г. более совершенную конструкцию, и его именем впоследствии стали называть индукционную катушку. Такие катушки предназначались для получения искрового разряда во вторичной цепи при прерывании постоянного тока в первичной цепи. Впервые катушку Г. Румкорфа применил для дистанционного взрывания мин Б. С. Якоби. В последней трети XIX в. индукционные катушки получили широкое применение в системах зажигания двигателей внутреннего сгорания.
На роль индукционной катушки, превратившейся в аппарат, названный позднее трансформатором, как средства электрического разделения цепей переменного тока впервые указал П. Н. Яблочков [5, 9, 17, 22]. Даже самим фактом патентования системы «дробления света» во многих странах он подчеркивал важность нового предложения.
Система «дробления света» Яблочкова широко демонстрировалась на Парижской Международной электротехнической выставке в 1881 г. и на Второй Петербургской электротехнической выставке в 1882 г. (где всю систему смонтировал и экспонировал препаратор Московского университета Иван Филиппович Усагин (1855-1919)). Бобины, как их тогда называли, имели одинаковое число витков в первичной и вторичной обмотках, а стальной сердечник был разомкнутым и представлял собой стержень, на который наматывались обмотки. На этой же выставке И. Ф. Усагин наряду со свечами и другими приемниками впервые демонстрировал схему включения во вторичные обмотки индукционных катушек: электродвигателя, проволочной нагревательной спирали, дуговой лампы с регулятором. Все эти приемники могли работать одновременно, не мешая друг другу. Этим экспериментом И. Ф. Усагин убедительно доказал универсальность применения переменного тока.
В начале 1880-х гг. становилось все яснее, что система электроснабжения на постоянном токе не имеет перспектив. Из опыта эксплуатации дуговых источников света было установлено оптимальное напряжение 110 В. Радиус электроснабжения не превышал несколько сотен метров. Попытки расширить границы района электроснабжения привели к появлению так называемой трехпроводной системы постоянного тока. Но основным направлением развития электроэнергетики уже в 1880-х гг. становится система переменного тока.
Новым шагом в использовании трансформаторов с разомкнутым сердечником для распределения электроэнергии явилась система распределения электричества для производства света и так называемой двигательной силы, запатентованная во Франции в 1882 г. английским электротехником Дж. Д. Голяром и французским электротехником Люстеном Гиббсом. Эти трансформаторы предназначались уже не только для «дробления» энергии, но и для преобразования напряжения, т. е. имели коэффициент трансформации, отличный от единицы. Общий вид «вторичного генератора» (как его называли) изображен на рисунке 1. На деревянной подставке укреплялось несколько индукционных катушек 1, первичные обмотки которых соединялись последовательно. Вторичные обмотки катушек были секционированы, и каждая секция имела два вывода для подключения приемников. Заслуживают внимания выдвижные сердечники 2 катушек, с помощью которых регулировалось напряжение на вторичных обмотках. Трансформаторы с разомкнутым сердечником в 1883 г. устанавливаются на подстанциях Лондонского метрополитена, а в 1884 г. - на выставке в Турине (Италия).
Современные трансформаторы имеют замкнутый магнитный сердечник, их первичные обмотки включаются параллельно. Но для схемы «дробления» энергии, предложенной П. Н. Яблочковым, трансформаторы с разомкнутым сердечником вполне удовлетворяли техническим требованиям. При последовательном соединении первичных обмоток включение и выключение одних потребителей не оказывало существенного влияния на режим работы других. При параллельном включении приемников применение трансформаторов с разомкнутыми сердечниками становилось технически неоправданным. Поэтому понятно стремление сконструировать трансформаторы с замкнутой магнитной системой, которые обладают значительно лучшими характеристиками (меньший намагничивающий ток, а следовательно, меньшие потери и больший КПД).
Рисунок 1. Трансформатор Голяра и Гиббса
Первые трансформаторы с замкнутым сердечником были созданы в Англии в 1884 г. братьями Джоном и Эдвардом Гопкинсонами. Сердечник этого трансформатора был набран из стальных полос или проволок, разделенных изоляционным материалом, что снижало потери на вихревые токи.
На сердечнике помещались, чередуясь, катушки высшего и низшего напряжений.
Впервые предложение о параллельном включении обмоток трансформаторов высказал Р. Кеннеди в 1883 г., но всесторонне этот способ соединения обосновал венгерский электротехник Миклош Дери (1854-1934), который в 1885 г. получил патент на параллельное включение первичных и вторичных обмоток трансформаторов и показал преимущество такого включения. Независимо от него аналогичный патент в Англии получил С. Ц. Ферранти.
Передача электрической энергии переменным током высокого напряжения оказалась возможной после создания однофазного трансформатора с замкнутой магнитной системой, имевшего достаточно хорошие эксплуатационные показатели. Такой трансформатор в нескольких модификациях (кольцевой, броневой и стержневой) разработали в 1884-1885 гг. венгерские электротехники Миклош Дери, Отто Блати и Карой Циперновский, предложившие и сам термин «трансформатор». В патентной заявке (февраль 1885 г.) они отмечали важное значение замкнутого шихтованного сердечника, в особенности для мощных силовых трансформаторов. На рисунке 2 изображены первые образцы кольцевого и броневого трансформаторов, а также общий вид серийного трансформатора системы Блати, Дери и Циперновского, выпускавшегося электромашиностроительным заводом фирмы «Ганц и К°» в Будапеште. Эти трансформаторы содержали все основные элементы современных конструкций однофазных трансформаторов.
На территории завода «Ганц и К°», где в конце XIX в. создавали первый трансформатор, в наши дни разместились корпуса завода «Ганц Моваг», выпускающего электропоезда и сложное электрооборудование для энергетики. На заводе есть музей, в котором главное место отведено истории создания трансформатора.
Рисунок 2. Первые трансформаторы будапешского завода «Ганц и К°» а?кольцевой; б?броневой; в?серийный стержневой
В 1885 г. американской фирмой «Вестингауз» (г. Питсбург, штат Пенсильвания) был построен первый автотрансформатор, который предложил американский электрик Уильям Стенли. В конце 1880-х гг. английский электрик Д. Свинберн предложил масляное охлаждение трансформаторов.
В 1889 г. М. О. Доливо-Добровольский изобрел трехфазный трансформатор. Вначале это был трансформатор с радиальным расположением сердечников рисунок 3 а. Его конструкция еще напоминает машину с выступающими полюсами, в которой устранен воздушный зазор, а обмотки ротора перенесены на стержни. Затем было предложено несколько конструкций так называемых «призматических» трансформаторов, в которых удалось получить более компактную форму магнитопровода рисунок 3 б-г. Наконец, в октябре 1891 г. была сделана патентная заявка на трехфазный трансформатор с параллельными стержнями, расположенными в одной плоскости рисунок 3 д. Принципиально эта конструкция сохранилась по настоящее время.
Целям электропередачи отвечали также работы, связанные с изучением схем трехфазной цепи. В 80-90-х гг. XIX в. значительное место в электропотреблении занимала осветительная нагрузка, которая часто вносила существенную несимметрию в систему. Кроме того, иногда потребителю было желательно иметь в своем распоряжении не одно, а два напряжения: одно - для осветительной нагрузки, другое, повышенное, - для силовой.
Рисунок 3. Трансформаторы Доливо-Добровольского: а?с радиальным расположением сердечников; б?г ? «призматические»; д?с параллельным расположением стержней в одной плоскости
Чтобы можно было регулировать напряжение в отдельных фазах и располагать двумя напряжениями в системе (фазным и линейным), М. О. Доливо- Добровольский разработал в 1890 г. четырехпроводную схему трехфазной цепи, или, иначе, систему с нейтральным проводом. Одновременно он указал, что вместо нейтрального, или нулевого, провода можно использовать землю. М. О. Доливо-Добровольский обосновал свои предложения доказательством того, что четырехпроводная трехфазная система допускает определенную несимметрию нагрузки; при этом напряжение на зажимах каждой фазы будет оставаться неизменным. Для регулирования напряжения в отдельных фазах четырехпроводной системы М. О. Доливо-Добровольский предложил использовать изобретенный им трехфазный автотрансформатор.
2. Основные определения, принцип действия и классификация трансформаторов
Трансформатором называют статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока. В общем случае вторичная система переменного тока может отличаться любыми параметрами: величиной напряжения и тока, числом фаз, формой кривой напряжения (тока), частотой. Наибольшее применение в электротехнических установках, а также в энергетических системах передачи и распределения электроэнергии имеют силовые трансформаторы, посредством которых изменяют величину переменного напряжения и тока. При этом число фаз, форма кривой напряжения (тока) и частота остаются неизменными. Простейший силовой трансформатор состоит из магнитопровода (сердечника, выполненного из ферромагнитного материала (обычно листовая электротехническая сталь), и двух обмоток, расположенных на стержнях магнитопровода рисунок 4. Одна из обмоток присоединена к источнику переменного тока Г на напряжение U), эту обмотку называют первичной. К другой обмотке подключен потребитель ZH, ее называют вторичной. Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в магнитопроводе переменный магнитный поток Ф. Замыкаясь в магнитопроводе, этот поток сцепляется с обеими обмотками (первичной и вторичной) и индуктирует в них ЭДС:
(1)
(2)
где и --число витков в первичной и вторичной обмотках трансформатора.
При подключении нагрузки ZH к выводам вторичной обмотки трансформатора под действием ЭДС е1 в цепи этой обмотки создается ток I2 , а на выводах вторичной обмотки устанавливается напряжение U2. В повышающих трансформаторах U2 > U1, а в понижающих U2 <U1.
Из (1) и (2) следует, что ЭДС е1 и е2 отличаются друг от друга числом витков обмоток, в которых они наводятся. Поэтому, применяя обмотки с требуемым соотношением витков, можно изготовить трансформатор на любое отношение напряжений.
Рисунок 4. Конструктивная (а) и принципиальная (б) схемы однофазного двухобмоточного трансформатора
Обмотку трансформатора, подключенную к сети с более высоким напряжением, называют обмоткой высшего напряжения (ВН); обмотку, присоединенную к сети меньшего напряжения,- обмоткой низшего напряжения (НН). Трансформаторы обладают свойством обратимости: один и тот же трансформатор можно использовать в качестве повышающего и понижающего. Но обычно трансформатор имеет определенное назначение: либо он является повышающим, либо понижающим. Трансформатор -- это аппарат переменного тока. Если же его первичную обмотку подключить к источнику постоянного тока, то магнитный поток в магнитопроводе трансформатора также будет постоянным как по величине, так и по направлению. Поэтому в обмотках трансформатора не будет наводиться ЭДС. трансформатор сердечник электроэнергия напряжение
Конструкция трансформаторов в значительной степени зависит от их назначения, по этому признаку трансформаторы разделяют на следующие основные виды:
1) силовые, применяемые:
а) в системах передачи и распределения электроэнергии;
б) для установок со статическими преобразователями (ионными или полупроводниковыми) при преобразовании переменного тока в постоянный (выпрямители) или постоянного в переменный (инверторы);
в) для получения требуемых напряжений в цепях управления электроприводами и в цепях местного освещения;
2) силовые специального назначения -- печные, сварочные т. п.;
3) измерительные -- для включения электрических измерительных приборов в сети высокого напряжения или сильного тока;
4) испытательные -- для получения высоких и сверхвысоких напряжений, необходимых при испытаниях на электрическую прочность электроизоляционных изделий;
5) радиотрансформаторы -- применяемые в устройствах радио- и проводной связи, в системах автоматики и телемеханики для получения требуемых напряжений, согласования сопротивлений электрических цепей, гальванического разделения цепей и др.
Трансформаторы одного и того же назначения могут различаться:
? по виду охлаждения--с воздушным (сухие трансформаторы) и масляным (масляные трансформаторы) охлаждением;
? по числу трансформируемых фаз--однофазные и многофазные;
? по форме магнитопровода -- стержневые, броневые, бронестержневые, тороидальные;
? по числу обмоток -- двухобмоточные и многообмоточные (одна первичная и две или более вторичных обмоток);
? по конструкции обмоток -- с концентрическими и чередующимися обмотками.
3. Устройство трансформаторов
Основные части трансформатора -- это магнитопровод и обмотки.
Магнитопровод трансформатора выполняют из листовой электротехнической стали. Перед сборкой листы с двух сторон изолируют лаком. Такая конструкция магнитопровода дает возможность в значительной степени ослабить в нем вихревые токи. Часть магнитопровода, на которой располагают обмотки, называют стержнем.
В стержневых трансформаторах имеются два стержня и соединяющих их два ярма рисунок 5 а. Броневые трансформаторы имеют разветвленный магнитопровод с одним стержнем и ярмами, частично прикрывающими ("бронирующими") обмотки рисунок 5 б.
Рисунок 5. Однофазные трансформаторы стержневого (а) и броневого (б) типов
Стержневая конструкция имеет наибольшее распространение, особенно в трансформаторах большой и средней мощности. Достоинства этой конструкции -- простота изоляции обмоток, лучшие условия охлаждения, простота ремонта.
Однофазные трансформаторы малой мощности чаще имеют броневую конструкцию, что позволяет уменьшить габариты трансформатора. Кроме того, боковые ярма защищают обмотку от механических повреждений; это важно для трансформаторов малой мощности, которые часто не имеют защитного кожуха и располагаются вместе с другим электрооборудованием на общей панели или в общем шкафу.
Трехфазные трансформаторы обычно выполняют на магнитопроводе стержневого типа с тремя стержнями рисунке 6.
В трансформаторах большой мощности применяют бронестержневую конструкцию магнитопровода рисунок7, которая хотя и требует несколько повышенного расхода электротехнической стали, но позволяет, уменьшить высоту магнитопровода (НБС < Нс), а следовательно, и высоту трансформатора.
Рисунок 6. Трехфазный трансформатор стержневого типа: 1 - магнитопровод; 2 - обмотки
Рисунок 7. Магнитопроводы бронестержневого трансформатора: однофазного (а); трехфазного (б)
Это имеет большое значение при его перевозке в собранном виде.
По способу соединения стержней с ярмами различают магнитопроводы стыковые рисунок 8 а, и шихтованные рисунок 8 б. В стыковых магнитопроводах стержни и ярма собирают раздельно, а затем соединяют посредством крепежных частей. Такая конструкция магнитопровода облегчает посадку обмоток на стержни, так как для этого достаточно снять только верхнее ярмо. Но при шихтовой сборке магнитопровода, когда листы (полосы) собирают "внахлестку", воздушный зазор в месте стыка стержней и ярем может быть сделан минимальным, что значительно снизит магнитное сопротивление магнитопровода. Кроме того, механическая прочность шихтованного магнитопровода намного выше, чем стыкового. Все это привело к тому, что шихтованные магнитопроводы получили основное применение. Листы магнитопровода стягивают посредством шпилек 4 инакладок 7, изолированных от листов изоляционными шайбами 2 и трубками 3 рисунок 9.
В последнее время сборку листов (полос) магнитопровода в пакет выполняют наложением на стержни и ярма бандажа из стекловолоконной ленты.
Рисунок 8 ? Сборки магнитопровода
Рисунок 9. Изоляция шпильки, стягивающей листы магнитопровода
Рисунок 10. Форма сечения стержня
Форма поперечного сечения стержней зависит от мощности трансформатора: в небольших трансформаторах применяют стержни прямоугольного сечения рисунок 10 а, в трансформаторах средней и большой мощности -- стержни ступенчатого сечения рисунок 10 б, в с числом ступеней, возрастающим с увеличением мощности трансформатора. Ступенчатое сечение стержней обеспечивает лучшее использование площади внутри обмотки, так как периметр ступенчатого стержня приближается к окружности. В трансформаторах большой мощности для улучшения теплоотдачи между пакетами стали магнитопровода устраивают вентиляционные каналы рисунок 10 в. Обмотки трансформаторов выполняют из проводов круглого и прямоугольного сечения, изолированных хлопчатобумажной пряжей или кабельной бумагой.
Обмотки бывают цилиндрические, располагаемые на стержнях, концентрические рисунок 11 а и дисковые, располагаемые на стержнях в чередующемся порядке рисунок 11 б.
Магнитопровод трансформатора вместе с кожухом или баком заземляют, что обеспечивает безопасность обслуживания трансформатора в случае, если изоляция обмотки окажется пробитой.
Возможны два варианта взаимного расположения обмоток на стержнях магнитопроводов: раздельное расположение (на одном стержне обмотка ВН, а на другом применяют весьма редко и только в высоковольтных трансформаторах, так как это создает лучшие условия для надежной изоляции обмотки ВН от обмотки НН; однако в этом случае наблюдается увеличение магнитного потока рассеяния; наиболее распространено равномерное концентрическое расположение обмоток на всех стержнях магнитопровода (см. рисунок 5 а), так как это обеспечивает малую величину магнитного потока рассеяния. При этом обычно ближе к стержню располагают обмотку НН, так как она требует меньшей электрической изоляции от стержня (заземленного), затем укладывают слой изоляции из картона или бумаги и обмотку ВН.
В трансформаторах с масляным охлаждением магнитопровод с обмотками помещен в бак, наполненный трансформаторным маслом рисунке 12. Омывая обмотки 2 и 3, магнитопровод 7, трансформаторное масло отбирает от них тепло и, обладая более высокой теплопроводностью, чем воздух, через стенки бака 9 и трубы радиатора 8 отдает его в окружающую среду. Наличие трансформаторного масла обеспечивает более надежную работу высоковольтных трансформаторов, так как электрическая прочность масла намного выше, чем воздуха.
Рисунок 11. Обмотки трансформаторов НН и ВН
Масляное охлаждение интенсивнее воздушного, поэтому габариты и вес масляных трансформаторов меньше, чем у сухих трансформаторов такой же мощности.
В трансформаторах мощностью до 20 - 30 кВ*А применяют баки с гладкими стенками. У более мощных трансформаторов для увеличения охлаждаемой поверхности стенки бака делают ребристыми или же применяют трубчатые баки, как это показано на рис.9.
Масло, нагреваясь, поднимается вверх и, охлаждаясь, опускается вниз.
При этом масло циркулирует в трубах, что способствует более быстрому его охлаждению.
Рисунок 12. Устройство трансформатора с масляным охлаждением: 1- магнитопровод; 2 и 3- обмотки ВН и НН; 6- выхлопная труба;7- расширитель;8- радиаторные трубы; 9-бак
Для компенсации объема масла при изменении температуры, а также для защиты масла трансформатора от окисления и увлажнения при контакте с воздухом в трансформаторах применяют расширитель 7, представляющий собой цилиндрический сосуд, установленный на крышке бака и сообщающийся с ним. Колебания уровня масла с изменением его температуры происходят не в баке, который всегда заполнен маслом, а в расширителе, сообщающемся с атмосферой.
В процессе работы трансформаторов не исключена возможность возникновения в них явлений, сопровождающихся бурным выделением газов, что ведет к значительному увеличению давления внутри бака, поэтомувоизбежание повреждения баков трансформаторы мощностью 1000 кВ*А и выше снабжают выхлопной трубой 6, которую устанавливают на крышке бака.
Нижним концом труба сообщается с баком, а ее верхний конец заканчивается фланцем, на котором укреплен стеклянный диск. При давлении, превышающем безопасное для бака, стеклянный диск лопается,и газы выходят наружу.
Трансформаторы средней и большой мощности снабжены газовым реле.
При возникновении в трансформаторе значительных повреждений, сопровождаемых обильным выделением газов (например, при коротком замыкании между витками обмоток), газовое реле срабатывает и замыкает контакты цепи управления выключателя, который отключает трансформатор от сети. Обмотки трансформатора с внешней цепью соединяют вводами 4 и 5, выполняемыми обычно из фарфора. К баку трансформатора прикреплен щиток, на котором указаны: номинальная мощность - мощность на зажимах вторичной обмотки, кВ. А; номинальное первичное напряжение, кВ; номинальное вторичное напряжение--напряжение на зажимах вторичной обмотки при холостом ходе трансформатора и номинальном первичном напряжении, кВ; номинальные токи трансформатора (первичный и вторичный).
Заключение
Трансформаторы широко используются в промышленности и быту для различных целей.
1. Для передачи и распределения электрической энергии.
Обычно на электростанциях генераторы переменного тока вырабатывают энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500 и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышения напряжения.
Распределение электрической энергии между промышленными предприятиями, населенными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий производиться по воздухным кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 кВ.
2. Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя. Трансформаторы применяемые для этих целей называются преобразовательными.
3. Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и другое.
4. Для включения электроизмерительных приборов и некоторых аппаратов (реле и другое) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечение электробезопастности. Трансформаторы для этих целей называются измерительными.
Библиографический список
1. Вольдек А.И. Электрические машины. Л.: Энергия, 1988.
2. Иванов-Смоленский А.В. Электрические машины.М.: Энергия, 1990.
3. КацманМ.М. Электрические машины.М.: Высшая школа, 1969.
4. Копылов И.П. Электрические машины.М.: Энергоатомиздат, 1996.
5. Токарев Б.Ф. Электрические машины.М.: Энергоатомиздат, 1998.
6. Ульянов С.А. Электромагнитные переходные процессы.М.: Энергия, 1980.
Размещено на Allbest.ru
Подобные документы
История изобретения, устройство и классификация трансформаторов как электромагнитных устройств для преобразования переменного тока посредством индукции. Базовые принципы действия трансформатора. Анализ закона Фарадея. Уравнения идеального трансформатора.
презентация [2,6 M], добавлен 23.12.2012Потребность трансформирования электрической энергии - повышения и понижения переменного напряжения в сети. Классификация трансформаторов и принцип их работы. Конструктивное исполнение и электромагнитные процессы в трансформаторах различных типов.
контрольная работа [842,0 K], добавлен 22.11.2010Назначение, технические характеристики и устройство измерительных трансформаторов напряжения. Описание принципа действия трансформаторов напряжения и способов их технического обслуживания. Техника безопасности при ремонте и обслуживании трансформаторов.
контрольная работа [258,1 K], добавлен 27.02.2015История создания, разновидности и срок службы трансформаторов. Конструкция и базовые принципы их действия. Преобразование электрической энергии в электросетях и установках, принимающих и использующих ее. Режимы работы, перенапряжение трансформатора.
курсовая работа [68,2 K], добавлен 14.07.2015Решение проблемы централизованного производства электроэнергии и ее передачи на большие расстояния. История изобретения, устройство и классификация трансформаторов как электромагных устройств для преобразования переменного тока посредством индукции.
реферат [2,4 M], добавлен 23.01.2011Преобразование с помощью трансформатора переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз. Устройство трансформатора, принцип его работы и функции. Классификация трансформаторов. Особенности линий электропередач.
презентация [1,8 M], добавлен 12.04.2012Номенклатура силовых трансформаторов. Устройство и принцип действия трансформаторов. Конструкции линий электропередач и их составляющие. Виды и применение счетчиков электроэнергии. Действие электрического тока на организм человека, оказание первой помощи.
отчет по практике [465,9 K], добавлен 20.11.2013Особенности тепловых и атомных электростанций, гидроэлектростанций. Передача и перераспределение электрической энергии, использование ее в промышленности, быту, транспорте. Осуществление повышение и понижение напряжения с помощью трансформаторов.
презентация [6,3 M], добавлен 12.01.2015История создания трансформаторов, их классификация и характеристика. Принцип действия и устройства однофазных и трехфазных трансформаторов. Общая конструкция сердечников и форма сечения их частей. Типы обмоток. Применение и эксплуатация трансформаторов.
дипломная работа [4,0 M], добавлен 01.08.2011Масляные трансформаторы, их устройство и назначение. Установка, ремонт и замена масляных трансформаторов. Правила по электрической безопасности при эксплуатации трансформаторов. Эксплуатация масляных трансформаторов на примере трансформатора ТМ-630.
курсовая работа [718,0 K], добавлен 28.05.2014