Анализ выбора оборудования тяговой подстанции переменного тока и ремонт трансформаторов напряжения

Расчет мощности подстанции, максимальных рабочих токов, параметров короткого замыкания. Выбор и проверка разъединителей. Назначение трансформаторов напряжения. Определение эксплуатационных расходов на содержание подстанции, техника безопасности.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 11.11.2017
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

  • Дипломный проект
  • на тему «Анализ выбора оборудования тяговой подстанции переменного тока и ремонт трансформаторов напряжения»
  • Содержание
  • Введение
  • 1. Теоретический раздел
  • 1.1 Выбор однолинейной схемы
  • 1.2 Расчет мощности подстанции
  • 1.3 Расчет максимальных рабочих токов
  • 1.4 Расчет параметров короткого замыкания
  • 1.5 Выбор и проверка высоковольтных выключателей
  • 1.6 Выбор и проверка разъединителей
  • 1.7 Выбор и проверка трансформаторов тока
  • 1.8 Выбор и проверка трансформаторов напряжения
  • 2. Технологический раздел
  • 2.1 Общие сведения трансформаторов напряжения
  • 2.2 Назначение трансформаторов напряжения.
  • 2.3 Классификация трансформаторов напряжения
  • 2.4 Конструкция трансформаторов напряжения
  • 2.5 Принцип действия трансформатора
  • 3. Экономический раздел
  • 3.1 Определение эксплуатационных расходов на содержание подстанции
  • 4. Охрана труда и безопасность движения
  • 4.1 Техника безопасности при работах в электроустановках
  • Заключение
  • Библиографический список
  • Приложения

Введение

подстанция ток замыкание трансформатор

Железная дорога - одна из важнейших составных частей магистрально-технической базы экономики страны.

До 1955 г. электрификация железных дорог велась на постоянном токе напряжением 3,3 кВ, с 1955 г. - на переменном токе 27,5 кВ и постоянном 3,3 кВ. с 1980 г. на ряде участков электрификация осуществляется на переменном токе по системе 2Ч25 кВ.

На электростанциях вырабатывается трехфазный переменный ток частотой 50 Гц и напряжением 3,15; 6,3; 10,5; 15,75 и 21 кВ. Часть электрической энергии передается потребителям по ЛЭП на генераторном напряжении, другая часть поступает на расположенную рядом повышающую трансформаторную подстанцию, где напряжение повышается до десятков или сотен киловольт. Передача электроэнергии высоким напряжением на большие расстояния более экономична, так как снижаются ее потери в проводах ЛЭП.

Система однофазного переменного тока напряжением 25 кВ нашла широкое применение в тяговых сетях электрифицированных железных дорог.

Каждая тяговая подстанция является ответственным электротехническим сооружением (электроустановкой), оснащенной мощной современной силовой

(трансформаторы), коммутационной (выключатели переменного тока, разъединители), и вспомогательной аппаратурой, большая часть которой работает в режиме автотелеуправления.

Тяговая подстанция получает питание по двум вводам, тупиковая, и через РУ питающего напряжения оно подается на первичные обмотки главных понижающих трансформаторов ГПТ - 1 и ГПТ - 2, которые понижают напряжение до 10 кВ и подают энергию в РУ - 10 кВ, со сборных шин которого запитываются преобразовательные агрегаты ПА - 1 и ПА - 2, трансформаторов собственных нужд ТСН - 1 и ТСН - 2 и нетяговые потребители 10кВ.

От РУ - 3,3 кВ осуществляется электроснабжение участка железной дороги по фидерам контактной сети, количество которых определяется схемой питания и секционирования контактной сети.

Питание не тяговых потребителей напряжением 35 кВ осуществляется от сборных шин 35 кВ, получающих питание от третьей обмотки ГПТ - 1 и ГПТ - 2. Если не тяговые потребители 35 кВ отсутствуют, то главные понижающие трансформаторы выполняются двух обмоточными.

1. Теоретический раздел

1.1 Выбор однолинейной схемы

Однолинейная схема электрических соединений определяет основные качества электрической части спроектированной подстанции. От этой схемы зависят надежность электрооборудования потребителей, ремонтоспособность, удобство технического обслуживания и безопасность персонала, рациональность размещения электрооборудования.

Однолинейная схема состоит из 3 распределительных устройств: ОРУ - 220 кВ, ОРУ - 27,5 кВ, ЗРУ - 10 кВ.

Питание распределительного устройства 220 кВ на трансформаторы поступает по линиям электропередачи по вводам W1, W2, на которых установлены разъединители типа РГ - 220/1000 УХЛ1. Между вводами выполняется перемычка с двумя разъединителями. На первичной стороне трансформаторов также установлены разъединители, такие же как на вводах. Встроенные трансформаторы тока необходимы для подключения амперметра и релейных защит. Наличие перемычки с разъединителем. имеющим дистанционное управление, позволяет обеспечить питание любого трансформатора по любому вводу или двух трансформаторов по одному вводу. Второй разъединитель перемычки с ручным приводом используется при ремонте для создания видимого разрыва цепи, трансформатор остается в работе, получая электроэнергию по вводу W2.

Распределительное устройство 27,5кВ включает в себя сборные шины, вводы от обмоток 27,5 кВ главных понижающих (тяговых) трансформаторов, фидеры контактной сети и ДПР, трансформаторы собственных нужд.

Шины 27,5 кВ состоят из проводов фаз А и В, секционированных разъединителями, которые нормально включены. Секционирование сборных шин 27,5 кВ двумя разъединителями обеспечивает безопасное выполнение работ и на секциях шин. Фаза С представляет собой рельс уложенный в земле, так называемый рельс земляной фазы, который соединен с контуром заземления подстанции, рельсом подъездного пути, отсасывающей линией и тяговым рельсом.

Питающие линии контактной сети (фидеры) присоединяют к фазе А и В согласно фазировке станции и прилегающих перегонов. Для замены любого фидерного выключателя при выводе его в ремонт или аварийном режиме в схеме ,ОРУ - 27,5 кВ предусмотрена запасная шина, которая может получить питание через запасной выключатель от фазы А и В сборных шин.

На тяговых подстанциях ЗРУ - 10 кВ может получать питание от одного понижающего трансформатора при включенном секционном выключателе.

Для ЗРУ - 10 кВ предусматривается установка выключателей.

Все отходящие линии 10 кВ имеют защиту замыкания на землю, для питания которой предусмотрен трансформатор тока.

Рисунок. 1.1 - Принципиальная схема

1.2 Расчет мощности подстанции

Максимальная активная мощность районного потребителя:

(1.1)

где Руст - установленная мощность потребителя, кВт;

кс - коэффициент спроса;

Сумма максимальных активных мощностей районных потребителей:

Тангенс угла :

где cos - коэффициент мощности;

Максимальная реактивная мощность районного потребителя:

квар;

квар.

Сумма максимальных реактивных мощностей районных потребителей:

Максимальная полная мощность всех районных потребителей:

где Рпост - постоянные потери в стали трансформатора, принимаемые 8%;

Рпер - переменные потери в стали трансформатора, принимаемые 2%;

Мощность тяговой нагрузки:

где I'д - наиболее загруженное плечо питания, А;

I''д - наименее загруженное плечо питания, А;

км - коэффициент, для двухпутной линии, принимаемый 1,45;

Полная расчетная мощности подстанции.

Мощность на шинах равная 27,5 кВ:

где Sдпр - мощность нетяговых железнодорожных потребителей на электрифицированной дороге переменного тока, питающийся по линии «два провода - рельс», кВА;

Sсн - мощность собственных нужд (определяется по маркировке

трансформатора собственных нужд), кВА;

кр - коэффициент разновременности максимальных нагрузок,

принимаемый 0,95;

Максимальная полной мощности:

Выбор главных понижающих трансформаторов

Расчетная мощность главного понижающего трансформатора:

где кав - коэффициент допустимой аварийной перегрузки трансформатор по его отношению к его номинальной мощности принимаемый

nтр - количество главных понижающих трансформаторов, принимаемые

Равным 2;

Условия выбора главного понижающего трансформатора (таблица 1.1)

SномГПТ ? SГПТрасч; (1.11)

U1ном ? U1раб; (1.12)

U2ном ? U2раб; (1.13)

U3ном ? U3раб. (1.14)

40000 кВ > 35839,574кВ;

230 кВ > 220 кВ;

27,5 кВ = 27,5 кВ;

11 кВ > 10 кВ.

Таблица 1.1 -электрические характеристики масляных трансформаторов с внешним напряжением 220кВ.

Тип

Номинальная мощность, кВА

Номинальное напряжение обмоток, кВ

Напряжение короткого замыкания

Схема и группа соединения

обмоток

высшего напряжения

среднего напряжения

низшего напряжения

uкВ-С, %

uкВ-Н, %

ТДТНЖ -

40000/220 УХЛ-1

40000

230

27,5

11

12,5

22

Y*/Д- Д-11-11

Полная мощность подстанции

Полная мощность отпаечной тяговой подстанции:

1.3 Расчет максимальных рабочих токов

Максимальные рабочие токи открытого распределительного устройства 220 кВ.

Максимальный рабочий ток вводов ЛЭП:

Максимальный рабочий ток ремонтной перемычки первичной обмотки

высшего напряжения силового трансформатора:

где kп - коэффициент допустимой перегрузки трансформатора принимаемый 1,3;

Максимальные рабочие токи распределительных устройств 10 и 27,5 кВ

Максимальный рабочий ток вторичной обмотки среднего напряжения

силового трансформатора:

где kп - коэффициент перспективы, принимаемый 1,5;

Максимальный рабочий ток сборных шин 10 и 27,5 кВ:

где kрн2 - коэффициент распределения нагрузки на шинах среднего или низшего напряжения, равный 0,5 при числе присоединений 5 и более; 0,7 при меньшем числе присоединений;

Распределительное устройство на 27,5 кВ:

Рабочий ток первичной обмотки ТСН:

Рабочий ток ДПР:

1.4 Расчет параметров короткого замыкания

Для расчета точек короткого замыкания (КЗ) применяется метод относительных единиц.

Расчет относительных сопротивлений до заданных точек короткого замыкания (рисунок 1.2):

Рисунок 1.2 - Расчетная схема

Расчет относительных сопротивлений до заданных точек короткого замыкания выполняется по схеме замещения

Рисунок 1.3- Схема замещения

Сопротивление системы рассчитывается по формуле:

где Sб - базисная мощность, МВА;

Sкс - мощность короткого замыкания системы, МВА;

Сопротивление линии рассчитывается по формуле:

где Uср - среднее напряжение в месте установки данного элемента, кВ;

l - длина линии, км;

х0 - индуктивное сопротивление линии на 1 км длины, Ом/км;

Сопротивление трансформатора рассчитывается по формуле:

где uк% - напряжение короткого замыкания трансформатора, %.

Для расчета точек короткого замыкания используется схема преобразования .

Рисунок 1.4 - Схема преобразования

Расчет параметров цепи короткого замыкания

Базисный ток рассчитывается по формуле:

Действующее значение тока короткого замыкания рассчитывается по

формуле:

Ударный ток рассчитывается по формуле:

1.5 Выбор и проверка высоковольтных выключателей

Выбираем высоковольтный выключатель, установленный в первичной обмотке высшего напряжения силового трансформатора типа ВМТ-220Б 25/1250-УХЛ1

- по роду установки - наружная;

- по конструктивному исполнению - маломасляные;

- по напряжению установки:

Uном?Uраб.макс (1.29)

220 кВ=220кВ;

- по номинальному току:

Iном?Iраб.макс (1.30)

Время отключения тока кз:

tотк=tрз+tср+tов; (1.31)

где tрз - собственное время срабатывания защиты , tср - время выдержки

срабатывания защиты, принимается 0,1 с;

tов - собственное время отключения выключателя, с;

tотк=2+0,1+0,035=2,135 с.

Тепловой импульс тока кз:

Вк=Iк2(tотка); (1.32)

где Та - периодическая составляющая тока короткого замыкания, принимается 0,05 с;

Значения теплового импульса тока кз сводим в таблицу 5.4.

Проверку высоковольтного выключателя ВМТ-220Б-25/1250-УХЛ1

установленный в первичной обмотке высшего напряжения силового

трансформатора осуществляем:

- на электродинамическую стойкость

-на термическую стойкость:

-по номинальному току отключения:

Данные по проверке и выбору ВМТ-220Б-25/1250-УХЛ1 сведены в

Согласно проверке выбранный выключатель типа ВМТ-220Б-25/1250-УХЛ1 является электродинамически и термически стойким.

Аналогично выбираем и проверяем выключатели, установленные в ОРУ - 220 кВ, ОРУ - 27,5 кВ и ЗРУ - 10 кВ данные выключатели согласно проверке являются электродинамически и термически стойкими

Таблица 1.5 - Тепловой импульс

Место установки

Вводы ЛЭП

2,856

2

0,1

0,035

0,05

2,135

6,24

Рабочая перемычка

2,856

2

0,1

0,035

0,05

2,135

6,24

Обмотка высшего напряжения силового трансформатора

2,856

2

0,1

0,035

0,05

2,135

6,24

Обмотка среднего напряжения силового трансформатора

8,923

1,5

0,1

0,06

0,05

1,66

19,498

Первичная обмотка ТСН

8,923

1,5

0,1

0,06

0,05

1,66

19,498

Фидер ДПР

8,923

1

0,1

0,06

0,05

1,66

19,498

Фидер контактной сети 1

8,923

0

0,1

0,06

0,05

0,16

16,72

Фидер контактной сети 2

8,923

0

0,1

0,06

0,05

0,16

16,72

Фидер контактной сети 3

8,923

0

0,1

0,06

0,05

0,16

16,72

Фидер контактной сети 4

8,923

0

0,1

0,06

0,05

0,16

16,72

Обмотка низкого напряжения силового трансформатора

15,066

1,5

0,1

0,04

0,05

1,64

32,919

Сборные шины 10 кВ

15,066

1,5

0,1

0,04

0,05

1,64

32,919

Фидера районных потребителей:

Вокзал

15,066

1

0

0,06

0,05

1,11

32,919

Жилой поселок

15,066

1

0

0,06

0,05

1,11

32,919

Таблица 1.6 - Выключатели

Место установки

Тип

Паспортные значения

Расчетные значения

1

2

3

4

5

6

7

8

9

10

11

12

Рабочая перемычка

ВМТ-220Б-25/1250 УХЛ 1

220

1250

1875

25

65

220

346,41

6,24

2,856

7,283

Обмотка высшего напряжения силового трансформатора

ВМТ-220Б-25/1250 УХЛ 1

220

1250

1875

25

65

220

136,41

6,24

2,856

7,283

Обмотка среднего напряжения силового трансформатора

ВЦБ-35-25/1600 УХЛ 1

35

1600

1200

25

45

27,5

1091,72

19,498

8,923

22,759

Первичная обмотка ТСН

ВЦБ-35-25/1600 УХЛ 1

27,5

1600

1200

25

45

27,5

10,92

19,498

8,923

22,759

Фидер ДПР

ВЦБ-35-25/1600 УХЛ 1

27,5

1600

1200

25

45

27,5

11,02

19,498

8,923

22,759

Фидер контактной сети1

ВВФ-27,5-20/1200 УХЛ 1

27,5

1200

1200

20

31,5

27,5

600

16,72

8,923

22,759

Фидер контактной сети2

ВВФ-27,5-20/1200 УХЛ 1

27,5

1200

1200

20

31,5

27,5

650

16,72

8,923

22,759

Фидер контактной сети3

ВВФ-27,5-20/1200 УХЛ 1

27,5

1200

1200

20

31,5

27,5

700

16,72

8,923

22,759

Фидер контактной сети 4

ВВФ-27,5-20/1200 УХЛ 1

27,5

1200

1200

20

31,5

27,5

800

16,72

8,923

22,759

Обмотка низкого напряжения силового трансформатора

ВВЭ10-31,5/3150 УХЛ 3

10

3150

2982,4

31,53

31,5

10

3002,22

32,919

15,066

38,418

Сборные шины

ВВЭ10-31,5/630 УХЛ 3

10

630

2982,4

31,53

31,5

10

338,86

32,919

15,066

38,418

Фидера районных потребителей

-

-

-

-

-

-

-

-

-

-

-

Вокзал

ВВЭ10-31,5/630 УХЛ 3

10

630

2982,4

31,53

31,5

10

3464,101

32,919

15,066

38,418

Жилой поселок

ВВЭ10-31,5/630 УХЛ 3

10

630

2982,4

31,53

31,5

10

69,53

32,919

15,066

38,418

1.6 Выбор и проверка разъединителей

Выбираем высоковольтный разъединитель типа РГ 220/1000УХЛ1,установленный в первичной обмотке высшего напряжения силового трансформатора

-по напряжению установки:

220кВ=220кВ.

-по номинальному току:

Проверку высоковольтного разъединителя типа РГ-220/1000УХЛ1, установленного в первичной обмотке высшего напряжения силового трансформатора осуществляем в следующей последовательности:

-на электродинамическую стойкость:

-на термическую стойкость:

; (1.39)

Согласно проверке выбранный разъединитель типа РГ-220/1000УХЛ1, является электродинамически и термически стойким. Данные расчёта этого разъединителя сведены в таблице 1.7.

Аналогично выбираем и проверяем разъединители, установленные в ОРУ-220кВ, ОРУ-35кВ, которые согласно проверке являются термически и динамически стойкими .

Таблица 1.7 - Разъединители

Место установки

Тип

Паспортные значения

Расчетные значения

, В

, А

, А

I2тtт,кА2·с

Iпр.с,кА

Bк,кА2·с

Iк,кА

iу,кА

Рабочая перемычка

РГ-220/1000УХЛ1

220

220

1250

346,41

1875

65

6,24

2,856

7,283

Обмотка высшего напряжения

РГ-220/1000УХЛ1

220

220

1250

136,41

1875

65

6,24

2,856

7,283

Обмотка среднего напряжения

РДЗ-35. IV/2000УХЛ1

35

27,5

1600

1091,72

1200

45

19,498

8,923

22,759

Первичная обмотка ТСН

РГ-35/1000УХЛ1

35

27,5

1600

10,92

1200

45

19,498

8,923

22,759

Фидер ДПР

РГ-35/1000УХЛ1

35

27,5

1600

11,02

1200

45

19,498

8,923

22,759

Фидер контактной сети1

РГ-35/1000УХЛ1

35

27,5

1200

600

1200

31,5

19,498

8,923

22,759

Фидер контактной сети2

РГ-35/1000УХЛ1

35

27,5

1200

650

1200

31,5

19,498

8,923

22,759

Фидер контактной сети3

РГ-35/1000УХЛ1

35

27,5

1200

700

1200

31,5

19,498

8,923

22,759

Фидер контактной сети4

РГ-35/1000УХЛ1

35

27,5

1200

800

1200

31,5

19,498

8,923

22,759

1.7 Выбор и проверка трансформаторов тока

Выбираем измерительный трансформатор тока типа TG-245, установленный в первичной обмотке высшего напряжения силового трансформатора:

-по номинальному напряжению:

U1ном.тт ?Uраб; (1.40)

-по номинальному току:

I1ном.ттIраб.макс; (1.41)

Проверяем выбранный трансформатор типа TG-245

-на термическую стойкость:

(1.42)

где - ток термической стойкости, кА

- на электродинамическую стойкость:

(1.43)

где - ток электродинамической стойкости, кА

Данный трансформатор тока типа TG-245 является термически и электродинамически стойким.

Таблица 1.7 - Электрические характеристики трансформаторов тока

Место установки

Тип трансформатора тока

Паспортные значения

Расчетные значения

, В

, А

, А

,кА

,кА

Bк,кА2·с

iу,кА

1

2

3

4

5

6

7

8

9

10

Рабочая перемычка

TG245

220

220

1250

346,41

992,25

80

6,24

7,283

Обмотка высшего напряжения

TG245

220

220

1250

346,41

992,25

80

6,24

7,283

Обмотка среднего напряжения

ТФЗМ-35А

35

27,5

1600

1091,72

1536,64

80

19,498

22,759

Первичная обмотка ТСН

ТТГ-35

35

27,5

1600

11,02

499,5

57

19,498

22,759

Фидер ДПР

ТТГ-35

35

27,5

1600

119,89

499,5

57

19,498

22,759

Фидер контактной сети1

ТТГ-35

35

27,5

1200

600

499,5

57

19,498

22,759

Фидер контактной сети2

ТТГ-35

35

27,5

1200

650

499,5

57

19,498

22,759

Фидер контактной сети3

ТТГ-35

35

27,5

1200

700

499,5

57

19,498

22,759

Фидер контактной сети4

ТТГ-35

35

27,5

1200

800

499,5

57

19,498

22,759

Обмотка низкого напряжения

ТПШЛ-10

10

27,5

4000

3002,22

6084

80

32,919

38,418

Сборные шины 10 Кв

ТПОЛ-10

10

10

630

338,86

499,5

50

32,919

38,418

Фидера районных потребителей

-

-

-

-

-

-

-

-

-

Вокзал

ТПОЛ-10

10

10

630

3464,101

499,5

50

32,919

38,418

Жилой поселок

ТПОЛ-10

10

10

630

69,53

499,5

50

32,919

38,418

1.8 Выбор и проверка трансформаторов напряжения

Выбираем трансформатор напряжения типа НКФ-220:

- по номинальному напряжению:

Расчетная активная мощность приборов подключаемых к трансформатору напряжения:

(1.45)

.

Расчетная реактивная мощность приборов подключаемых к трансформатору напряжения:

(1.46)

.

Расчетная мощность прибора:

(1.47)

Проверяем трансформатор напряжения НКФ-220 на соответствие классу точности:

Трансформатор напряжения типа НКФ-220 соответствует своему классу точности.

Приборы подключаемые к трансформатору напряжения типа НКФ-220 приведены в таблице 1.8.

Таблица 1.8 - Приборы подключенные к трансформатору напряжения 220кВ

Исходные параметры

Расчетные значения

Прибор

Тип

Класс точности

Sприб,

В•А

cosц

Ко-личе-ство

sinц

Рприб,

Вт

Qприб,

вар

Вольтметр

Э 377

1 (3)

1,6

1

1

0

1,6

0

Счетчик активной энергии

ЦЭ-6805

1,0

6

1

3

0

18

0

Счетчик реактивной энергии

ЦЭ-6811

1,0

4

1

3

0

12

0

Реле напряжения

РН-60

1,0

4

1

3

0

12

0

ИТОГО:

43,6

0

Аналогично выбираем и проверяем трансформаторы напряжения ЗНОЛ-35,3ЧЗНОЛ.06-10.Соответственно ОРУ-27,5кВ, ЗРУ-10кВ.

Таблица 1.9- Приборы подключенные к трансформатору напряжения 35кВ

Исходные параметры

Расчетные значения

Прибор

Тип

Класс точности

Sприб,

В•А

cosц

Ко-личе-ство

sinц

Рприб,

Вт

Qприб,

вар

Вольтметр

Э 377

1 (3)

1,6

1

1

0

1,6

0

Счетчик активной энергии

ЦЭ-6805

1,0

6

1

6

0

36

0

Счетчик реактивной энергии

ЦЭ-6811

1,0

4

1

6

0

24

0

Реле напряжения

РН-60

1,0

4

1

3

0

12

0

ИТОГО:

73,6

0

Таблица 1.10 - Приборы, подключенные к трансформатору напряжения 10 кВ

Исходные параметры

Расчетные значения

Прибор

Тип

Класс точности

Sприб,

В•А

cosц

Ко-личе-ство

sinц

Рприб,

Вт

Qприб,

вар

Вольтметр

Э 377

1 (3)

1,6

1

1

0

1,6

0

Счетчик активной энергии

ЦЭ-6805

1,0

6

1

4

0

24

0

Счетчик реактивной энергии

ЦЭ-6811

1,0

4

1

4

0

16

0

Реле напряжения

РН-60

1,0

4

1

3

0

12

0

ИТОГО:

53,6

0

2. Технологический раздел

2.1 Общие сведения трансформаторов напряжения

Электроустановка

Для безопасного измерения напряжения, включения счетчиков, катушек напряжения реле и синхронизации при напряжении выше 1000, В применяются понижающие измерительные трансформаторы напряжения.

Они выполняются аналогично силовым трансформаторам. Номинальное вторичное напряжение трансформатора равно 100, В. Это позволяет независимо от величины номинального напряжения первичной цепи использовать стандартные измерительные приборы С применением реле защиты их обмотки изготавливаются на стандартное напряжение вторичной обмотки трансформаторов напряжения.

Первичную обмотку трансформатора напряжения подключают параллельно к сети. К вторичной обмотке присоединяют катушки напряжения реле и измерительных приборов. Для обеспечения безопасности обслуживания один конец вторичной обмотки обязательно заземляется.

Трансформаторы напряжения изолируют измерительные приборы и реле от цепей высокого напряжения и делают безопасным их обслуживание.

Рисунок 2.1 - Схема устройства однофазного трансформатора напряжения и векторная диаграмма

Основными параметрами измерительных трансформаторов напряжения являются:

номинальное напряжение трансформатора равно номинальному напряжению первичной обмотки. Номинальное напряжение первичной и вторичной обмоток указывается на щитке трансформатора;

номинальный коэффициент трансформации определяется отношением номинального первичного напряжения к номинальному вторичному напряжению:

где W1, W2 - число витков первичной и вторичной обмоток.

Погрешность по напряжению выражается зависимостью:

где U2 - напряжение, измеряемое на зажимах вторичной обмотки;

U1 - напряжение первичной обмотки.

Когда , то погрешность равна нулю.

Угловая погрешность определяется в минутах между вектором первичного напряжения и повернутым на 1800 вектором вторичного напряжении

. Если вектор вторичного напряжения, повернутый на 1800, опережает вектор первичного напряжения, то погрешность по углу считается положительной. Погрешность трансформатора напряжения по напряжению в процентах при номинальных условиях численно равна классу точности

Отечественной промышленностью выпускаются трансформаторы напряжения, работающие в следующих классах точности: 0.2; 0.5; 1; 3;

- номинальная вторичная нагрузка:

,

где I - номинальный ток вторичной обмотки трансформатора;

Z - номинальное сопротивление, на которое работает трансформатор;

- номинальная мощность - это наибольшая мощность (при номинальном коэффициенте мощности, равном 0.8), которая может быть снята с трансформатора при условии, что его погрешность не выйдет за пределы, определенные классом точности. Каждому классу точности соответствует определенная номинальная мощность трансформатора напряжения.

Причем один и тот же трансформатор напряжения может работать в различных классах точности в зависимости от величины его вторичной нагрузки.

Так, для трансформатора напряжения типа НОМ-10 (трансформатор напряжения однофазный с масляной изоляцией на первичное напряжение 10 кВ) установлены номинальные мощности:

в классе точности 0.5 - 50 ВА;

в классе точности 1 - 80 ВА;

в классе точности 3 - 200 ВА.

Если для этого трансформатора вторичная нагрузки S250ВА, то он работает с погрешностями, не превышающими значений, установленных для класса точности 0.5. Характеризуется трансформатор напряжения тем наивысшим классом точности, в котором он может работать.

Этот класс точности указывается в паспортной табличке или в каталоге. Трансформаторы напряжения класса 0.2 применяются только для точных лабораторных исследований.

Для включения щитовых электроизмерительных приборов применяются трансформаторы напряжения класса точности 3. Расчетные и контрольные счетчики должны подключаться к трансформаторам напряжения класса точности 0.5. Для каждого трансформатора напряжения установлена величина максимальной мощности.

2.2 Назначение трансформаторов напряжения.

Трансформаторы напряжения (ТН) предназначены для понижения высокого напряжения до значения, равного 100 В, необходимого для питания измерительных приборов, цепей автоматики, сигнализации и защитных устройств.

Для питания защитных устройств применяются трехобмоточные трансформаторы с дополнительной вторичной обмоткой.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя пределы измерения; обмотки реле, включаемых через ТН, также могут иметь стандартные исполнения.

Трансформатор напряжения изолирует измерительные приборы и реле от высокого напряжения, благодаря чему обеспечивается безопасность их обслуживания.

ТН применяются в наружных или внутренних электроустановках переменного тока напряжением 0,38 - 110 кВ и номинальной частотой 50 Гц от их работы зависит точность электрических измерений и учета электроэнергии, а также надежность действия релейной защиты и противоаварийной автоматики.

ТН с двумя вторичными обмотками предназначается не только для питания измерительных приборов и реле, но и для работы в устройстве сигнализации замыкания на землю в сети с изолированной нейтралью.

Трехобмоточные трансформаторы серии ЗНОМ, НОМ и НТМИ, НАМИ предназначены для сетей с изолированной нейтралью, серии НКФ - с заземленной нейтралью.

Типовое обозначение трансформаторов напряжения расшифровывается следующим образом:

НКФ - трансформатор напряжения каскадный в фарфоровой покрышке;

НОМ - трансформатор напряжения однофазный масляный;

ЗНОМ - трансформатор напряжения однофазный масляный с заземленным выводом первичной обмотки;

НТМИ - трансформатор напряжения трехфазный масляный с дополнительной вторичной обмоткой (для контроля изоляции сети);

НАМИ - трансформатор напряжения антирезонансный масляный с обмоткой для контроля изоляции;

НТМК - трансформатор напряжения трехфазный масляный с компенсирующей обмоткой для уменьшения угловой погрешности;

Цифровая часть в обозначении трансформаторов напряжения обозначает - класс напряжения.

2.3 Классификация трансформаторов напряжения

Классификация трансформаторов напряжения осуществляется по следующим отличительным признакам.

По назначению трансформаторы напряжения могут применяться с различными схемами соединения обмоток.

Из всех возможных способов соединения обмоток трансформатора наибольшее распространение получили следующие: «звезда-звезда-нуль» (понизительные потребительские трансформаторы), «звезда-треугольник» и «звезда-нуль-треугольник» (повысительные трансформаторы).

Для измерения трех междуфазных напряжений можно использовать два однофазных двухобмоточных трансформатора НОМ, НОС, соединенных по схеме открытого треугольника, а также трехфазный двухобмоточный трансформатор НТМК, обмотки которого соединены в звезду. Для измерения напряжения относительно земли могут применяться три однофазных трансформатора, соединенные по схеме «звезда-нуль-звезда-нуль», или трехфазный трехобмоточный трансформатор.

В этом случае обмотка, соединенная в звезду, используется для присоединения измерительных приборов, а к обмотке, соединенной в разомкнутый треугольник, присоединяются реле защиты от замыкания на землю. Таким же образом в трехфазную группу соединяются однофазные трехобмоточные трансформаторы типа ЗНОМ и каскадные трансформаторы НКФ.

Одним из существенных недостатков трехфазного потребительского трансформатора со схемой соединения «звезда-звезда-нуль» является перегрузка отдельных фаз при несимметричной нагрузке (как правило при преобладании бытовой и осветительной нагрузок). Поэтому наиболее эффективным способом борьбы с несимметрией является в этом случае использование трансформатора со схемой соединения «звезда-зигзаг-нуль».

Обмотка каждой фазы низшего напряжения состоит из двух половин, расположенных на разных сердечниках. Поэтому при несимметричной нагрузке на фазы магнитный поток распределяется в магнитопроводе более равномерно, чем при схеме «звезда». Кроме того, трансформатор с такой схемой соединения имеет минимально возможное сопротивление токам нулевой последовательности, возникающих в результате несимметричной нагрузки фаз. Вследствие этого уменьшается несимметрия напряжений, обусловленная несимметрией токов,и, тем самым улучшается качество электрической энергии в сельских распределительных сетях 0,38 кВ.

Кроме того по назначению же трансформаторы различают силовые (предназначенные для передачи и распределения электрической энергии) и специальные (сварочные, измерительные, печные, испытательные, инструментальные, автотрансформаторы и другие).

По числу фаз конструктивно различают трехфазные и однофазные трансформаторы. Трехфазные трансформаторы напряжения применяются при напряжении до 18 кВ, однофазные - на любые напряжения.

Для трансформирования трехфазного тока можно использовать группу, составленную из трех однофазных трансформаторов или один трехфазный трансформатор. Трехфазная группа однофазных трансформаторов имеет ряд существенных недостатков: громоздкость, большая масса, высокая стоимость. Поэтому такой способ трансформации променяют только при очень больших мощностях (свыше 10 МВ•А), когда конструкция трехфазного трансформатора получается излишне громоздкой.

Сердечник трехфазного трансформатора состоит из трех вертикальных стержней, которые по концам замкнуты стальными ярмами. На каждом из сердечников помещают первичную и вторичную обмотки одной из трех фаз.

По типу изоляции трансформаторы могут быть сухими маслянами Обмотки сухих трансформаторов выполняются проводом ПЭЛ (провод эмалированный, лакированный). Изоляцией между обмотками служит электрокартон. В готовом виде обмотки пропитываются асфальтовым лаком. Такие трансформаторы выпускаются на напряжение не выше 6 кВ типов НОС-0,5; НОСК-6; НТС-0,5.

Буквы в названии обозначают: Н - трансформатор напряжения; О - однофазный; Т - трехфазный; С - сухой; К - комплектующий.

Трансформатор НОСК-6 предназначается только для комплектования высоковольтных распределительных устройств в шахтах; при установке он заливается битумной массой. Большей степенью надежности обладает трансформатор с литой изоляцией на основе компаунда из метакриловых смол и кварца. Трансформатор имеет Ш-образный магнитопровод, охватывающий обмотку снаружи. Обмотки залиты компаундом. Габаритные размеры таких трансформаторов намного меньше размеров масляных трансформаторов, что является его несомненным преимуществом.

В масляных трансформаторах обмотки и магнитопровод находятся в баке и залиты маслом, которое служит и для изоляции, и для охлаждения. Вследствие незначительного колебания уровня масла маслорасширители имеются только у трансформаторов ЗНОМ-35 и НКФ, у остальных масло не доливается до крышки на 20 - 30 мм.

По числу обмоток трансформаторы подразделяются на двухобмоточные и трехобмоточные.

По роду установки трансформаторы различают для внутренней и наружной установки.

2.4 Конструкция трансформаторов напряжения

Трехфазные трансформаторы обычно выполняют на магнитопроводе стержневого типа с тремя стержнями.

По способу соединения стержней с ярмами различают магнитопроводы стыковые и шихтованные.

В стыковых магнитопроводах стержни и ярма собирают раздельно, а затем соединяют посредством крепежных частей. Такая конструкция магнитопровода облегчает посадку обмоток на стержни, так как для этого достаточно снять только верхнее ярмо. Но при шихтовой сборке магнитопровода, когда листы собирают «внахлестку», воздушный зазор в месте стыка стержней и ярем может быть сделан минимальным, что значительно снизит магнитное сопротивление и соответственно уменьшит потери холостого хода. Кроме того, механическая прочность шихтованного магнитопровода намного выше, чем стыкового. Все это привело к тому, что шихтованные магнитопроводы получили в России основное применение. Листы магнитопровода стягивают посредством ярмовых балок, бандажей из стеклоленты и шпилек, изолированных от листов изоляционными шайбами и трубками.

Форма поперечного сечения стержней обычно многоступенчатая, причем число ступеней зависит от мощности трансформатора. Ступенчатое сечение стержней обеспечивает лучшее использование площади внутри обмотки, так как периметр ступенчатого стержня приближается к окружности. В трансформаторах большой мощности для улучшения теплоотдачи между пакетами стали магнитопровода устраивают вентиляционные каналы.

Обмотки трансформаторов выполняют из проводов круглого и прямоугольного сечения, которые, как указывалось выше, изолируются кабельной бумагой.

Наиболее распространены концентрические катушечные (непрерывные, винтовые) обмотки.

При этом обычно ближе к стержню располагают обмотку низкого напряжения (НН), так как она требует меньшей электрической изоляции от заземленного стержня, а затем обмотку высокого напряжения (ВН). Между обмотками делается вертикальный канал, в котором располагается изоляционный цилиндр из электрокартона, а также происходит циркуляция масла.

В комплект обмотки входят также отводы для присоединения к вводам, размещаемым на крышке трансформатора, ответвления для регулирования напряжения, емкостные кольца и электростатические экраны емкостной зашиты от перенапряжений.

Непрерывная обмотка состоит из катушек, соединенных между собой последовательно. Катушки наматываются прямоугольным проводом, располагаемым «плашмя».

Характерной особенностью непрерывной обмотки является выполнение так называемых перекладных катушек.

Между катушками размещаются прокладки из электрокартона, создающие горизонтальные каналы для охлаждения обмотки. Эти прокладки укрепляются на вертикальных рейках посредством специального выреза в виде «ласточкина хвоста».

Трехфазный силовой двухобмоточный трансформатор схематично можно представить следующим образом. Магнитопровод трехфазного трансформатора образует как бы два «окна», которые так и принято называть. Для упрощения обычно ограничиваются представлением расположения в окне только одной фазы, предполагая, что другая фаза в этом окне располагается симметрично, а в соседнем -- аналогично.

Силовой трансформатор может иметь несколько обмоток. Обычно речь идет о трехобмоточных трансформаторах, когда кроме обмоток НН и ВН появляется еще обмотка СН среднего напряжения. Эти обмотки считаются основными, и именно по их количеству определяется вид трансформатора: двухобмоточный или трехобмоточный. Кроме основных в трансформаторе могут быть регулировочные обмотки, с помощью которых обеспечивается регулирование напряжения под нагрузкой (схема РПН). В основных обмотках СН или ВН могут быть участки, посредством которых обеспечивается регулирование напряжения с отключением трансформатора. Это так называемая схема ПБВ -- переключение без возбуждения.

Кроме обмоток и магнитопровода, которые в совокупности образуют активную часть трансформатора, в его состав входят другие узлы и блоки: бак, система охлаждения, вводы и др.

2.5 Принцип действия трансформатора

Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток .

Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения.

Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока.

Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е1 и E2, индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витко1 и 2 этих обмоток, т. е. E1/E2=1/2Отношение э. д. с. Евн обмотки высшего напряжения к э. д. с. Eнн обмотки низшего напряжения называется коэффициентом трансформации,n = Евн/ Eнн= Ѕ

Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2--5 % номинальных значений напряжений U1 и U2), то можно считать, что отношение напряжения U1 первичной обмотки к напряжению U2 вторичной обмотки приблизительно равно отношению чисел их витков, т. е. U1/U2

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.

Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

Рисунок 2.2-Трансформатор напряжения 220кВ

При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке. Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.

Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I1/I2 U2/U1или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток. Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U2больше напряжения U1), а в понижающем ток во вторичной обмотке больше, чем в первичной. Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.

3. Экономический раздел

3.1 Определение эксплуатационных расходов на содержание подстанции

Численность работников подстанции формируется в соответствии с «Едиными отраслевыми нормативами численности работников хозяйства электроснабжения».

Рабочим местом работников подстанции являются мастерская и технологическое оборудование подстанции. Работники должны обеспечиваться удобной летней и зимней спецодеждой, обувью, отвечающим требованиям безопасности и промсанитарии. Работник подстанции подвергается на рабочем месте различным факторам, которые сведены в таблицу 3.1.

Таблица 3.1- Характеристика рабочего места работника подстанции

Зона работ

Характеристика

Открытое распределительное устройство 220 кВ

- работа на открытом воздухе;

- работа на высоте;

- опасность поражения электрическим током;

- воздействие электромагнитных полей.

Закрытое распределительное устройство 27,5 кВ, 10 кВ

- работа на высоте;

- опасность поражения электрическим током;

- воздействие электромагнитных полей.

Аккумуляторная

- химическое воздействие.

В соответствии со всеми требованиями, предъявляемыми к работнику подстанции и условиями труда формируется штат работников, его состав представлен в таблице 3.2.

Таблица 3.2- Штатное расписание подстанции

Наименование должности, профессии

Разряд

Количество человек

Начальник подстанции

13

1

Старший электромеханик

11

1

Электромеханик по ремонту

10

1

Эл.механик по эксплуатации оборудования

10

1

Электромонтер

4

1

Итого

5

Заработная плата работникам подстанции начисляется в соответствии с «Отраслевой единой тарифной сеткой». В тарифной сетке указываются часовые тарифные ставки или оклады работникам восемнадцати разрядов, установленных для железнодорожного транспорта и условия работы.

Тарифный коэффициент, присвоенный каждому разряду, показывает, во сколько уровень оплаты выше уровня оплаты простейших работ, отнесенных к первому разряду. В тарифной сетке также учитываются условия труда. Для проектируемой подстанции принимаем районный коэффициент Кр равный 15%, а процент вредности - 12%, часовая тарифная ставка по 4 разряду - 63,04руб.

Для того чтобы рассчитать годовой фонд заработной платы работников подстанции необходимо вычислить несколько показателей. Их расчет приведен ниже.

Для расчета оклада необходимо, часовую тарифную ставку умножить на среднемесячную норму часов за месяц:

Ок = 63,04·168=10590,72 руб . (3.1)

Вредные условия труда рассчитывают по формуле:

Вр.Усл.Тр. = Ок·12% , (3.2)

Вр.Усл.Тр.= 10590,72 ·12%= 1270,89 руб.

Стимулирующие надбавки считаются по формуле:

Ст.над.= 0,2 · Ок, (1.3)

Ст.над. = 0,2· 10590,72 =2118,14 руб.

Премия считается аналогично.

П = 0,2·Ок

П=0,2·10590,72 =2118,14 руб.

Районный коэффициент рассчитывается по формуле:

Р.к = (Вр.Усл.Тр + Ст.над.+ Премия) · 0,15, (3.4)

Р.к = (1270,89 +2118,14 +2118,14) · 0,15=826,08 руб.

Итого за месяц:

Итого = Ок+ Вр.Усл.Тр.+ Ст.над.+ П + Р.к, (3.5)

Итого =10590,72 +1270,89 + 2118,14 + 2118,14 + 826,08 = 16923,97 руб.

Результаты расчетов сведены в таблицу 3.3.

Таблица 3.1 - Расчет заработной платы работников тяговой подстанции

Должность

Разряд

Количество

Часовая тарифная ставка (руб.)

Оклад (руб.)

Вредные условия труда

(руб.)

Стимулирующие надбавки

(руб.)

Премия

(руб.)

Районный коэф-т

(руб.)

Итого за месяц

(руб.)

Начальник ЭЧЭ

13

1

24250

2910

0,00

4850

1164

33174

Ст.Элекромеханик

11

1

20500

2460

4100

4100

1599

32759

Электромеханик по ремонту

10

1

15450

1854

3090

3090

1205,1

24689,1

Электромеханик по эксплуатации оборудования

10

1

15450

1854

3090

3090

1205,1

24689,1

Электромонтер

4

1

63,04

10590,72

1270,89

2118,14

2118,14

826,08

16923,97

Расчет фонда оплаты труда дистанции электроснабжения определяем по формуле:

(3.6)

где - основной фонд оплаты труда;

- дополнительный фонд оплаты труда.

Основной фонд оплаты труда определяем по формуле:

(3.7)

132235,17 руб.

Дополнительный фонд оплаты труда определяется по формуле

(3.8)

Расчет средней заработной платы работников

Среднюю заработную плату одного работника по статье 406 определяем по формуле:

(3.9)

4. Охрана труда и безопасность движения

4.1 Техника безопасности при работах в электроустановках

К началу монтажных работ должны быть выполнены:

подъезды к месту установки трансформаторов и планировка прилегающей к ним территории;

опоры под трансформаторы;

временная силовая сеть 380/220 В;

молниезащита ОРУ и заземляющее устройство.

Трансформаторы поставляются заполненными маслом в индивидуальной упаковке, двухступенчатые - отдельными ступенями. Трансформаторы серии ТФЗМ транспортируются в вертикальном положении: 110 и 150 кВ в древесно-картонных ящиках, 220 - 500 кВ - в металлической транспортной возвратной таре. Трансформаторы ТФРМ 330 - 750 кВ транспортируются в горизонтальном положении в металлической транспортной возвратной таре. При транспортировании трансформаторов и погрузочно-разгрузочных работах следует руководствоваться указаниями маркировочных знаков на таре и соблюдать меры предосторожности, исключающие возможность повреждения трансформаторов и их частей.

Отклонение трансформаторов серии ТФЗМ от вертикального положения при этом более чем на 15 град. не допускается.

При подъеме трансформаторов необходимо, чтобы стропы образовывали с горизонтальной плоскостью упаковки угол не менее 45 град.

При получении трансформаторов необходимо проверить наличие полного комплекта поставки, количество мест, состояние упаковки.. До монтажа трансформаторы должны храниться в заводской упаковке: трансформаторы серии ТФЗМ - в вертикальном положении, а серии ТФРМ - в горизонтальном положении под навесами, в помещениях или на открытых площадках. При хранении на открытых площадках необходимо принять меры для исключения попадания воды на вторичные выводы трансформаторов.

При монтаже трансформаторов необходимо руководствоваться документацией.

Подготовительные работы

Производится приемка от строителей опорных конструкций под трансформаторы. Приемка оформляется актом, подписанным представителями заказчика, строительной и электромонтажной организаций. Уточняется рабочий график производства работ в соответствии с технологической картой. Электромонтажники знакомятся с технической документацией, объемом и принятой организацией работ. Бригада инструктируется по технике безопасности ответственным руководителем работ.

Подготавливается деревянный настил для установки трансформаторов.

Доставляются на площадку монтажные механизмы, оборудование и устанавливаются в соответствия с планами размещения оборудования

Монтаж трансформаторов

Трансформаторы распаковывают, расконсервируют узлы и детали и тщательно протирают, удаляя пыль, грязь и поверхностную влагу с помощью ветоши, бензина-растворителя и бязи. При обнаружении коррозии контактные поверхности зачищают.

Убеждаются путем наружного осмотра в отсутствии повреждений фарфоровых покрышек, фарфоровых втулок на первичных выводах, воздухоосушителей, указателей уровня масла, пломб предприятия-изготовителя. Неисправности устраняют в соответствии с заводской документацией.

Проверяют уплотнения трансформаторов визуально и выясняют, не просачивается ли масло между цоколем и покрышкой, между покрышкой и маслорасширителем, во вторичных выводах, в местах соединения деталей маслоуказателя и в местах уплотнения выводов переключателя первичной обмотки. В местах просачивания масла постепенно подтягивают соответствующие болты по всему периметру не более, чем на 1/6 оборота за один прием. Подтягивание только одного болта (гайки) не допускается из-за возможности поломки фарфоровой покрышки.

Если просачивание масла через уплотнения подтягиванием соответствующих болтов остановить не удается, необходимо вызвать представителя завода-изготовителя для составления рекламационного акта и устранения дефекта или решения вопроса об отправке трансформатора на завод.

Проверяют уровень масла по маслоуказателю, состояние силикагеля-индикатора воздухоосушителя и уровень масла в масляном затворе воздухоосушителя. В случае понижения уровня масла устанавливают и устраняют причину его снижения и доливают сухое масло в трансформатор и воздухоосушитель. При доливке масла принимают меры, исключающие возможность попадания в масло грязи, влаги и посторонних предметов. При покраснении силикагеля-индикатора его необходимо заменить.

Технологическая карта № 2.3.

Текущий ремонт автотрансформаторов на напряжение 110-220 кВ

1. Состав исполнителей

Электромеханик - 1

Электромонтер тяговой подстанции 4 разряда - 1

Электромонтер тяговой подстанции 3 разряда - 1

2. Условия выполнения работ

Работа выполняется:

2.1.Со снятием напряжения

2.2.По наряду

3. Защитные средства, приборы, инструмент, приспособления и материалы:

Каски защитные, пояс предохранительный, лестница, заземления, закоотки, диэлектрические перчатки, мегаомметр на напряжение 1000 и 2500 В, секундомер, термометр, уровень, насос с манометром и шлангом, ключи гаечные, плоскогубцы комбинированные, отвертки, скребок, кисточки, емкость для слива осадка, емкости стеклянные с притертой пробкой для отбора проб масла, силикагель индикаторный, силикагель, трансформаторное масло, смазка ЦИА- ТИМ, уайт-спирит, влаго-маслостойкий лак или эмаль, запасные маслоуказа- телькые стекла, резиновые прокладки, обтирочный материал, ветошь Подготовительные работы и допуск к работе

Накануне выполнения работ подать заявку на вывод в ремонт трансформатора.

Проверить исправность и сроки годности защитных средств, приборов, подготовить инструмент, монтажные приспособления и материалы.

После выписки наряда производителю работ получить инструктаж у лица, выдавшего наряд.

Оперативному персоналу выполнить подготовку рабочего места. Производителю работ проверить выполнение технических мероприятий по подготовке рабочего места.

Произвести допуск бригады к работе.

Производителю работ провести инструктаж членам бригады и четко распределить обязанности между ними.

Продолжение технологической карты 2.3.

Схема последовательного технологического процесса

1

2

3

1

Внешний осмотр трансформатора

Осмотреть состояние фундамента, убедиться в отсутствии
трещин, просадок, смешения колбе на рельсах, недопустимого
наклона трансформатора. Подтянуть болтовое крепление
заземления, проверить надежность его сварных
единений. Проверить исправность п надежность крепления ,
стационарных лестниц для подъема на трансформатор,
крепление навесного оборудования (радиаторов, проводов, '
шкафов и другого), при необходимости подтянуть болты. J
Произвести осмотр с выявлением механических повреждений и мест течи масла Записать показания термосигнализаторов и указателей уровня масла в баках расширителя,
температуру окружающего воздуха

2

Слив осадков, влаги
из расширителя
термосифонного фильтра

Открыть спускной кран расширителя, слить грязный. Закрыть краны верхнего и нижнего патрубков термо-сифонного фильтра, открыть сливную пробку и слить осадок. Если осадок не сливается, приоткрыть верхнюю пробку для спуска воздуха

3

Проверка маслоуказательных устройств

Проверить уплотнения и целостность маслоуказтельной
стеклянной трубки расширителя. Протереть стекло. Восстановить контрольные отметки уровня масла на расширителе, заменить при необходимости резиновые прокладки.
Проверить показания стрелочных указа талей уровня масла
на соответствие фактическому уровню масла.

4

Протирка и проверка со-
стояния трансформатора
арматуры с устранением
неисправностей
Чистка изоляторов трансформатора


Подобные документы

  • Расчет мощности тяговой подстанции переменного тока, ее электрические характеристики. Расчет токов короткого замыкания и тепловых импульсов тока КЗ. Выбор токоведущих частей и изоляторов. Расчет трансформаторов напряжения, выбор устройств защиты.

    дипломная работа [726,4 K], добавлен 04.09.2010

  • Выбор мощности трансформаторов. Расчёт токов короткого замыкания для выбора аппаратов. Выбор основного оборудования, трансформаторов напряжения и трансформаторов тока. Проверка сечения на термическое действие токов. Схема типовой понижающей подстанции.

    курсовая работа [717,3 K], добавлен 30.08.2015

  • Разработка эскизного проекта тяговой подстанции постоянного тока: обоснование главной схемы, выбор числа, типа и мощности рабочих и резервных тяговых агрегатов и трансформаторов; расчет токов короткого замыкания; аппаратура и схема питания подстанции.

    курсовая работа [913,8 K], добавлен 29.07.2013

  • Выбор схем электрических соединений согласно действующим нормативным документам. Расчет токов короткого замыкания, молниезащиты подстанции. Выбор коммутационного оборудования на проектируемой подстанции, измерительных трансформаторов тока и напряжения.

    курсовая работа [2,1 M], добавлен 25.02.2014

  • Структурная схема тяговой подстанции. Разработка однолинейной схемы тяговой подстанции. Расчетная схема тяговой подстанции. Расчет максимальных рабочих токов основных присоединений подстанции. Выбор коммутационных аппаратов. План тяговой подстанции.

    курсовая работа [1,9 M], добавлен 18.05.2010

  • Построение графиков нагрузки для обмоток трансформаторов высокого, среднего, низкого напряжения по исходным данным. Выбор трансформаторов на подстанции, обоснование. Расчет токов короткого замыкания на проектируемой подстанции, выбор электрооборудования.

    дипломная работа [336,9 K], добавлен 10.03.2010

  • Выбор основного оборудования и токоведущих элементов подстанции. Расчёт максимальных рабочих токов основных присоединений подстанции. Определение мощности трансформаторов подстанции. Расчет заземляющего устройства и определение зоны защиты молниеотводов.

    дипломная работа [3,2 M], добавлен 26.05.2023

  • Расчет графиков нагрузки потребителей и мощности подстанции. Выбор силовых трансформаторов и проводов ЛЭП; распределительного устройства высшего, среднего и низшего напряжения; силовых выключателей, разъединителей. Расчет токов короткого замыкания.

    курсовая работа [452,8 K], добавлен 06.10.2014

  • Разработка структурной схемы подстанции, выбор количества и мощности силовых трансформаторов. Расчет количества присоединений РУ. Проведение расчета токов короткого замыкания, выбор токоподводящего оборудования и трансформаторов, техника безопасности.

    курсовая работа [1,8 M], добавлен 31.10.2009

  • Выбор главной электрической схемы и оборудования подстанции. Определение количества и мощности силовых трансформаторов и трансформаторов собственных нужд. Расчет токов короткого замыкания. Подбор и проверка электрических аппаратов и токоведущих частей.

    курсовая работа [2,1 M], добавлен 24.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.