Движение спутника в вязкой среде

Характеристика определения периода обращения спутника вокруг Земли. Объяснение движения космического летательного аппарата по круговой орбите. Создание скорости планера меньше орбитальной. Особенность исследования операции торможения небесного тела.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 27.10.2017
Размер файла 286,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский Государственный университет леса.

Кафедра вычислительной техники.

Контрольная работа

по Физике

на тему: «движение спутника в вязкой среде»

Выполнил:

Мишунин А.В.

Принял:

Галкин Ю.С.

Москва 2011.

Введение

В наш век гораздо практичней использовать мощности вычислительной техники для осуществления сложных задач. В условиях экономического кризиса, цифровые технологии позволяют сократить расходы на проведения опыта во много раз, точность вычислений при этом очень высока. Мы можем посмотреть модель почти любых процессов, ускорить их или замедлить. Нас ограничивает лишь производительность машин и наша фантазия, но в будущем мы увидим вещи, которые даже не могли себе вообразить.

Одной из важнейших проблем, которую приходится решать практически в течение всего полета подавляющего большинства искусственных спутников, является обеспечение их заданного углового движения. Спутнику придается нужное угловое положение относительно заданных ориентиров поворотом вокруг центра масс. В качестве таких ориентиров выступают видимые небесные и наземные объекты (звезды, Солнце, линия горизонта) или направления в пространстве (местная вертикаль, вектор напряженности геомагнитного поля, вектор скорости набегающего потока воздуха), которые можно определить по измерениям приборов. При этом спутник, например, нижним днищем, на котором укреплены антенна направленного действия и объектив видеокамеры, должен быть постоянно направлен на центр Земли.

Для проведения экспериментов и изучения явлений, связанных с геомагнитным полем и вызванных взаимодействием с ним заряженных частиц, оси чувствительности приборов целесообразно направить определенным образом относительно вектора напряженности этого поля. При наблюдении различных участков звездного неба или поверхности Земли требуется систематическое изменение углового положения спутника или, наоборот, заданная ось спутника должна быть направлена постоянно в одну и ту же точку небесной сферы. Тем самым многообразие научных и прикладных задач, решаемых спутниками, порождает различные требования к устройству, именуемому системой ориентации, которое и обеспечивает его заданное угловое движение.

Широко используется термин "ориентация", когда хотят сказать о наперед заданном угловом движении спутника (от лат. oriens, что означает "восток", и фр. orientation - направление, ориентация). Иногда используют термин "стабилизация углового положения", когда хотят подчеркнуть, что спутник удерживается относительно заданных ориентиров с требуемой точностью. В зависимости от того, какова природа управляющего воздействия на угловое движение спутника, каковы способы его реализации и какие требуются при этом устройства, различают активные, пассивные и комбинированные системы ориентации.

1. Геостационарная орбита

Двигаясь по круговой орбите радиуса r, на спутник действует сила земного тяготения gmM/r2, где g - постоянная тяготения, m - масса спутника и M - масса планеты (Земли в нашем случае). Согласно второму закону Ньютона сила тяготения равна центростремительной силе mv2/r. Отсюда получаем выражение для скорости движения спутника по круговой орбите:

v=(g M/r)1/2

Период обращения спутника вокруг Земли Tсп равен длине орбиты 2pr, делённой на скорость движения спутника v:

Tсп=2pr/v=2p (r3/gM)1/2

Если этот орбитальный период Tсп равен периоду вращения Земли вокруг собственной оси (примерно 24 часа), то спутник будет "висеть" над одним и тем же районом Земли, а такая орбита называется геостационарной. Геостационарная орбита лежит в плоскости экватора Земли.

Её радиус составляет 42164 км, что примерно в 6 раз больше радиуса Земли. Небесные координаты спутника на геостационарной орбите остаются постоянными и мы можем легко направить на него параболическую антенну (например, для приема спутникового телевидения).

1. Как объяснить движение искусственного спутника по круговой орбите?

-- Брошенное горизонтально (на известной высоте) тело движется по дуге эллипса (Э1, Э2, Э3, Э4), имеющего один фокус в центре Земли (О), а другой (О1, О2, О3, О4) ближе к точке бросания. По мере увеличения начальной скорости размеры эллипса увеличиваются, а второй фокус эллипса приближается к центру Земли. При достижении определенной начальной скорости второй фокус тоже совпадает с центром нашей планеты, и эллипс превращается в окружность, движение по которой происходит с постоянной скоростью, равной начальной («круговая скорость»).

C помощью миниатюрного ракетного двигателя можно столкнуть со спутника космический планер со сравнительно небольшой скоростью в сторону, противоположную орбитальному движению (точка А). Тогда скорость планера сделается меньше орбитальной, и он по полуэллиптической орбите начнет приближаться к поверхности Земли (полуэллипс АВ). В перигее этой траектории планер войдет в плотные слои атмосферы (точка В на рисунке). Здесь и начинается торможение планера атмосферой. Когда скорость космического планера будет почти погашена и упадет у поверхности примерно до 100 км/сек, он сможет приземлиться подобно обычному планеру .

Известно, что если телу сообщить скорость больше круговой, то оно начинает двигаться по эллиптической орбите. Чем такой эллипс отличается от предыдущих?

-- В отличие от эллипсов, изображенных на предыдущем рисунке, такой эллипс имеет второй фокус по ту сторону центра нашей планеты, по отношению к точке запуска. По мере увеличения скорости запуска второй фокус удаляется от центра Земли. Вместе с этим поднимается потолок орбиты. Увеличение начальной скорости у поверхности Земли с 7,9 до 10 км/сек поднимет потолок орбиты на 3 земных экваториальных радиуса (орбиты 1 и 2). Дальнейшее увеличение этой скорости на 1 км/сек поднимет потолок на 25 радиусов Земли (орбита 3). При скорости 11,1 км/сек тело будет облетать Луну, оставаясь искусственным спутником Земли (орбита 4).

При скорости 11,2 км/сек («параболическая скорость») второй фокус удаляется в бесконечность, и эллипс разрывается, превращаясь в параболу (орбита 5). Это предельная скорость искусственного спутника: тело удаляется в бесконечность. обращение спутник орбитальный торможение

Одинакова ли средняя скорость движения спутников, имеющих один и тот же период обращения?

-- Нет. Если периоды обращения разных спутников одинаковы, то согласно третьему закону Кеплера большие оси орбит этих спутников также одинаковы. Поскольку же малые оси орбит имеют различные размеры, то средняя орбитальная скорость этих спутников тем меньше, чем более сплюснут эллипс. обращение спутник орбитальный торможение

При спуске с искусственного спутника, летящего на большой высоте, скорость вторжения в атмосферу может быть порядка 11 км сек. Не опасно ли это? Не сгорит ли планер?

-- С очень высоко летящего искусственного спутника (точка А) спуск будет происходить несколько иначе, чем в предыдущем случае. Для облегчения задачи можно разделить операцию торможения на несколько этапов. Космический планер, обогнув Землю в очень разреженных слоях атмосферы (точка В на рисунке), возвращается в межпланетное пространство с уменьшенной скоростью. Вернувшись по эллипсу ВОВ в атмосферу Земли, планер опять замедляет свою скорость. Дальнейшее движение происходит по эллипсу ВСВ, вдоль которого, как и во время движения по предыдущему эллипсу, происходит охлаждение перегретых частей конструкции планера вследствие лучеиспускания. Наконец, пройдя спираль ВЕ, планер приземляется в точке Е.

2. Алгоритм решения задачи

Программа в зависимости от заданных значений вязкости жидкости, диаметров спутника и планеты, показывает движение спутника вокруг планеты.

Руководство пользователя:

Запустить программу

Вписать значения через «.» и нажать «Пуск», на экране появиться спутник, движущийся вокруг планеты.

Закрыть программу

Заключение

В ходе проделанной работы мною было рассмотрено движение спутника в вязкой среде вокруг планеты, формулы, которыми надо воспользоваться, чтобы осуществить поставленную задачу правильно.

Список литературы

1. Савельев И. В. «Курс общей физики» Том 1.

2. Козлов Д.А «Общая физика» Том 2

Размещено на Allbest.ru


Подобные документы

  • Движение тела по эллиптической орбите вокруг планеты. Движение тела под действием силы тяжести в вертикальной плоскости, в среде с сопротивлением. Применение законов движения тела под действием силы тяжести с учетом сопротивления среды в баллистике.

    курсовая работа [1,2 M], добавлен 17.06.2011

  • Практическое значение изучения движения падающих космических тел. Температурный режим различных слоев атмосферы. Классификация космических тел по плотности и структуре. Расчеты и графики зависимости массы космического тела в виде шара от скорости падения.

    реферат [156,7 K], добавлен 10.11.2009

  • Сложение поступательных движений. Определение скорости результирующего движения. Сложение вращений вокруг пересекающихся и параллельных осей. Сложение различных поступательных и вращательных движений. Общий случай сложения движений твердого тела.

    лекция [2,6 M], добавлен 24.10.2013

  • Описание движения твёрдого тела. Направление векторов угловой скорости и углового ускорения. Движение под действием силы тяжести. Вычисление момента инерции тела. Сохранение момента импульса. Превращения одного вида механической энергии в другой.

    презентация [6,6 M], добавлен 16.11.2014

  • Изучение единиц выражения скорости и приборов, которыми она измеряется. Определение зависимости скорости от времени для двух тел, скорости при равномерном движении. Исследование понятий механического движения, тела отсчета, траектории и пройденного пути.

    презентация [1,2 M], добавлен 12.12.2011

  • Основы движения твердого тела. Сущность и законы, описывающие характер его поступательного перемещения. Описание вращения твердого тела вокруг неподвижной оси посредством формул. Особенности и базовые кинематические характеристики вращательного движения.

    презентация [2,1 M], добавлен 24.10.2013

  • Задание движения точки. Годограф радиуса-вектора. Уравнение движения точки. Векторный, естественный, координатный способы. Поступательное, вращательное, плоскопараллельное движение тела. Скорости точек при движении тела. Мгновенный центр скоростей.

    презентация [399,3 K], добавлен 09.11.2013

  • Изучение основных задач динамики твердого тела: свободное движение и вращение вокруг оси и неподвижной точки. Уравнение Эйлера и порядок вычисления момента количества движения. Кинематика и условия совпадения динамических и статических реакций движения.

    лекция [1,2 M], добавлен 30.07.2013

  • Характеристика движения простейшего тела и способы его задания. Определение скорости и ускорение точки при векторном, координатном, естественном способе задания движения. Простейшие движения твердого тела, теоремы о схождении скоростей и ускорений.

    курс лекций [5,1 M], добавлен 23.05.2010

  • Принципы реактивного движения, которые находят широкое практическое применение в авиации и космонавтике. Первый проект пилотируемой ракеты с пороховым двигателем известного революционера Кибальчича. Устройство ракеты-носителя. Запуск первого спутника.

    презентация [1,3 M], добавлен 23.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.