Информационно-измерительные системы в топливно-энергетическом комплексе

Виды накопителей энергии: гравитационный твердотельный, кинетический механический, колебательный и др. Механические накопители с использованием сил упругости. Безтопливное химическое накопление энергии. Преимущества ультразвуковых накладных расходомеров.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 21.10.2017
Размер файла 311,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

Институт кибернетики, информатики и связи

Кафедра «Электроэнергетики»

Курсовая работа

По дисциплине: «Информационно-измерительная техника и электроника»

На тему: «Информационно-измерительные системы в топливно-энергетическом комплексе»

Выполнил: студент группы ЭЭб-09-1

Ишyтин О.А.

Проверил: Калашников В.П.

Тюмень, 2011

Содержание

1. Накопители энергии

1.1 Механические накопители энергии

1.2 Гравитационные механические накопители

1.3 Гравитационные твердотельные механические накопители

1.4 Гравитационные жидкостные механические накопители

1.5 Кинетические механические накопители

1.6 Колебательные (резонансные) накопители энергии

1.7 Гироскопические накопители энергии

1.8 Гирорезонансные накопители энергии

1.9 Механические накопители с использованием сил упругости

1.10 Пружинные механические накопители

1.11 Газовые механические накопители

1.12 Тепловые накопители энергии

1.13 Электрические накопители энергии

1.14 Химические накопители энергии

1.15 Накопление энергии наработкой топлива

1.16 Безтопливное химическое накопление энергии

2. Переработка нефти

2.1 Первичная переработка нефти

3. Стабилизация и вторичная перегонка бензина

4. Ультразвуковые расходометры

4.1 Преимущества ультразвуковых накладных расходомеров

4.2 Уникальность ультразвуковых расходомеров

5. Сотовая связь

5.1 Принцип действия

1. Накопители энергии

1.1 Механические накопители энергии

Механические накопители энергии являются самым древним классом таких устройств, освоенным ещё доисторическим человеком, когда он впервые затащил камень на гору, чтобы в нужный момент обрушить его на надоевшего соседа загнанного мамонта... Многие виды этих конструкций отличаются предельной простотой и практически неограниченным сроком службы и хранения запасённой энергии.

1.2 Гравитационные механические накопители

Суть гравитационных накопителей проста. На этапе накопления энергии груз поднимается на нужную высоту, а в нужный момент опускается обратно, возвращая эту энергию. Использование в качестве груза твёрдых тел или жидкостей вносит свои особенности в конструкции каждого типа. Промежуточное положение между ними занимает использование сыпучих веществ (песка, свинцовой дроби, мелких стальных шариков и т.п.).

Практически все накопители этого класса имеют очень простую конструкцию, а следовательно высокую надёжность и большой срок службы. Время хранения однажды запасённой энергии также ограниченно лишь долговечностью использованных материалов и может исчисляться тысячелетиями -- наверняка некоторые ловушки, «заряженные» строителями египетских гробниц за много веков до новой эры, до сих пор ждут неосторожных грабителей в полной боевой готовности.

К сожалению, удельная энергоёмкость таких устройств невелика и определяется классической формулой:

E = m · g · h

Таким образом, чтобы запасти энергию для нагрева 1 литра воды от 20°С до 100°С, надо поднять тонну груза как минимум на высоту 35 метров (или 10 тонн на 3.5 метра). Поэтому, когда возникает необходимость запасти энергии побольше, то это сразу приводит к необходимости создания громоздких и, как неизбежное следствие, дорогих сооружений, наподобие циклопических плотин ГЭС и «рукотворных морей» при них.

1.3 Гравитационные твердотельные механические накопители

Ворота с противовесом. Энергию, запасённую при поднятии твёрдых тел, можно высвободить за очень короткое время. Ограничение на получаемую с таких устройств мощность накладывает только ускорение свободного падения, определяющее максимальный темп нарастания скорости падающего груза. Время хранения однажды запасённой энергии также практически неограничено, если только груз и элементы конструкции с течением времени не рассыплются от старости или коррозии.

Недостатком таких систем является необходимость в вертикальной или наклонной шахте на всю высоту подъёма груза, причём размеры шахты на всём её протяжении должны обеспечивать проход этого груза по габаритам. Конечно, необязательно делать отдельную шахту, для движения груза можно выделить часть более обширного помещения -- но путь, по которому движется груз, должен быть свободным и достаточно прямым, а также необходимо исключить возможность случайного попадания в эту область вещей, людей и животных (во-первых, груз застрянет, а во-вторых, мало удовольствия получить по голове или другой части тела гирей весом даже в несколько килограммов; если же груз может набрать приличную скорость, то для получения серьёзных повреждений хватит и массы в несколько десятков граммов).

1.4 Гравитационные жидкостные механические накопители

Загорская ГАЭС. В отличие от твердотельных грузов, при использовании жидкостей нет необходимости в создании прямых шахт большого сечения на всю высоту подъёма -- жидкость отлично перемещается и по изогнутым трубам, сечение которых должно быть лишь достаточным для прохождения по ним максимального расчётного потока. Поэтому верхний и нижний резервуары необязательно должны размещаться друг под другом, а могут быть разнесены на достаточно большое расстояние.

Именно к этому классу относятся гидроаккумулирующие электростанции (ГАЭС), одна из которых, в частности, в 1980-х годах была построена недалеко от подмосковного Загорска (ныне Сергиев Посад).

К сожалению, срок хранения «заряженной» энергии в жидкостных гравитационных накопителях гораздо меньше, чем в твердотельных, и на практике обычно составляет от нескольких дней до нескольких лет. Это связано с испарением рабочей жидкости из резервуаров. Кроме того, такие системы имеют гораздо больше частей, и их труднее поддерживать в должном техническом состоянии, -- прежде всего это касается герметичности резервуаров и трубопроводов и исправности запорного и перекачивающего оборудования.

И ещё одно важное условие -- в моменты накопления и использования энергии рабочее тело (по крайней мере, его достаточно большая часть) должно находиться в жидком агрегатном состоянии, а не пребывать в виде льда или пара. Зато иногда в подобных накопителях возможно получение дополнительной даровой энергии, -- скажем, при пополнении верхнего резервуара талыми или дождевыми водами.

1.5 Кинетические механические накопители

В кинетических накопителях энергия запасается в движении рабочего тела. Возможны два типа движения -- колебательное и поступательное (обычно вращательное).

1.6 Колебательные (резонансные) накопители энергии

Пружинный маятник в часах. В колебательных накопителях кинетическая энергия накапливается в возвратно-поступательном (линейном или вращательном) движении груза за счёт резонанса. При этом энергия должна как подаваться, так и расходоваться порциями, попадая «в такт» с движением груза. Это сразу усложняет механизм и делает его достаточно капризным в настройке. Впрочем, эти узлы уже много веков используются во всех механических часах с пружинным или гравитационным маятником. Очень часто такие часы для начала работы надо слегка встряхнуть или толкнуть маятник рукой -- в целях экономии завода пружины за один такт на маятник подаётся лишь столько энергии, чтобы её хватило для компенсации потерь во время работы, но не для запуска «с нуля», из неподвижного состояния.

Как правило, основная цель подобных устройств -- не собственно накопление энергии, а стабилизация во времени работы каких-либо приборов, поскольку абсолютные значения запасаемой энергии обычно весьма малы и годятся только для «внутреннего потребления» при работе самого устройства. Кстати, если внимательно разобраться, то сам по себе резонанс не увеличивает накопленной энергии по сравнению со «статическими» вариантами -- скажем, в случае гравитационного маятника ту же энергию можно запасти, просто отклонив маятник на угол, соответствующий максимальному отклонению при колебаниях, и зафиксировав его там (для пружинного балансира ситуация аналогична). Зато резонансные накопители позволяют постепенно аккумулировать малые порции энергии, которые при подаче «в лоб» почти не отклонили бы маятник от точки равновесия, не говоря уже о тех углах поворота, которых он достигает в резонансе.

1.7 Гироскопические накопители энергии

Накопитель Уфимцева. В гироскопических накопителях энергия запасается в виде кинетической энергии быстро вращающегося маховика. Удельная энергия, запасаемая на каждый килограмм веса маховика, значительно больше той, что можно запасти в килограмме статического груза, даже подняв его на большую высоту, а последние высокотехнологичные разработки обещают плотность накопленной энергии, сравнимую с запасом химической энергии в единице массы наиболее эффективного топлива -- водорода. Другой огромный плюс маховика -- это возможность мгновенной передачи или приёма практически любой мощности, которая не имеет принципиальных ограничений, кроме предела прочности материалов в случае механической передачи или «пропускной способности» электрической, пневматической либо гидравлической передач.

К сожалению, маховики чувствительны к сотрясениям и поворотам в плоскостях, отличных от плоскости вращения, поскольку при этом возникают огромные гироскопические нагрузки, стремящиеся погнуть ось. Кроме того, время хранения накопленной маховиком энергии относительно невелико и для традиционных конструкций обычно составляет от нескольких секунд до нескольких часов. Далее потери энергии на трение становятся слишком заметными... Впрочем, современные технологии позволяют кардинально увеличить время хранения -- вплоть до нескольких месяцев.

Наконец, ещё один неприятный момент -- запасённая маховиком энергия прямо зависит от его скорости вращения, поэтому по мере накопления или отдачи энергии скорость вращения всё время меняется и может достигать десятков тысяч оборотов в минуту. В то же время в нагрузке очень часто требуется стабильная скорость вращения, не превышающая нескольких тысяч оборотов в минуту. По этой причине чисто механические системы передачи энергии на маховик и обратно могут оказаться слишком сложными в изготовлении, как, например, многие конструкции вариаторов, позволяющих передавать большую мощность (несколько киловатт и более, для передачи меньших мощностей конструкция вариатора существенно упрощается -- вплоть до ремня с раздвижными шкивами). Иногда упростить ситуацию может электромеханическая передача с использованием мотор-генератора, размещённого на одном валу с маховиком или связанного с ним жёстким редуктором. Но тогда неизбежны потери энергии на нагрев проводов и обмоток, которые могут быть гораздо выше, чем потери на трение и проскальзывание в хороших вариаторах.

Супермаховик Нурбея Гулиа. Особенно перспективны так называемые супермаховики, состоящие из витков стальной ленты, проволоки или высокопрочного синтетического волокна. Навивка может быть плотной, а может иметь специально оставленное пустое пространство. В последнем случае по мере раскручивания маховика витки ленты перемещаются от его центра к периферии вращения, изменяя момент инерции маховика, а если лента пружинная, то и запасая часть энергии в энергии упругой деформации пружины. В результате в таких маховиках скорость вращения не так прямо связана с накопленной энергией и гораздо стабильнее, чем в простейших цельнотелых конструкциях, а их энергоёмкость заметно больше. Помимо большей энергоёмкости, они более безопасны в случае различных аварий, так как в отличии от осколков монолитного маховика, по своей энергии и разрушительной силе сравнимых с пушечными ядрами, обломки пружины обладают гораздо меньшей «поражающей способностью» и обычно достаточно эффективно тормозят лопнувший маховик за счёт трения о стенки корпуса. По этой же причине и современные цельнотелые маховики, рассчитанные на работу в режимах, близких к переделу прочности материала, часто изготавливаются не монолитными, а сплетёнными из тросов или волокон, пропитанных связующим веществом.

Современные конструкции маховиков с вакуумной камерой вращения и магнитным подвесом супермаховика из кевларового волокна обеспечивают плотность запасённой энергии более 5 МДж/кг, причём могут сохранять кинетическую энергию неделями и месяцами. Однако пока они существуют лишь в виде экспериментальных экземпляров или опытных партий. Использование для навивки сверхпрочного «суперкарбонового» волокна позволит увеличить скорость вращения и удельную плотность запасаемой энергии ещё во много раз -- до 2-3 ГДж/кг (одной раскрутки такого маховика весом 100-150 кг хватит для пробега в миллион километров и более, т.е. на фактически на всё время жизни автомобиля!). Однако стоимость такого волокна пока также во много раз превышает стоимость золота, так что подобные машины ещё не по карману даже арабским шейхам... О маховичных накопителях рекомендую почитать отличную книгу Нурбея Гулиа.

1.8 Гирорезонансные накопители энергии

Эти накопители представляют собой тот же самый маховик, но выполненный из эластичного материала (например, резины). В результате у него появляются принципиально новые свойства. По мере нарастания оборотов на таком маховике начинают образовываться «выросты»-«лепестки» -- сначала он превращается в эллипс, затем в «цветок» с тремя, четырьмя и более «лепестками»... При этом после начала образования «лепестков» скорость вращения маховика уже практически не меняется, а энергия запасается в резонансной волне упругой деформации материала маховика, формирующей эти «лепестки».

Такими конструкциями в конце 1970-х и начале 1980-х годов в Донецке занимался Н.З.Гармаш. Полученные им результаты впечатляют -- по его оценкам, при рабочей скорости маховика, составляющей всего 7--8 тысяч об/мин, запасённой энергии было достаточно для того, чтобы автомобиль мог проехать 1500 км против 30 км с обычным маховиком тех же размеров. К сожалению, более свежие сведения об этом типе накопителей мне неизвестны.

1.9 Механические накопители с использованием сил упругости

Этот класс устройств обладает очень большой удельной ёмкостью запасаемой энергии. При необходимости соблюдения небольших габаритов (несколько сантиметров) его энергоёмкость -- наибольшая среди механических накопителей. Если требования к массогабаритным характеристикам не столь жёсткие, то большие сверхскоростные маховики превосходят его по энергоёмкости, но они гораздо более чувствительны к внешним факторам и обладают намного меньшим временем хранения энергии.

1.10 Пружинные механические накопители

Часовая пружина. Сжатие и распрямление пружины способно обеспечить очень большой расход и поступление энергии в единицу времени -- пожалуй, наибольшую механическую мощность среди всех типов накопителей энергии. Как и в маховиках, она ограничена лишь пределом прочноcти материалов, но пружины обычно реализуют рабочее поступательное движение непосредственно, а в маховиках без довольно сложной передачи не обойтись (недаром в пневматическом оружии используются либо механические боевые пружины, либо баллончики с газом, которые по своей сути являются предварительно заряженными пневматическими пружинами; до появления огнестрельного оружия для боя на дистанции применялось также именно пружинное оружие -- луки и арбалеты, ещё задолго до новой эры полностью вытеснившие в профессиональных войсках пращу с её кинетическим накоплением энергии).

Срок хранения накопленной энергии в сжатой пружине может составлять многие годы. Однако следует учитывать, что любой материал с течением времени накапливает усталость, а под действием постоянной деформации кристаллическая решётка металла пружины потихоньку изменяется, причём чем больше внутренние напряжения и чем выше окружающая температура, тем скорее и в большей степени это произойдёт. Поэтому через несколько десятилетий сжатая пружина, не изменившись внешне, может оказаться «разряженной» полностью или частично. Тем не менее, качественные стальные пружины, если они не подвергаются перегреву или переохлаждению, способны работать веками без видимой потери ёмкости. Например, мои настенные механические часы с одного полного завода по-прежнему идут две недели -- как и более полувека назад, когда они были изготовлены.

При необходимости постепенной равномерной «зарядки» и «разрядки» пружины обеспечивающий это механизм может оказаться весьма сложным и капризным (загляните в те же механические часы -- по сути, множество шестерёнок и других деталей служат именно этой цели). Упростить ситуацию может электромеханическая передача, но она обычно накладывает существенные ограничения на мгновенную мощность такого устройства, а при работе с малыми мощностями (несколько сот ватт и менее) её КПД слишком низок. Отдельной задачей является накопление максимальной энергии в минимальном объёме, так как при этом возникают механические напряжения, близкие к пределу прочности используемых материалов, что требует особо тщательных расчётов и безупречного качества изготовления.

Говоря здесь о пружинах, я имею в виду не только металлические, но и другие упругие цельнотелые элементы. Самые распространённые среди них -- это резиновые жгуты. Кстати, по энергии, запасаемой на единицу массы, резина превосходит сталь в десятки раз, зато и служит она примерно во столько же раз меньше, причём, в отличии от стали, теряет свои свойства уже через несколько лет даже без активного использования и при идеальных внешних условиях -- в силу относительно быстрого химического старения и деградации материала.

1.11 Газовые механические накопители

Ресивер. В этом классе устройств энергия накапливается за счёт упругости сжатого газа. При избытке энергии компрессор закачивает газ в баллон. Когда требуется использовать запасённую энергию, сжатый газ подаётся в турбину, непосредственно выполняющую необходимую механическую работу или вращающую электрогенератор. Вместо турбины можно использовать поршневой двигатель, который более эффективен при небольших мощностях (кстати, существуют и обратимые поршневые двигатели-компрессоры).

Практически каждый современный промышленный компрессор оснащён подобным аккумулятором -- ресивером. Правда, давление там редко превышает 10 атм, и потому запас энергии в таком ресивере не очень большой, но и это обычно позволяет в несколько раз увеличить ресурс установки и сэкономить энергию.

Газ, сжатый до давления в десятки и сотни атмосфер, может обеспечить достаточно высокую удельную плотность запасённой энергии в течение практически неограниченного времени (месяцы, годы, а при высоком качестве ресивера и запорной арматуры -- десятки лет, -- недаром пневматическое оружие, использующее баллончики со сжатым газом, получило такое широкое распространение). Однако входящие в состав установки компрессор с турбиной или поршневой двигатель, -- устройства достаточно сложные, капризные и имеющие весьма ограниченный ресурс (в том же пневматическом оружии из-за резких скачков высокого давления и ударов клапаны или поршни обычно требуют ремонта уже через несколько тысяч, а то и через несколько сот рабочих циклов-выстрелов).

1.12 Тепловые накопители энергии

В наших климатических условиях очень существенная (зачастую -- основная) часть потребляемой энергии расходуется на обогрев. Поэтому было бы очень удобно аккумулировать в накопителе непосредственно тепло и затем получать его обратно. На самом деле такой процесс не просто возможен, но и происходит повсюду и постоянно, просто обычно на это не обращают внимания. К сожалению, в большинстве случаев плотность запасённой энергии очень мала, а сроки её сохранения весьма ограничены.

Однако существуют и более эффективные устройства. Правда, многие из них в силу своих особенностей, и в первую очередь стоимости, малопригодны для широкого использования, но есть очень интересные варианты, которые достаточно недороги, просты и эффективны. Информацию о них найти непросто, -- вероятно, по той причине, что в их пропаганде никто не заинтересован, поскольку много денег на их изготовлении и установке заработать не удастся, а сроки окупаемости, даже с учётом минимальной стоимости материалов самого теплоаккумулятора, достаточно долгие (необходима хорошая теплоизоляция больших объёмов, а также система управляемого подвода и отвода теплоносителя -- всё это стоит приличных денег). Кроме того, масса и габариты таких теплоаккумуляторов всё равно слишком велики для типовой квартиры (впрочем, считать городскую квартиру с централизованными коммуникациями полноценным домом я не могу -- это всё же помещение для временного пребывания, вроде гостиничного номера, и тот факт, что огромная часть населения живёт в таких условиях всю жизнь, сути не меняет). Зато для их размещения вполне подойдёт подвал загородного дома и даже пространство под полом садового домика.

Накопление за счёт теплоёмкости. Этот способ древний, как сам мир. Любое вещество при нагревании накапливает тепловую энергию, а при охлаждении отдаёт её обратно в окружающую среду. Поэтому стоит окружить помещение массивными каменными стенами, и их теплоёмкости хватит, чтобы сгладить наружный суточный перепад температуры в 20-30 градусов до колебания температуры внутри помещения в течении тех же суток всего на 2-3 градуса. К сожалению, этого недостаточно, чтобы оставаться в рамках комфортных условий тогда, когда колебания наружной температуры длятся хотя бы несколько суток -- при временном похолодании или в течении нескольких особо жарких дней, -- и тем более это не может сгладить годичные колебания температуры. В последнем случае толщина стен должна измеряться десятками метров, а их масса -- десятками тысяч тонн. Впрочем, есть естественные помещения, в которых температура в течение всего года практически не меняется -- это глубокие пещеры.

Железная колонна в Дели. Хрестоматийный пример массивного теплоаккумулятора, созданного руками человека, -- широко известная железная колонна в Дели (Индия), наземная часть которой за более чем полторы тысяч лет на открытом воздухе практически не испытала ржавчины. Одно из объяснений этого факта заключается в том, что её масса (6.5 тонн при высоте 7.2 м) достаточна, чтобы накопленное днём солнечное тепло не позволило ночью выпасть росе-конденсату и быстро просушило колонну даже в период муссонных дождей, не слишком интенсивных в тех засушливых краях. Кстати, подземная часть этой колонны корродирует «как положено».

Различные вещества обладают разной теплоёмкостью. Впрочем, у большинства она находится в пределах от 0.1 до 2 кДж/(кг·К). Аномально большой теплоёмкостью обладает вода -- её теплоёмкость в жидкой фазе составляет примерно 4.2 кДж/(кг·К). Более высокую теплоёмкость имеет только весьма экзотический литий -- 4.4 кДж/(кг·К).

Однако помимо удельной теплоёмкости (по массе) надо учитывать и объёмную теплоёмкость, позволяющую определить, сколько тепла нужно, чтобы изменить на одну и ту же величину температуру одного и того же объёма различных веществ. Она вычисляется из обычной удельной (массовой) теплоёмкости умножением её на удельную плотность соответствующего вещества. На объёмную теплоёмкость следует ориентироваться тогда, когда важнее объём теплоаккумулятора, чем его вес. Например, удельная теплоёмкость стали всего 0.46 кДж/(кг·К), но плотность 7800 кг/куб.м, а, скажем, у полипропилена -- 1.9 кДж/(кг·К) -- в 4 с лишним раза больше, однако плотность его составляет всего 900 кг/куб.м. Поэтому при одинаковом объёме сталь сможет запасти в 2.1 раза больше тепла, чем полипропилен, хотя и будет тяжелее почти в 9 раз. Впрочем, благодаря аномально большой теплоёмкости воды ни один материал не может превзойти её и по объёмной теплоёмкости. Однако объёмная теплоемкость железа и его сплавов (сталь, чугун) отличается от воды менее, чем на 20% -- в каждом кубическом метре они могут запасти более 3.5 МДж тепла на каждый градус изменения температуры, чуть-чуть меньше объёмная теплоёмкость у меди -- 3.48 МДж/(куб.м·К). Теплоёмкость воздуха в нормальных условиях составляет примерно 1 кДж/кг, или 1.3 кДж/куб.м, поэтому чтобы нагреть кубометр воздуха на 1°, достаточно охладить на тот же градус чуть менее 1/3 литра воды (естественно, более горячей, чем воздух).

В силу простоты устройства (что может быть проще неподвижного сплошного куска твёрдого вещества либо закрытого резервуара с жидким теплоносителем?) подобные накопители энергии имеют практически неограниченное число циклов накопления-отдачи энергии и очень длительный срок службы -- для жидких теплоносителей до высыхания жидкости либо до повреждения резервуара от коррозии или других причин, для твёрдотельных отсутствуют и эти ограничения. Но вот время хранения весьма ограничено и, как правило, составляет от нескольких часов до нескольких суток -- на больший срок обычная теплоизоляция удержать тепло уже не способна, да и удельная плотность запасаемой энергии невелика.

Наконец, следует подчеркнуть ещё одно обстоятельство, -- для эффективной работы важна не только теплоёмкость, но и теплопроводность вещества теплоаккумулятора. При высокой теплопроводности даже на достаточно быстрые изменения наружных условий теплоаккумулятор отреагирует всей своей массой, а следовательно и всей запасённой энергией -- то есть максимально эффективно. В случае же плохой теплопроводности среагировать успеет только поверхностная часть теплоаккумулятора, а до глубинных слоёв кратковременные изменения внешних условий просто не успеют дойти, и существенная часть вещества такого теплоаккумулятора будет фактически исключена из работы. Полипропилен, упомянутый в рассмотренном чуть выше примере, имеет теплопроводность почти в 200 раз меньше, чем сталь, и потому, невзирая на достаточно большую удельную теплоёмкость, эффективным теплоаккумулятором быть не может. Впрочем, технически проблема легко решается организацией специальных каналов для циркуляции теплоносителя внутри теплоаккумулятора, но очевидно, что такое решение существенно усложняет конструкцию, снижает её надёжность и энергоёмкость и непременно будет требовать периодического техобслуживания, которое вряд ли нужно монолитному куску вещества.

Накопление энергии при смене фазового состояния вещества. Если внимательно посмотреть на тепловые параметры различных веществ, то можно увидеть, что при смене агрегатного состояния (плавлении-твердении, испарении-конденсации) происходит значительное поглощение или выделение энергии. Для большинства веществ тепловой энергии таких превращений достаточно, чтобы изменить температуру того же количества этого же вещества на многие десятки, а то и сотни градусов, если агрегатное состостяние остаётся неизменным. А ведь, как известно, пока агрегатное состояние всего объёма вещества не станет одним и тем же, его температура практически не меняется! Поэтому было бы очень заманчиво накапливать энергию за счёт смены агрегатного состояния -- энергии накапливается много, а температура изменяется мало, так что в результате не потребуется решать проблемы, связанные с нагревом до высоких температур, и в то же время можно получить хорошую ёмкость такого теплоаккумулятора.

Плавление и кристаллизация. К сожалению, в настоящее время практически нет дешёвых, безопасных и устойчивых к разложению веществ с большой энергией фазового перехода, температура плавления которых лежала бы в наиболее актуальном диапазоне -- примерно от +20°С до +50°С (максимум +70°С -- это ещё относительно безопасная и легко достижимая температура). Как правило, в этом диапазоне температур плавятся сложные органические соединения, отнюдь не полезные для здоровья и зачастую быстро окисляющиеся на воздухе, скажем, нафталин. Впрочем, можно вспомнить о классическом сплаве Вуда, имеющем температуру плавления 65.5°С, однако входящие в его состав олово, висмут, свинец и кадмий отнюдь не дёшевы и не слишком экологичны, да и теплота плавления 35 кДж/кг невелика -- обыкновенная вода запасает столько же тепла при нагреве всего на 8.5°!

Пожалуй, наиболее подходящими веществами являются парафины, температура плавления большинства которых в зависимости от сорта лежит в диапазоне 40..65°С (правда, существуют и «жидкие» парафины с температурой плавления 27°С и менее, а также родственный парафинам природный озокерит, температура плавления которого лежит в пределах 58..100°С). И парафины, и озокерит вполне безопасны и используются в том числе и в медицинских целях для непосредственного прогрева больных мест на теле. Однако при хорошей теплоёмкости теплопроводность их весьма мала -- мала настолько, что приложенный к телу парафин или озокерит, нагретый до 50-60°С, ощущается лишь приятно горячим, но не обжигающим, как это было бы с водой, нагретой до той же температуры, -- для медицины это хорошо, но для теплоаккумулятора это безусловный минус. Кроме того, эти вещества не так уж дёшевы, скажем, оптовая цена на озокерит в сентябре 2009 г. составляла порядка 200 рублей за килограмм, а килограмм парафина стоил от 25 рублей (технический) до 50 и выше (высокоочищенный пищевой, т.е. пригодный для использования при упаковке продуктов). Это оптовые цены для партий в несколько тонн, в розницу всё дороже как минимум раза в полтора.

В результате экономическая эффективность парафинового теплоаккумулятора оказывается под большим вопросом, -- ведь килограмм-другой парафина или озокерита годится лишь для медицинского прогрева заломившей поясницы в течении пары десятков минут, а для обеспечения стабильной температуры более-менее просторного жилища в течении хотя бы суток масса парафинового теплоаккумулятора должна измеряться тоннами, так что его стоимость сразу приближается к стоимости легкового автомобиля (правда, нижнего ценового сегмента)! Да и температура фазового перехода в идеале всё же должна точно соответствовать комфортному диапазону (20..25°С) -- иначе всё равно придётся организовывать какую-то систему регулирования теплообмена. Тем не менее, температура плавления в районе 50..54°С, характерная для высокоочищенных парафинов, в сочетании с высокой теплотой фазового перехода (немногим более 200 кДж/кг) очень хорошо подходит для теплоаккумкулятора, рассчитанного на обеспечение горячего водоснабжения и водяного отопления, проблема лишь в невысокой теплопроводности и высокой цене парафина. Зато в случае форс-мажора сам парафин можно использовать в качестве топлива с хорошей теплотворной способностью (хотя сделать это не так просто -- в отличии от бензина или керосина, жидкий и тем более твёрдый парафин на воздухе не горит, обязательно нужен фитиль или другое устройство для подачи в зону горения не самого парафина, а только его паров)!

Испарение и конденсация. Теплота испарения-конденсации, как правило, в несколько раз превышает теплоту плавления-кристаллизации. И вроде бы есть не так уж мало веществ, испаряющихся в нужном диапазоне температур. Помимо откровенно ядовитых сероуглерода, ацетона, этилового эфира и т.п., есть и этиловый спирт (его относительная безопасность ежедневно доказывается по всему миру миллионами алкоголиков на личном примере!). Спирт испаряется в нормальных условиях при 78.3°С, а его теплота испарения в 2.5 раза больше теплоты плавления воды (льда) и эквивалентна нагреву того же количества жидкой воды на 200°. Однако в отличии от плавления, когда изменения объёма вещества редко превышают несколько процентов, при испарении пар занимает весь предоставленный ему объём. И если этот объём будет неограничен, то пар улетучится, безвозвратно унося с собой всю накопленную энергию. В замкнутом же объёме сразу начнёт расти давление, препятствуя испарению новых порций рабочего тела, как это имеет место в самой обычной скороварке, поэтому смену агрегатного состояния испытывает лишь небольшой процент рабочего вещества, остальное же продолжает нагреваться, находясь в жидкой фазе. Можно ли решить эту проблему? Уверен, что можно, и здесь открывается большое поле деятельности для изобретателей -- создание эффективного теплоаккумулятора с переменным рабочим объёмом на основе испарения и конденсации.

Помимо фазовых переходов, связанных с изменением агрегатного состояния, некоторые вещества и в рамках одного агрегатного состояния могут иметь несколько различных фазовых состояний (для многих твёрдых тел разные фазовые состояния характеризуются разными типами кристаллических решёток, скажем, большинство металлов и сплавов могут переходить из мартенситной в аустенитную фазу и обратно -- температура перехода для каждого сплава своя и может сильно меняться даже при небольших изменениях его состава). Смена таких фазовых состояний, как правило, также сопровождается заметным выделением или поглощением энергии, хотя обычно гораздо менее значительным, чем при изменении агрегатного состояния вещества. Кроме того, во многих случаях при подобных изменениях в отличии от смены агрегатного состояния имеет место температурный гистерезис -- температуры прямого и обратного фазового перехода могут существенно различаться, иногда на десятки и даже на сотни градусов.

Накопление энергии с помощью термохимических реакций. Давно и широко известна большая группа химических реакций, которые в закрытом сосуде при нагревании идут в одну сторону с поглощением энергии, а при охлаждении -- в обратную с выделением энергии. Такие реакции часто называют термохимическими. Энергетическая эффективность таких реакций, как правило, меньше, чем при смене агрегатного состояния вещества, однако тоже весьма заметна. накопитель энергия твердотельный колебательный

Подобные термохимические реакции можно рассматривать как своего рода смену фазового состояния смеси реагентов, и проблемы здесь возникают примерно те же -- трудно найти найти дешёвую, безопасную и эффективную смесь веществ, успешно действующую подобным образом в диапазоне температур от +20°С до +70°С. Впрочем, один подобный состав известен уже давно -- это глауберова соль.

Мирабилит (он же глауберова соль, он же десятиводный сульфат натрия Na2SO4 · 10H2O) получают в результате элементарных химических реакций (например, при добавлении поваренной соли в серную кислоту) или добывают в «готовом виде» как полезное ископаемое. Очень велики естественные запасы экологически чистого мирабилита в заливе Кара-Богаз-Гол на Каспии (Туркменистан), причём там они постоянно возобновляются благодаря естественному испарению огромных объёмов солёной каспийской воды под жарким южным солнцем. Оптовая стоимость технического мирабилита в Москве на конец 2009 года -- порядка 5.5 рублей за килограмм, медицинского (используется при промывании желудка) чуть дороже. При длительном хранении в сухом месте кристаллический мирабилит «высыхает», теряя связанную воду и потихоньку превращаясь в безводный сульфат натрия. При этом его плотность повышается, а объём уменьшается, что облегчает транспортировку. Чтобы восстановить сульфат натрия до «рабочего» десятиводного состояния, достаточно добавить в него необходимое количество воды.

С точки зрения аккумуляции тепла наиболее интересная особенность мирабилита заключается в том, что при повышении температуры выше 32°С связанная вода начинает освобождаться, и внешне это выглядит как «плавление» кристаллов, которые растворяются в выделившейся из них же воде. При снижении температуры до 32°С свободная вода вновь связывается в структуру кристаллогидрата -- происходит кристаллизация. Но самое главное -- теплота этой реакции гидратации-дегидратации весьма велика и составляет 251 кДж/кг, что заметно выше теплоты «честного» плавления-кристаллизации парафинов, хотя и на треть меньше, чем теплота плавления льда (воды).

Таким образом, теплоаккумулятор на основе насыщенного раствора мирабилита (насыщенного именно при температуре выше 32°С) может эффективно поддерживать температуру на уровне 32°С с большим ресурсом накопления или отдачи энергии. Конечно, для горячего водоснабжения эта температура низка (душ с такой температурой обычно воспринимается как «весьма прохладный»), но вот для воздушного отопления такой температуры может вполне хватить -- в этом случае раствор мирабилита можно поместить в пластиковые бутылки и обдувать их воздухом с помощью обычного маломощного вентилятора (в том числе автомобильного на 12 вольт или компьютерного на 5 вольт). В жарких местностях можно использовать раствор мирабилита для сохранения прохлады, -- согласитесь, что когда на улице больше 40°С в тени, даже 33..35°С в помещении будут весьма живительны, причём в отличии от прожорливых кондиционеров здесь не нужно ни электричества, ни топлива.

И ещё один приятный «бонус» мирабилита при работе «на обогрев» -- возможность значительного переохлаждения находящегося в покое раствора без кристаллизации (до 20°С и ниже). В этом случае получается «управляемый» теплоаккумулятор, который можно «включить», внеся возмущение в переохлаждённый раствор, скажем, стукнув по стенке ёмкости. При этом начинается реакция кристаллизации, в результате которой выделяется тепло и температура раствора быстро возрастает до 32°С. Далее реакция кристаллизации замедляется и идёт со скоростью, необходимой для поддержания этой температуры, -- до тех пор, пока вся глауберова соль не кристаллизуется. Но, конечно, не следует думать, что раствор можно переохладить очень сильно, и приехав под Новый год на промороженную дачу, обогреть её запасённым летом теплом. Дело в том, что чем больше степень переохлаждения, тем меньшее воздействие нужно для запуска реакции кристаллизации, вплоть до неуловимых человеком естественных вибраций и перепадов атмосферного давления. И уж в любом случае, таким воздействием будет начало замерзания свободной воды в ёмкости!

Для того, чтобы кристаллизация начиналась автоматически при снижении температуры до порогового уровня, необходимо либо принудительного «взбадривать» раствор (скажем, установить обдувающий ёмкость вентилятор непосредственно на её стенке, чтобы вибрация от вентилятора запустила кристаллизацию сразу, как только температура начнёт снижаться). Другой способ -- это использовать перенасыщенный раствор, когда часть кристаллов так и не сможет раствориться (им просто не хватит воды). Эти кристаллы обеспечат неравовесность раствора, автоматически запускающую кристаллизацию при снижении температуры ниже пороговой.

Весьма низкая температура фазового перехода позволяет «заряжать» мирабилитовый теплоаккумулятор не только интенсивным нагревом с помощью электрогрелок или сжигания топлива, но и «низкотемпературным» солнечным теплом от солнечных коллекторов даже в прохладные, но солнечные весенние и осенние дни! При этом, хотя габариты такого теплоаккумулятора будут немалыми (масса нужна большая, и здесь никуда не деться -- в городской квартире его не разместить), при условии использования бросовых материалов для солнечного коллектора и емкостей под раствор его стоимость в зависимости от объёма я оцениваю всего от нескольких тысяч до двух-трёх десятков тысяч рублей, -- главным образом на теплоизоляцию и сам мирабилит.

К сожалению, информации о подобных системах в Интернете практически нет. Пожалуй, единственное, зато толковое и подробное описание такой системы мне встретилось на сайте «DelaySam.ru». Гораздо чаще можно встретить сведения о процессах, позволяющих запасать в виде химической энергии высокотемпературное тепло. Да, там количество теплоты на каждый килограмм рабочего вещества на один-два порядка больше, чем у мирабилитового теплоаккумулятора. Но они требуют специального оборудования и технологий (нагревом на солнышке там не обойтись!), а также особой осторожности, поскольку, как правило, связаны с легковоспламеняющимися веществами и другими опасностями. Поэтому они рассматриваются в отдельном разделе химических накопителей энергии.

1.13 Электрические накопители энергии

Электричество -- наиболее удобная и универсальная форма энергии в современном мире. Поэтому именно накопители электрической энергии являются развиваются наиболее быстро. К сожалению, в большинстве случаев удельная ёмкость недорогих устройств невелика, а устройства с высокой удельной ёмкостью слишком дороги для хранения больших запасов энергии при массовом применении.

Конденсаторы. Самые массовые «электрические» накопители энергии -- это обычные радиотехнические конденсаторы. Они обладают огромной скоростью накопления и отдачи энергии -- как правило, от нескольких тысяч до многих миллиардов полных циклов в секунду, и способны так работать в широком диапазоне температур многие годы, а то и десятилетия. Объединяя несколько конденсаторов параллельно, легко можно увеличить их суммарную ёмкость до нужной величины.

Конденсаторы можно разделить на два больших класса -- «сухие» неполярные и электролитические, имеющие существенно большую удельную ёмкость, но требующие соблюдения полярности при подключении и более чувствительные к внешним условиям, прежде всего к температуре.

Однако у конденсаторов есть два основных недостатка. Во-первых, это весьма малая удельная плотность запасаемой энергии и потому небольшая (относительно других видов накопителей) ёмкость. Во-вторых, это малое время хранения, которое обычно исчисляется минутами и секундами и редко превышает несколько часов, а в некоторых случаях составляет лишь малые доли секунды. В результате область применения конденсаторов ограничивается различными электронными схемами и кратковременным накоплением, достаточным для выпрямления, коррекции и фильтрации тока в силовой электротехнике -- на большее их пока не хватает.

Ионисторы, которые иногда называют «суперконденсаторами», можно рассматривать как своего рода промежуточное звено между электролитическими конденсаторами и электрохимическими аккумуляторами. От первых они унаследовали практически неограниченное количество циклов заряда-разряда, а от вторых -- относительно невысокие токи зарядки и разрядки (цикл полной зарядки-разрядки может длиться секунду, а то и намного дольше). Ёмкость их также находится в диапазоне между наиболее ёмкими конденсаторами и небольшими аккумуляторами -- обычно запас энергии составляет от единиц до нескольких сотен джоулей.

Дополнительно следует отметить достаточно высокую чувствительность ионисторов к температуре и ограниченное время хранения заряда -- от нескольких суток до нескольких недель максимум.

Электрохимические аккумуляторы были изобретены ещё на заре развития электротехники, и сейчас их можно встретить повсюду -- от мобильного телефона до самолётов и кораблей.

Как правило, при необходимости запасать достаточно большую энергию -- от нескольких сотен килоджоулей и более -- используются свинцовые аккумуляторы (пример -- любой автомобиль). Однако они имеют немалые габариты и, главное, вес. Если же требуется малый вес и мобильность устройства, то используются более современные типы аккумуляторов -- никель-кадмиевые, металл-гидридные, литий-ионные, полимер-ионные и др. Они имеют гораздо более высокую удельную ёмкость, однако и удельная стоимость хранения энергии у них заметно выше, поэтому их применение обычно ограничивается относительно небольшими и экономичными устройствами -- мобильными телефонами, различными камерами и ноутбуками.

По режиму использования электрохимические аккумуляторы (прежде всего мощные) также подразделяются на два больших класса -- так называемые тяговые и стартовые. Тяговые аккумуляторы ориентированы на относительно равномерный разряд в течение достаточно длительного времени, когда параметры разряда сравнимы с током и временем зарядки, а глубина разряда может быть достаточно большой -- прежде всего это аккумуляторы для электротранспорта, электроинструмента и источников бесперебойного питания (UPS). Стартовые, наоборот, способны выдать очень большой ток в течении короткого времени, но при штатной эксплуатации не должны испытывать глубокий разряд -- таковы обычные автомобильные аккумуляторы, выдающие в течении нескольких секунд на стартёр ток в сотни ампер при зарядном токе порядка 5..10 А и длительности зарядки в несколько часов. Обычно стартовый аккумулятор достаточно успешно может работать в качестве тягового (главное -- контролировать степень разряда и не доводить его до такой глубины, которая допустима для тяговых аккумуляторов), а вот при обратном применении слишком большой ток нагрузки может очень быстро вывести тяговый аккумулятор из строя. С другой стороны, менее жёсткие условия разряда позволяют несколько облегчить конструкцию тяговых аккумуляторов по сравнению с их стартовыми собратьями, а допустимость большей глубины разряда позволяет приблизить реально используемую ёмкость к номинальной.

К недостаткам электрохимических аккумуляторов можно отнести весьма ограниченное число циклов заряда-разряда (в большинстве случаев -- 1..2 тысячи, а при несоблюдении рекомендаций производителей -- гораздо меньше), чувствительность к температуре, длительное время заряда, иногда в десятки раз превышающее время разряда, и необходимость соблюдения методики использования (недопущение глубокого разряда для свинцовых аккумуляторов и, наоборот, соблюдение полного цикла заряда-разряда для металл-гидридных и многих других типов аккумуляторов). Время хранения заряда также обычно довольно ограничено -- от недели до года-другого (я имею в виду, что оставшийся в аккумуляторе заряд будет намного меньше исходного, а вовсе не то, что по истечении указанного срока он будет совсем «пуст», хотя возможно и такое). У старых аккумуляторов уменьшается не только ёмкость, но и время хранения, причём и то, и другое может сократиться во много раз.

1.14 Химические накопители энергии

Этот способ накопления энергии стоит рассмотреть отдельно, поскольку такие процессы часто позволяют получать энергию как в том виде, из которого она запасалась, так и в любом другом. Можно выделить «топливные» и «безтопливные» разновидности. В отличии от низкотемпературных термохимических накопителей, которые могут запасти энергию, просто будучи помещёнными в достаточно тёплое место, здесь не обойтись без специальных технологий и высокотехнологичного оборудования, иногда весьма громоздкого. В частности, если в случае низкотемпературных термохимических реакций смесь реагентов обычно не разделяется и всегда находится в одной и той же ёмкости, реагенты для высокотемпературных реакций хранятся отдельно друг от друга и соединяются лишь тогда, когда нужно получить энергию.

1.15 Накопление энергии наработкой топлива

Электролизёр. На этапе накопления энергии происходит химическая реакция, в результате которой восстанавливается топливо, например, из воды выделяется водород -- прямым электролизом, в электрохимических ячейках с использованием катализатора или с помощью термического разложения, скажем, электрической дугой или сильно сконцентрированным солнечным светом. «Освободившийся» окислитель может быть собран отдельно (для кислорода это необходимо в условиях замкнутого изолированного объекта -- под водой или в космосе) либо за ненадобностью «выброшен», поскольку в момент использования топлива этого окислителя будет вполне достаточно в окружающей среде и нет необходимости тратить место и средства на его организованное хранение.

На этапе извлечения энергии наработанное топливо окисляется с выделением энергии непосредственно в нужной форме, независимо от того, каким способом было получено это топливо. Например, водород может дать сразу тепло (при сжигании в горелке), механическую энергию (при подаче его в качестве топлива в двигатель внутреннего сгорания или турбину) либо электричество (при окислении в топливной ячейке). Как правило, такие реакции требуют дополнительной инициации (поджига), что весьма удобно для управления процессом извлечения энергии.

Этот способ очень привлекателен независимостью этапов накопления энергии («зарядки») и её использования («разрядки»), высокой удельной ёмкостью запасаемой в топливе энергии (десятки мегаджоулей на каждый килограмм топлива) и возможностью длительного хранения (при обеспечении должной герметичности ёмкостей -- многие годы). Однако его широкому распространению препятствует неполная отработанность и дороговизна технологии, высокая пожаро- и взрывоопасность на всех стадиях работы с таким топливом, и, как следствие, необходимость высокой квалификации персонала при обслуживании и эксплуатации этих систем.

1.16 Безтопливное химическое накопление энергии

Банка кофе с разогревом негашёной известью. В данном случае на этапе «зарядки» из одних химических веществ образуются другие, и в ходе этого процесса в образующихся новых химических связях запасается энергия (скажем, гашёная известь при помощи нагрева переводится в негашёное состояние).

При «разрядке» происходит обратная реакция, сопровождаемая выделением ранее запасённой энергии (обычно в виде тепла, иногда дополнительно в виде газа, который можно подать в турбину) -- в частности, именно это имеет место при «гашении» извести водой. В отличие от топливных методов, для начала реакции обычно достаточно просто соединить реагенты друг с другом -- дополнительная инициация процесса (поджиг) не требуется.

По сути, это разновидность термохимической реакции, однако в отличии от низкотемпературных реакций, описанных при рассмотрении тепловых накопителей энергии и не требующих каких-то особых условий, здесь речь идёт о температурах в многие сотни, а то и тысячи градусов. В результате количество энергии, запасаемой в каждом килограмме рабочего вещества, существенно возрастает, но и оборудование во много раз сложнее, объёмнее и дороже, чем пустые пластиковые бутылки или простой бак для реагентов.

Необходимость расхода дополнительного вещества -- скажем, воды для гашения извести -- не является существенным недостатком (при необходимости можно собрать воду, выделяющуюся при переходе извести в негашёное состояние). А вот особые условия хранения этой самой негашёной извести, нарушение которых чревато не только химическими ожогами, но и взрывом, переводят этот и ему подобные способы в разряд тех, которые вряд ли выйдут в широкую жизнь.

2. Переработка нефти

2.1 Первичная переработка нефти

Обессоленная нефть с ЭЛОУ поступает на установку атмосферно-вакуумной перегонки нефти, которая на российских НПЗ обозначается аббревиатурой АВТ - атмосферно-вакуумная трубчатка. Такое название обусловлено тем, что нагрев сырья перед разделением его на фракции, осуществляется в змеевикахтрубчатых печей (рис.6) за счет тепла сжигания топлива и тепла дымовых газов.


Подобные документы

  • Анализ механической работы силы над точкой, телом или системой. Характеристика кинетической и потенциальной энергии. Изучение явлений превращения одного вида энергии в другой. Исследование закона сохранения и превращения энергии в механических процессах.

    презентация [136,8 K], добавлен 25.11.2015

  • Распределение энергии в ее различных видах и формах. Понятие топливно-энергетического комплекса. Нефтяная, угольная и газовая промышленность. Основные способы экономии нефтепродуктов. Роль нефти и газа в современном топливно-энергетическом балансе.

    презентация [2,4 M], добавлен 05.06.2012

  • Описания ветроэнергетики, специализирующейся на преобразовании кинетической энергии воздушных масс в атмосфере в любую форму энергии, удобную для использования в народном хозяйстве. Изучение современных методов генерации электроэнергии из энергии ветра.

    презентация [2,0 M], добавлен 18.12.2011

  • Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.

    презентация [911,5 K], добавлен 20.12.2009

  • Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа [135,3 K], добавлен 07.03.2016

  • Современные проблемы топливно-энергетического комплекса. Альтернативная энергетика: ветряная, солнечная, биоэнергетика. Характеристика и методы использования, география применения, требования к мощностям водоугольного топлива, перспективы его развития.

    курсовая работа [875,9 K], добавлен 04.12.2011

  • Оценка состояния энергетической системы Казахстана, вырабатывающей электроэнергию с использованием угля, газа и энергии рек, и потенциала ветровой и солнечной энергии на территории республики. Изучение технологии комбинированной возобновляемой энергетики.

    дипломная работа [1,3 M], добавлен 24.06.2015

  • Определение работы равнодействующей силы. Исследование свойств кинетической энергии. Доказательство теоремы о кинетической энергии. Импульс тела. Изучение понятия силового физического поля. Консервативные силы. Закон сохранения механической энергии.

    презентация [1,6 M], добавлен 23.10.2013

  • Топливно-энергетический комплекс как источник загрязнения атмосферы. Характеристика технологического и пылегазоочистного оборудования. Определение эффективности очистки газов от полидисперсных частиц пыли последовательно включенными пылеуловителями.

    курсовая работа [1,4 M], добавлен 13.01.2014

  • Виды классических источников энергии. Основные причины, указывающие на важность скорейшего перехода к альтернативным источникам энергии. Молния как источник грозовых перенапряжений. Преимущества и недостатки, принцип действия грозовой электростанции.

    курсовая работа [308,4 K], добавлен 20.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.