Изоляция и перенапряжения
Применение высоких напряжений для передачи электрической энергии. Техника высоких напряжений. Изоляция электрических установок. Внешняя и внутренняя изоляция высоковольтного электрооборудования. Система контроля и диагностика. Защита от ударов молнии.
Рубрика | Физика и энергетика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 13.10.2017 |
Размер файла | 616,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Изоляция и перенапряжения
ЛЕКЦИЯ 1. ИЗОЛЯЦИЯ И ПЕРЕНАПРЯЖЕНИЯ ИЛИ ТЕХНИКА ВЫСОКИХ НАПРЯЖЕНИЙ
1.1 Применение высоких напряжений для передачи электрической энергии
Применение высоких напряжений для передачи электрической энергии на большие расстояния играет важную роль в развитии мировой электроэнергетики и нашей страны. Существенное влияние на развитие энергосистем оказывают все возрастающие требования ограничения неблагоприятных воздействий энергетических объектов на окружающую среду. Повышение экологических требований к электростанциям, прежде всего необходимость сокращения занимаемых под них земельных площадей, усложняет их размещение и, как следствие, приводит к удалению электростанций от центров потребления. Это, в свою очередь, влечет за собой увеличение необходимых объемов строительства линий высокого напряжения.
Надежная работа электрических систем высокого напряжения в основном определяется изоляцией и теми напряжениями, которые на эту изоляцию воздействуют. Повышения напряжения, которые могут быть опасными для изоляции, называются перенапряжениями. Использование высоких напряжений в электрических системах связано с проблемой обеспечения безаварийной работы изоляции всех элементов электрической системы. Рассматриваемая проблема получила название “Техника высоких напряжений в электроэнергетике”
Техника высоких напряжений (ТВН) в настоящее время представляет собой науку о характеристиках вещества и процессах в нем при экстремальных электромагнитных воздействиях - высоких напряжениях и сильных токах, а также о технологическом использовании этих процессов. Один из основных разделов ТВН посвящен свойствам и характеристикам изоляционных конструкций электрооборудования высокого напряжения и условиям их надежной эксплуатации при воздействии рабочего напряжения, грозовых и внутренних перенапряжений.
1.2 Изоляция электрических установок
Изоляция электрических установок разделяется на внешнюю и внутреннюю. К внешней изоляции относятся воздушные промежутки (например, между проводами разных фаз линии электропередачи), внешние поверхности твердой изоляции (изоляторов), промежутки между контактами разъединителя и т.п. К внутренней изоляции относится изоляция обмоток трансформаторов и электрических машин, изоляция кабелей, конденсаторов, герметизированная изоляция вводов, изоляция между контактами выключателя в отключенном состоянии, т.е. изоляция герметически изолированная от воздействия окружающей среды корпусом, оболочкой, баком и т.д. Внутренняя изоляция как правило представляет собой комбинацию различных диэлектриков (жидких и твердых, газообразных и твердых).
Важной особенностью внешней изоляции является ее способность восстанавливать свою электрическую прочность после устранения причины пробоя. Однако электрическая прочность внешней изоляции зависит от атмосферных условий: давления, температуры и влажности воздуха. На электрическую прочность изоляторов наружной установки влияют также загрязнения их поверхности и атмосферные осадки.
Особенностью внутренней изоляции электрооборудования является старение, т.е. ухудшение электрических характеристик в процессе эксплуатации. Вследствие диэлектрических потерь изоляция нагревается. Может произойти чрезмерный нагрев изоляции, который приведет к ее тепловому пробою. Под действием частичных разрядов, возникающих в газовых включениях, изоляция разрушается и загрязняется продуктами разложения. Пробой твердой и комбинированной изоляции - явление необратимое, приводящее к выходу из строя электрооборудования. Жидкая и внутренняя газовая изоляция самовосстанавливается, но ее характеристики ухудшаются. Необходимо постоянно контролировать состояние внутренней изоляции в процессе ее эксплуатации, чтобы выявить развивающийся в ней дефекты и предотвратить аварийный отказ электрооборудования.
1.3 Перенапряжения, воздействующие на электроустановки
Перенапряжения, воздействующие на изоляцию электроустановок, можно разделить на грозовые и внутренние.
Грозовые перенапряжения возникают при поражении электрической установки разрядом молнии. С грозовым разрядом связано возникновение волн перенапряжений, достигающих нескольких тысяч киловольт. При отсутствии специальной защиты такие перенапряжения достаточны для перекрытия и повреждения изоляции установок любого номинального напряжения. Эти перенапряжения распространяются в электрической системе в форме волн и проникают во все элементы системы, в частности в аппаратуру и обмотки трансформаторов. Возникающие при этом переходные процессы приводят к резкому повышению напряжений, воздействующих на внутреннюю изоляцию трансформаторов и аппаратов. Поэтому защита от грозовых перенапряжений является обязательным элементом надежной работы электрической системы.
Внутренние перенапряжения возникают при переключениях в сети, при дуговых замыканиях на землю в сетях с изолированной и компенсированной нейтралью, а также при резонансных явлениях, возникающих на длинных линиях и в несимметричных режимах. Такие перенапряжения существенно зависят от характеристик оборудования, в первую очередь выключателей, и схем сети. Внутренние перенапряжения, так же как и грозовые, носят статистический характер. Они могут в 3-3,5 раза превышать фазное напряжение установки. Как правило, изоляция установок до 220 кВ включительно такие напряжения выдерживает. При более высоких номинальных напряжениях амплитудные значения внутренних перенапряжений могут стать выше значений пробивных напряжений изоляции. Приходится применять различные способы ограничения внутренних перенапряжений.
Взаимное согласование значений воздействующих напряжений, характеристик защитной аппаратуры и электрических характеристик изоляции, обеспечивающее надежную работу и экономичность электрической установки называется координацией изоляции и представляет собой главную технико-экономическую задачу проектирования электроустановки.
1.4 Работа изоляции в условиях длительного воздействия рабочего напряжения
На протяжении всего срока службы изоляция находится под воздействием рабочего напряжения установки. В таблице приведена шкала принятых у нас в стране номинальных (средних междуфазных рабочих) напряжений. В процессе эксплуатации имеют место отклонения от номинального напряжения, обусловленные падением напряжения в элементах электрической системы. При этом наибольшие рабочие напряжения в системе не должны превосходить значений, указанных в таблице. Там же приведены величины наибольших фазных напряжений, которые прикладываются к изоляции между токоведущими частями и землей.
Нежелательные последствия пробоя воздуха - это возможность возникновения устойчивой дуги. На линиях электропередачи дуговое замыкание на землю или между проводами приводит к отключению линии на время, необходимое для восстановления изоляции.
Возможность ликвидации дуговых замыканий на землю, представляющих собой наиболее распространенный вид нарушений нормальной работы сети, зависит от способа заземления нейтрали.
При работе сети с изолированной нейтралью через место однофазного замыкания на землю проходит емкостный ток неповрежденных фаз. В сетях небольшой напряженности, имеющих небольшие емкостные токи, дуга гаснет при первом прохождении тока через нуль и нормальная схема электроснабжения восстанавливается без отключения поврежденного участка. Таким образом, большинство однофазных замыканий на землю оказываются неопасными. Повышение протяженности сети вызывает увеличение емкостных токов, что приводит к затяжному горению дуги, развитию колебаний из-за ее неустойчивого характера, возможности переброски дуги на другие фазы. Для облегчения условий гашения дуги в нейтрали трансформаторов включаются реакторы с большой индуктивностью (дугогасящие реакторы); при однофазном замыкании на землю индуктивный ток реактора компенсирует емкостный ток, в результате чего ток замыкания на землю резко уменьшается. Это приводит к ликвидации дуги и восстановлению нормальных условий работы.
Эти сети не отключаются при однофазных замыканиях на землю, поэтому в них возможны повышения напряжения на неповрежденных фазах до линейного.
В сетях с заземленной нейтралью ток однофазного к.з. приводит в действие релейную защиту, вызывающую селективное повреждение отключенного участка. Благодаря быстрому отключению дуга не успевает переброситься на другие фазы или причинить повреждение изоляции. Линия может быть вновь включена в работу через доли секунды, что используется в системах автоматического повторного включения (АПВ).
Поскольку изоляция постоянно находится под рабочим напряжением, а также испытывает механические, тепловые и другие воздействия, она постепенно теряет свои первоначальные свойства, и ее электрическая прочность снижается - изоляция подвергается старению. Необходимо, чтобы в течение всего срока службы, на который рассчитана установка, так называемая длительная прочность изоляции не снизилась бы до величины наибольшего рабочего напряжения установки.
1.5 Влияние режима нейтрали на уровни перенапряжений
Основные режимы нейтрали:
1. Изолированная: 6,10,15,20,35 кВ;
2. Заземленная: 110 кВ и выше.
В зависимости от номинального напряжения нейтраль может быть изолирована или заземлена. При номинальном напряжении 6кВ, 10кВ, 15кВ, 20кВ, 35кВ нейтраль трансформатора делается изолированной, а при напряжении 110кВ и выше - заземленная или эффективно заземленная нейтраль.
Изолированная нейтраль
Для того чтобы напряжение нейтрали было равно нулю необходимо соблюсти условие, которое заключается в том, что углы между векторами напряжений должны быть равны 120 є. Но это условие не всегда соблюдается.
В зависимости от рельефа местности будет изменяться и емкость относительно земли. Соответственно, при увеличении протяженности ЛЭП емкость возрастает, и наоборот.
Наличие паразитных связей на ЛЭП приводит к изменению диаграммы напряжений, т.е. углы между векторами изменяются, вследствие чего напряжение нейтрали становится неравным нулю.
Величина емкостного тока напрямую зависит от протяженности ЛЭП и может варьироваться от 2 до 30А.
Достоинства: можно сэкономить на автоматике, в случае замыкания на землю можно надеяться на самопогасание дуги, чего нельзя допустить в случае высоковольтных ЛЭП.
Замыкания на линии возникают из-за попадания в них молнии, вследствие чего может возникнуть перекрытие изоляторов.
Uпр=100Iмолнии
При попадании молнии в ЛЭП образуется канал разряда молнии, проводимость которого становится соизмеримым с проводимостью провода.
В этот момент через этот канал начинает протекать ток замыкания . Но затем происходит быстрое охлаждение канала т.к. процесс протекания тока молнии длится лишь несколько десятков микросекунд. Быстрое охлаждение канала ведет к его деионизации - проводимость канала уменьшается. Ток, протекающий через канал, изменяется по синусоидальному закону. В тот момент, когда ток проходит через нулевое значение, ионизационный процесс прекращается и канал самовосстанавливается. Таким образом происходит самопогасание дуги.
Вероятность самопогасания дуги напрямую зависит от величины емкости линии. Если емкость имеет большое значение, то появляется так называемая перемежающая дуга, которая приводит к дуговым перенапряжениям, т.к. она то гаснет, то вновь загорается. Дуга в этом случае служит своего рода контактором. Этот случай является самым тяжелым для оборудования подстанций и электрических станций.
Режим изолированной нейтрали обеспечивает надежное снабжение потребителей, т.к. в этом случае потребитель не чувствует замыканий.
При замыкании на землю одной фазы, напряжение на оставшихся здоровых фазах будет равно .
Режим ДПЗ оказался очень актуальным в 50-е годы 20 века, т.к. длины линий в послевоенные годы были короткими, а их емкостное значение тока не превышало 5А. При попадании молнии в деревянную опору, она расщепляется и в некоторых случаях может обломиться, а провод может упасть на землю. В этом случае возникает режим ДПЗ, который удобен тем, что не происходит прерывания снабжения потребителей.
Но после того как длины линий со временем стали увеличиваться, а соответственно возрастали и емкости линий, ситуация стала меняться. Те режимы, которые были хороши для коротких линий, были непригодны для длинных линий. Невозможно было рассчитывать на самопогасание дуги, однофазное замыкание на землю стало опасным для населения. Необходимо было искать эффективные методы ограничения токов замыкания на землю. Одним таких методов стал дугогасящий реактор, который способствовал уменьшению тока ЗЗ.
Применение дугогасящих реакторов в сети с изолированной нейтралью
Размещено на http://www.allbest.ru/
I(1)з Iс
- режим точной настройки ДГР.
В режиме точной настройки индуктивная составляющая тока, протекающего через реактор, компенсируется емкостной составляющей тока замыкания на землю, обусловленного емкостью проводов линии.
При точной настройке остаточный ток, протекающий через место однофазного замыкания на землю замыкания минимален, дуга легко гаснет при его прохождении через ноль, электрическая прочность изоляции полностью восстанавливается.
Размещено на http://www.allbest.ru/
В режиме недокомпенсации индуктивная составляющая тока в месте замыкания на землю больше, чем емкостная составляющая этого тока. Величина остаточного тока довольно велика, дуга может не погаснуть при прохождении тока через нулевое значение. Также довольно большим может оказаться ток и при перекомпенсации - случае, когда индуктивная составляющая тока в месте замыкания на землю меньше, чем емкостная составляющая этого тока.
При настройке дугогасящего реактора допускается небольшая перекомпенсация (5%), так как в режиме недокомпенсации на нейтрали трансформатора возможно резонансное увеличение напряжения - до 2 Uф.
При несимметрии в сети с ДГР возникает колебательный контур, в котором могут выполняться условия резонанса. В этом случае резонанс наступает при значении
Резистивное заземление нейтрали
Если I(1)з не большое, то возникает перемежающаяся дуга (то гаснет, то загорается вновь). Возникают дуговые перенапряжения, которые могут иметь достаточно большую величину и длительность.
Для ограничения внутренних перенапряжений (дуговых и феррорезонансных) в сети с изолированной нейтралью в некоторых случаях применяется резистивное заземление нейтрали.
Существуют два подхода к способу заземления нейтрали через активное сопротивление:
1. Высокоомное заземление R=700-1000 Ом.
2. Низкоомные резисторы R 10 Ом.
Сеть с заземленной нейтралью
U39=1,4Uф
Однофазное замыкание на землю в сети с заземленной нейтралью является коротким замыканием (КЗ) с очень большим током.
В этом случае должно быть быстрое отключение КЗ релейной защитой. При быстродействующей защите это сотые доли секунды.
Смещение нейтрали происходит оттого, что существует проводник между нейтралью и землей.
В некоторых случаях предусматривается разземление нейтрали отдельных трансформаторов для уменьшения токов однофазного замыкания на землю в сети.
ЛЕКЦИЯ 2. ВНЕШНЯЯ ИЗОЛЯЦИЯ ВЫСОКОВОЛЬТНОГО ЭЛЕКТРООБОРУДОВАНИЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ
2.1 Общая характеристика внешней изоляции
К внешней изоляции установок высокого напряжения относят изоляционные промежутки между электродами (проводами линий электропередачи (ЛЭП), шинами распределительных устройств (РУ), наружными токоведущими частями электрических аппаратов и т.д.), в которых роль основного диэлектрика выполняет атмосферный воздух. Изолируемые электроды располагаются на определенных расстояниях друг от друга и от земли (или заземленных частей электроустановок) и укрепляются в заданном положении с помощью изоляторов.
При нормальных атмосферных условиях электрическая прочность воздушных промежутков относительно невелика (в однородном поле при межэлектродных расстояниях около 1 см 30 кВ/см). В большинстве изоляционных конструкций при приложении высокого напряжения создается резконеоднородное электрическое поле. Электрическая прочность в таких полях при расстоянии между электродами 1-2 м составляет приблизительно 5 кВ/см, а при расстояниях 10-20 м снижается до 2,5-1,5 кВ/см. В связи с этим габариты воздушных ЛЭП и РУ при увеличении номинального напряжения быстро возрастают.
Целесообразность использования диэлектрических свойств воздуха в энергетических установках разных классов напряжения объясняется меньшей стоимостью и сравнительной простотой создания изоляции, а также способностью воздушной изоляции полностью восстанавливать электрическую прочность после устранения причины пробоя разрядного промежутка.
Для внешней изоляции характерна зависимость электрической прочности от метеорологических условий (давления p, температуры Т , абсолютной влажности Н воздуха, вида и интенсивности атмосферных осадков), а также от состояния поверхностей изоляторов, т.е. количества и свойства загрязнений на них. В связи с этим воздушные изоляционные промежутки выбирают так, чтобы они имели требуемую электрическую прочность при неблагоприятных сочетаниях давления, температуры и влажности воздуха.
Электрическую прочность вдоль изоляторов наружной установки измеряют в условиях, соответствующих разным механизмам разрядных процессов, а именно, когда поверхности изоляторов чистые и сухие, чистые и смачиваются дождем, загрязнены и увлажнены. Разрядные напряжения, измеренные при указанных состояниях, называю соответственно сухоразрядными, мокроразрядными и грязе- или влагоразрядными.
Основной диэлектрик внешней изоляции - атмосферный воздух - не подвержен старению, т.е. независимо от воздействующих на изоляцию напряжений и режимов работы оборудования его средние характеристики остаются неизменными во времени.
2.2 Регулирование электрических полей во внешней изоляции
При резконеоднородных полях во внешней изоляции возможен коронный разряд у электродов с малым радиусом кривизны. Появление короны вызывает дополнительные потери энергии и интенсивные радиопомехи. В связи с этим большое значение имеют меры по уменьшению степени неоднородности электрических полей, которые позволяют ограничить возможность возникновения короны, а также несколько увеличить разрядные напряжения внешней изоляции.
Регулирование электрических полей во внешней изоляции осуществляется с помощью экранов на арматуре изоляторов, которые увеличивают радиус кривизны электродов, что и повышает разрядные напряжения воздушных промежутков. На воздушных ЛЭП высоких классов напряжений используются расщепленные провода.
2.3 Диэлектрики, используемые во внешней изоляции
Диэлектрики, из которых изготавливаются изоляторы, должны отвечать ряду требований.
1. Они должны иметь высокую механическую прочность , поскольку изоляторы, являясь элементом конструкции, несут значительную нагрузку. Изоляторы ЛЭП несут нагрузку от тяжения проводов, исчисляемую тоннами, а иногда и десятками тонн. Опорные изоляторы, на которых крепятся шины РУ, выдерживают громадные нагрузки от электродинамических сил, возникающих между шинами при коротких замыканиях.
2. Диэлектрики должны иметь высокую электрическую прочность, позволяющую создавать экономичные и надежные конструкции изоляторов. Нарушение электрической прочности изолятора может происходить или при пробое твердого диэлектрика, из которого он изготовлен, или в результате развития разряда в воздухе вдоль внешней поверхности изолятора. Разряд по поверхности при условии быстрого отключения напряжения не причиняет изолятору повреждений, а пробой твердого диэлектрика означает выход изолятора из строя. Поэтому пробивное напряжение твердого диэлектрика в изоляторе в 1,5 раза выше, чем напряжение перекрытия по поверхности, которым и определяется электрическая прочность изолятора.
3. Диэлектрики должны быть негигроскопичны и не должны изменять своих свойств под действием различных метеорологических факторов.
4. Так как при дожде и увлажненных загрязнениях на поверхностях изоляторов длительное время могут существовать частичные электрические дуги, диэлектрики должны обладать высокой трекингостойкостью.
5. Диэлектрики должны быть высокотехнологичными, т.е. допускать применение высокопроизводительных технологических процессов.
Всем указанным требованиям в наибольшей степени удовлетворяют глазурированный электротехнический фарфор и электротехническое стекло, получившие широкое распространение, а также некоторые пластмассы.
Сравнительные характеристики стекла и фарфора можно представить следующим образом.
Изоляторы из закаленного стекла имеют ряд преимуществ перед фарфоровыми: технологический процесс их изготовления полностью автоматизирован; прозрачность стекла позволяет легко обнаружить при внешнем осмотре мелкие трещины и другие внутренние дефекты; повреждение стекла приводит к разрушению диэлектрической части подвесного изолятора, которое легко обнаружить при осмотре ЛЭП эксплуатационным персоналом.
Полимерные изоляторы наружной установки изготовляются из эпоксидных компаундов на основе циклоолифатических смол, из кремнийорганической резины, из полиэфирных смол с минеральным наполнителем и добавкой фторопласта. Такие изоляторы имеют высокую электрическую прочность и достаточную трекингостойкость. Высокая механическая прочность полимерных изоляторов достигается посредством армирования их стеклопластиком. Применение полимерных изоляторов на ЛЭП позволяет существенно уменьшить массу подвесных изоляторов.
В закрытых распределительных устройствах (ЗРУ) изоляторы не подвержены влиянию атмосферных осадков, поэтому для их изготовления в некоторых случаях используется бакелизированная бумага. Для уменьшения гигроскопичности такие изоляторы порываются снаружи водостойкими лаками. Однако наибольшее распространение для внутренней установки получили изоляторы из фарфора и стекла, отличающиеся от изоляторов наружной установки более простой формой.
Условия развития разряда по поверхности изоляторов открытых распределительных устройств (ОРУ) существенно изменяются, если на их поверхностях имеются увлажненные загрязнения или же они смачиваются дождем. Разрядные напряжения значительно уменьшаются. При измерениях мокроразрядных и влагоразрядных напряжений искусственный дождь и увлажненные загрязнения создаются по стандартным методикам. Это обеспечивает возможность сопоставления результатов, полученных в разное время или в разных лабораториях, и объективность оценки изоляторов различной конструкции.
2.4 Назначение и типы изоляторов
По своему назначению изоляторы делятся на опорные, подвесные и проходные. Опорные изоляторы в свою очередь подразделяются на стержневые и штыревые, а подвесные - на тарельчатые и стержневые.
Опорно-стержневые изоляторы применяют в ЗРУ и ОРУ для крепления на них токоведущих шин или контактных деталей.
Опорно-стержневые изоляторы наружной установки отличаются большим количеством ребер, чем изоляторы внутренней установки. Ребра служат для увеличения длины пути тока утечки с целью повышения разрядных напряжений изоляторов под дождем и в условиях увлажненных загрязнений. Обозначение, например, ОСН-35-2000 расшифровывается следующим образом: опорный, наружной установки, стержневой на 35 кВ, с минимальной разрушающей силой 2000 даН.
Опорно-штыревые изоляторы применяют для наружных установок в тех случаях, когда требуется высокая механическая прочность. В установках напряжением 110 кВ и выше используются колонки, состоящие из нескольких, установленных друг на друга опорно-штыревых изоляторов на напряжение 35 кВ. В обозначение изоляторов введена буква Ш (штыревой).
Штыревые линейные изоляторы применяются на напряжения 6-10 кВ. Обозначение ШФ6 означает: штыревой фарфоровый на 6 кВ. Буква С в обозначении (ШС) указывает на то, что изолятор стеклянный.
Подвесные изоляторы тарельчатого типа используются на воздушных ЛЭП 35 кВ и выше. Требуемый уровень выдерживаемых напряжений достигается соединением необходимого числа изоляторов в гирлянду. Гирляны благодаря шарнирному соединению изоляторов работают только на растяжение. Однако изоляторы сконструированы так, что внешнее растягивающее усилие создает в изоляционном теле в основном напряжения сжатия. Так используется высокая прочность фарфора и стекла на сжатие.
Подвесные стержневые изоляторы, как правило, выполняются из электротехнического фарфора. Однако в настоящее время выпускаются и стержневые полимерные изоляторы.
Проходные изоляторы применяются для изоляции токоведущих частей при прохождении их через стены, потолки и другие элементы конструкций РУ и аппаратов. Проходные изоляторы, предназначенные для наружной установки, имеют более развитую поверхность той части изолятора, которая располагается вне помещения.
Обозначение проходного изолятора содержит значение номинального тока, например ПНШ-35/3000-2000 означает: проходной, наружной установки, шинный на напряжение 35 кВ и номинальный ток 3 кА с механической прочностью 20 кН.
Проходные аппаратные изоляторы (вводы) на напряжение 110 кВ и выше имеют значительно более сложную конструкцию.
2.5 Электрофизические процессы в газах
Частицы газа находятся в состоянии теплового движения, постоянно взаимодействуя (сталкиваясь) друг с другом. Число столкновений z, испытываемых какой либо частицей на пути в 1 см, пропорционально концентрации N. Величина, обратная числу столкновений, =1/z представляет собой среднюю длину свободного пробега частицы. Действительные длины свободных пробегов подвержены значительному разбросу. Вероятность того, что длина свободного пробега частицы равна или больше x, cоставляет
(1)
В электрическом поле на заряженные частицы (ионы и электроны) действует сила
F=eE, (2)
где е - заряд частицы; Е - напряженность электрического поля.
Энергия, накапливаемая электроном в электрическом поле, равна
(3)
где х - расстояние, пролетаемое электроном в направлении поля.
Если больше энергии ионизации , то при столкновении электрона с нейтральной частицей может произойти ионизация. Если энергии электрона недостаточно для этого, то возможно возбуждение частицы, а при столкновении с возбужденной частицей, находящейся в метастабильном состоянии, такой электрон может участвовать в процессе ступенчатой ионизации.
Расстояние, который должен пролететь электрон, чтобы накопить достаточную для ионизации энергию, определяется как
(4)
и зависит от напряженности электрического поля.
Вероятность того, что электрон пролетит путь без столкновений, составляет
, (5)
но это и есть вероятность приобретения электроном энергии , при которой возможна ионизация, т.е. можно считать вероятностью ионизации.
Процесс ионизации газа путем соударения нейтральных молекул с электронами называется ударной ионизацией и характеризуется коэффициентом ударной ионизации , который равен числу ионизаций, производимых электроном на пути в 1 см по направлению действия сил электрического поля. Коэффициент определяется как произведение среднего числа столкновений на пути в 1 см и вероятности ионизации:
(6)
Положительные ионы практически не могут ионизировать молекулы газа по ряду причин: малая подвижность; значительно меньшие, чем у электронов, длины свободного пробега. Частота ионизаций положительными ионами в раз меньше, чем электронами.
Однако положительные ионы, бомбардируя катод, могут освобождать из него электроны.
В процессе ионизации газа возникает большое количество возбужденных частиц, которые, переходя в нормальное состояние, испускают фотоны. Если энергия фотона превышает энергию ионизации
(7)
где -частота излучения; h =4,15эВс -постоянная Планка, то при поглощении его атомом или молекулой освобождается электрон, происходит акт фотоионизации газа. В воздухе фотоионизация происходит в сильных электрических полях, когда становится возможным возбуждение положительных ионов, и при переходе их в невозбужденное состояние излучаются фотоны с достаточно высокой энергией. Энергия излучаемых фотонов выше работы выходя электронов из катода, поэтому в воздухе эффективна фотоионизация на катоде.
Оба фотоионизационных процесса - в объеме газа и на катоде - играют важную роль в развитии разряда в воздухе. Фотоионизация в объеме газа и на катоде, а также освобождение электронов при бомбардировке катода положительными ионами происходят как следствие ударной ионизации. Эти процессы называются процессами вторичной ионизации. Соответственно, появившиеся в результате этих процессов электроны называются вторичными.
Число вторичных электронов пропорционально числу актов ударной ионизации. Коэффициент пропорциональности называется коэффициентом вторичной ионизации. Значение зависит от природы и давления газа, материала катода и напряженности электрического поля, а также оттого, какой процесс вторичной ионизации превалирует.
Одновременно с ионизацией происходит процесс взаимной нейтрализации заряженных частиц, называемый рекомбинацией. Число рекомбинаций, происходящих в 1 см газа за единицу времени, пропорционально их концентрациям. Избыток энергии выделяется в виде излучения.
При значительном повышении температуры газа кинетическая энергия нейтральных частиц возрастает настолько, что становится возможной ионизация при их столкновении - термоионизация.
Газ, в котором значительная часть частиц ионизирована, называется плазмой. Концентрации положительно и отрицательно заряженных частиц в плазме примерно одинаковы. Плазма представляет собой форму существования вещества при высоких температурах.
2.6 Лавина электронов и условие самостоятельности разряда
Рассмотрим промежуток между двумя электродами в газе. Если в этом промежутке появился электрон, то, двигаясь к аноду, при достаточной напряженности электрического поля он может при столкновении ионизировать молекулу газа. Образовавшийся при этом свободный электрон вместе с начальным ионизирует новые молекулы. Число свободных электронов будет непрерывно возрастать. Процесс нарастания числа электронов, движущихся в электрическом поле по направлению к аноду, получил название лавины электронов. В процессе ионизации одновременно с электронами образуются положительные ионы. Вследствие значительной разницы в подвижностях электронов и ионов за время движения лавины до анода положительные ионы практически остаются на месте их возникновения.
В природе постоянно действуют такие ионизаторы, как космические частицы, радиоактивное излучение Земли, ультрафиолетовое излучение Солнца. Благодаря им в промежутке между электродами непрерывно возникают свободные электроны. Под действием приложенного к промежутку напряжения в нем будут непрерывно образовываться лавины электронов. Движение заряженных частиц в промежутке создает ток разряда между электродами. Если исключить действие внешнего ионизатора, ток в промежутке прекратится. Такой процесс называется несамостоятельным разрядом.
Для того, чтобы разряд стал самостоятельным и мог существовать в отсутствие внешнего ионизатора, необходимо, чтобы в результате развития первоначальной лавины появлялся по крайней мере один вторичный электрон, способный создать новую лавину. Таким образом, условие самостоятельности разряда можно записать в общем виде как
(8)
или в случае однородного поля
(9)
где L - расстояние между электродами.
В резконеоднородном электрическом поле условие самостоятельности разряда выполняется в очень узкой зоне вблизи электрода. Это означает, что ионизационные процессы концентрируются в этой зоне и создают характерное свечение, называемое коронным разрядом или короной.
В процессе развития лавины непрерывно увеличивается число электронов и положительных ионов, при этом напряженность электрического поля на фронте лавины возрастает, а в задней ее части уменьшается. В какой-то момент напряженность в задней части лавины уменьшается настолько, что становится невозможной ударная ионизация. Находящиеся в хвосте лавины отставшие электроны вместе с положительными ионами создают плазменное образование, дающее начало возникновению стримерного канала. Характерной особенностью стримера является наличие избыточного заряда на конце, создающего местное усиление электрического поля и обеспечивающего непрерывное удлинение плазменного канала.
С ростом приложенного к промежутку напряжения длина стримера увеличивается и возрастает емкость между стримером и противоположным электродом. Это приводит к увеличению тока в канале стримера и разогреву его до температуры, достаточной для термической ионизации. Термически ионизированная часть канала стримера называется лидером.
Концентрация заряженных частиц в канале лидера значительно выше, чем в стримере, поэтому падение напряжения на нем меньше. В связи с этим у стримера, часть канала которого преобразовалась в лидер, потенциал головки возрастает и создаются условия для продвижения стримера до противоположного электрода и преобразования этого стримера в лидер.
2.7 Время разряда и вольт-секундные характеристики воздушных промежутков
При кратковременных импульсах значение разрядного напряжения воздушных промежутков зависит от продолжительности воздействия. Если к промежутку приложено напряжение, достаточное для пробоя, то для развития и завершения разряда в промежутке необходимо определенное время , называемое временем разряда.
Развитие самостоятельного разряда начинается с появления в промежутке эффективного начального электрона, что является случайным событием. Время ожидания эффективного электрона подвержено разбросу и называется поэтому статистическим временем запаздывания разряда. Другой составляющей является время формирования разряда (также имеющее статистический характер) - время от момента появления начального электрона до завершения пробоя промежутка. При достаточно большой длительности фронта импульса имеет значение также холостое время - время подъема напряжения до значения (начального напряжения возникновения самостоятельного электрического разряда).
В общем случае время разряда определяется как
(10)
Если длительность приложенного к промежутку импульса меньше времени разряда, то пробоя не произойдет, хотя значение напряжения было бы достаточным для этого при длительном воздействии напряжения.
Составляющие времени разряда и зависят от значения напряжения на промежутке. При увеличении напряжения повышается вероятность того, что появляющиеся в промежутке электроны станут эффективными, уменьшается. Сокращается также и , поскольку при большем напряжении возрастает интенсивность разрядных процессов в промежутке. Поэтому, чем выше разрядное напряжение, тем меньше время разряда.
Зависимость максимального напряжения разряда от времени действия импульса называется вольт-секундной характеристикой изоляции. Поскольку начало и скорость развития ионизационных процессов зависят от значения напряжения, вольт-секундные характеристики зависят от формы импульса.
Импульсное 50%-ное разрядное напряжение практически совпадает со средним значением минимального импульсного разрядного напряжения промежутка.
2.8 Разряд в длинных воздушных промежутках
При развитии разряда в длинном ( 1 м) резконеоднородном разрядном промежутке при достижении напряжением начального значения со стержня развивается пучок стримеров. Образованный при этом объемный заряд приводит к уменьшению напряженности электрического поля вблизи электрода с малым радиусом кривизны, вследствие чего развитие разряда прекращается. Напряжение на промежутке возрастает, и через некоторое время становятся возможными новые вспышки стримеров. Вследствие нагрева воздуха в зоне развития стримеров появляется другое образование - канал лидера. Лидер имеет непосредственный контакт с электродом. Последующие вспышки стримеров возникают с конца лидера и приводят к его удлинению. Начиная с некоторого момента времени развитие разряда вместо вспышечного становится непрерывным.
При достижении стримерами плоскости начинается “сквозная фаза” развития разряда. В этой фазе резко возрастает ток разряда и вследствие возрастающего падения напряжения на внутреннем сопротивлении источника начинает уменьшаться напряжение на промежутке. Значение разрядного напряжения промежутка соответствует началу сквозной фазы. Сквозная фаза завершается перекрытием промежутка лидерным каналом и главным разрядом.
ЛЕКЦИЯ 3. РАЗРЯД ВДОЛЬ ПОВЕРХНОСТИ ТВЕРДОГО ДИЭЛЕКТРИКА
3.1 Механизм перекрытия изолятора в сухом состоянии
Внесение твердого диэлектрика в воздушный промежуток может существенно изменять условия и даже механизм развития разряда. Величина разрядного напряжения, как правило, снижается и зависит не только от состояния воздуха и формы электродов, но и от свойств твердого диэлектрика, состояния его поверхности и расположения ее относительно силовых линий поля.
Рис.1. Твердый диэлектрик
Особенности развития разряда в однородном поле заключаются в том, что внесение твердого диэлектрика в разрядный промежуток снижает его электрическую прочность за счет следующих процессов:
а) адсорбции влаги из окружающего воздуха на поверхности диэлектрика и усиления электрического поля у электродов из-за перераспределения зарядов в тончайшей пленке мкм) ; влаги, образующейся за счет гигроскопичности в однородном поле диэлектрика (рис.1);
б) наличия микрозазора между диэлектриком и электродом, усиления напряженности в этом микрозазоре из-за разности относительных диэлектрических проницаемостей воздуха и твердого диэлектрика
В неоднородном электрическом поле электрическая прочность промежутка уменьшается, в основном, за счет неоднородности поля. Гигроскопические свойства диэлектрика и наличие микрозазоров значительно меньше влияют на разрядные напряжения, чем в однородном поле.
Для изоляционных конструкций по типу опорных изоляторов тангенциальная составляющая напряженности электрического поля больше, чем нормальная составляющая > (рис.2). Силовые линии поля имеют наибольшую концентрацию у электродов. Возможно возникновение коронного разряда у электродов, воздействие которого опасно особенно для полимерной изоляции (наличие озона и окислов азота). Могут образоваться под воздействием стримеров обугленные следы с повышенной проводимостью Е Это справедливо и для случая В этом случае каналы стримеров, развивающихся Е вдоль поверхности диэлектрика, имеют значительно большую емкость по отношению Рис.2. Модель опорного изолятора к внутреннему электроду, через них проходит сравнительно большой ток.
При определенном значении напряжения ток возрастает настолько, что температура стримерных каналов становится достаточной для термической ионизации. Термически ионизированный канал стримерного разряда превращается l в канал скользящего разряда (рис.3).
Рис.3. Модель
Проводимость канала скользящего E разряда значительно больше проводимости E канала стримера. Поэтому падение напряжения в канале скользящего разряда меньше, а изолятора -на неперекрытой части промежутка больше, чем в каналах стримера. Это приводит к удлинению канала скользящего разряда и полному перекрытию промежутка при меньшем значении напряжения между электродами (по сравнению со случаем >). Ток определяется емкостью канала разряда по отношению к противоположному электроду. Чем больше емкость, тем ниже разрядное напряжение при неизменном расстоянии между электродами по поверхности диэлектрика.
Влияние параметров отражено в эмпирической формуле Тёплера, согласно которой длина канала скользящего разряда
(4.1)
где - коэффициент, определяемый опытным путем, С - удельная поверхностная емкость (емкость единицы поверхности диэлектрика, по которой развивается разряд, относительно противоположного электрода), Ф/см.
Напряжение скользящего разряда и разрядное напряжение вычисляются по эмпирическим формулам:
(4.2)
(4.3)
Из последней формулы видно что рост длины изолятора дает относительно малое повышение разрядного напряжения.
Для увеличения разрядного напряжения можно уменьшить удельную поверхностную емкость С за счет увеличения толщины диэлектрика (создание ребристой поверхности).
3.2 Механизм перекрытия изолятора при загрязненной поверхности и под дождем
Наличие загрязнения в сухом состоянии не оказывает заметного влияния на разрядное напряжение, так как слой сухого загрязнения имеет высокое сопротивление. При увлажнении в слое образуется электролит, что уменьшает сопротивление слоя загрязнения и приводит к изменению распределения напряжения по поверхности изолятора, в результате чего разрядное напряжение снижается.
Перекрытие изолятора под дождем связано с образованием на его поверхности проводящей пленки воды толщиной в десятые доли мм и подсушиванием отдельных участков поверхности токами утечки, что приводит к возникновению частичных дуг и их удлинению. Под действием приложенного к изолятору напряжения по увлажненному слою загрязнения проходит ток утечки, нагревающий его (рис.4) D IТак как загрязнение распределено по поверхности изолятора неравномерно плотность тока утечки неодинакова на отдельных участках изолятора из-за сложной конфигурации его поверхности, то нагревание слоя загрязнения происходит также неравномерно.
Рис.4. Ток утечки
На тех участках изолятора, где плотность тока наибольшая, а загрязняющий слой тоньше, происходит интенсивное испарение воды, и образуются подсушенные участки с повышенным сопротивлением. Почти все напряжение, воздействующее на изоляцию, оказывается приложенным к подсушенным участкам. В результате этого подсушенные участки перекрываются искровыми каналами, называемыми частичными дугами.
Сопротивление искрового канала меньше сопротивления подсушенного участка поверхности изолятора, поэтому ток утечки возрастает. Возрастание тока утечки приводит к дальнейшему подсушиванию слоя загрязнения, а следовательно, и к увеличению его сопротивления.
Процессы подсушки поверхности происходят медленно. При импульсном воздействии напряжения они могут не успеть развиться. Дождь и загрязнение практически не влияют на его разрядное напряжение при грозовых импульсах.
3.3 Выбор изоляторов воздушных ЛЭП и РУ
Поверхности изоляторов загрязняются и увлажняются неравномерно. При сложной форме изолятора разряд на отдельных участках может отрываться от поверхности и развиваться по наикратчайшему пути в воздухе. Эффективно используется не вся геометрическая длина пути утечки , а только ее часть. Поэтому напряжение перекрытия изоляторов, загрязненных в реальных условиях эксплуатации пропорционально не геометрической, а эффективной длине пути утечки =/k, где k 1 - коэффициент формы (или использования поверхности) изолятора.
Для гирлянд и колонок, состоящих из изоляторов
(4.4)
коэффициент k для тарельчатых изоляторов рассчитывается по формуле
(4.5)
Для конкретной местности с определенными метеорологическими условиями, свойствами и интенсивностью загрязнения атмосферы вероятность перекрытия изолятора зависит от величины удельной длины пути утечки [см/кВ]
(4.6)
Поскольку для различных районов нормируется, должно соблюдаться условие Тогда число изоляторов в гирлянде должно определяться по формуле
(4.7)
Проверка выбранного количества изоляторов производится по условиям работы гирлянд под дождем при воздействии внутренних перенапряжений по формуле
(4.8)
где - расчетная кратность внутренних перенапряжений;
- расчетная мокроразрядная напряженность (кВ/см);
Н - строительная высота изолятора (мм).
ЛЕКЦИЯ 4. ОСНОВНЫЕ ВИДЫ И ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВНУТРЕННЕЙ ИЗОЛЯЦИИ ЭЛЕКТРОУСТАНОВОК
4.1 Общие свойства внутренней изоляции
Внутренней изоляцией называются части изоляционной конструкции, в которых изолирующей средой являются жидкие, твердые или газообразные диэлектрики или их комбинации, не имеющие прямых контактов с атмосферным воздухом.
Целесообразность или необходимость применения внутренней изоляции, а не окружающего нас воздуха обусловлена рядом причин. Во-первых, материалы для внутренней изоляции обладают значительно более высокой электрической прочностью (в 5-10 раз и более), что позволяет резко сократить изоляционные расстояния между проводниками и уменьшить габариты оборудования. Это важно с экономической точки зрения. Во-вторых, отдельные элементы внутренней изоляции выполняют функцию механического крепления проводников, жидкие диэлектрики в ряде случает значительно улучшают условия охлаждения всей конструкции.
Элементы внутренней изоляции в высоковольтных конструкциях в процессе эксплуатации подвергаются сильным электрическим, тепловым и механическим воздействиям. Под влиянием этих воздействий диэлектрические свойства изоляции ухудшаются, изоляция “стареет” и утрачивает свою электрическую прочность.
Тепловые воздействия обусловлены тепловыделениями в активных частях оборудования ( в проводниках и магнитопроводах), а также диэлектрическими потерями в самой изоляции. В условиях повышения температуры значительно ускоряются химические процессы в изоляции, которые ведут к постепенному ухудшению ее свойств.
Механические нагрузки опасны для внутренней изоляции тем, что в твердых диэлектриках, входящих в ее состав, могут появиться микротрещины, в которых затем под действие сильного электрического поля возникнут частичные разряды и ускорится старение изоляции.
Особая форма внешнего воздействия на внутреннюю изоляцию обусловлена контактами с окружающей средой и возможностью загрязнения и увлажнения изоляции при нарушении герметичности установки. Увлажнение изоляции ведет к резкому уменьшению сопротивления утечки и росту диэлектрических потерь.
При пробое под воздействием высокого напряжения внутренняя изоляция полностью или частично утрачивает свою электрическую прочность. Большинство видов внутренней изоляции принадлежит к группе несамовосстанавливающейся изоляции, пробой которой означает необратимое повреждение конструкции. Это означает, что внутренняя изоляция должна обладать более высоким уровнем электрической прочности, чем внешняя изоляция, т.е. таким уровнем, при котором пробои полностью исключаются в течение всего срока службы.
Необратимость повреждения внутренней изоляции сильно осложняет накопление экспериментальных данных для новых видов внутренней изоляции и для вновь разрабатываемых крупных изоляционных конструкций оборудования высокого и сверхвысокого напряжения. Ведь каждый экземпляр крупной дорогостоящей изоляции можно испытать на пробой только один раз.
Диэлектрики, используемые для изготовления внутренней изоляции высоковольтного оборудования должны обладать комплексом высоких электрических, теплофизических и механических свойств и обеспечивать: необходимый уровень электрической прочности, а также требуемые тепловые и механические характеристики изоляционной конструкции при размерах, которым соответствуют высокие технико-экономические показатели всей установки в целом.
Диэлектрические материалы должны также:
обладать хорошими технологическими свойствами, т.е. должны быть пригодными для высокопроизводительных процессов изготовления внутренней изоляции;
удовлетворять экологическим требованиям, т.е. не должны содержать или образовывать в процессе эксплуатации токсичные продукты, а после отработки всего ресурса они должны поддаваться переработке или уничтожению без загрязнения окружающей Среды;
не быть дефицитными и иметь такую стоимость, при которой изоляционная конструкция получается экономически целесообразной.
В ряде случаев к указанным выше требованиям могут добавляться и другие, обусловленные спецификой того или иного вида оборудования. Например материалы для силовых конденсаторов должны иметь повышенную диэлектрическую проницаемость; материалы для камер выключателей - высокую стойкость к термоударам и воздействиям электрической дуги.
Длительная практика создания и эксплуатации различного высоковольтного оборудования показывает, что во многих случаях весь комплекс требований наилучшим образом удовлетворяется при использовании в составе внутренней изоляции комбинации из нескольких материалов, дополняющих друг друга и выполняющих несколько различные функции.
Так, только твердые диэлектрические материалы обеспечивают механическую прочность изоляционной конструкции; обычно они имеют и наиболее высокую электрическую прочность. Детали из твердого диэлектрика, обладающего высокой механической прочностью, могут выполнять функцию механического крепления проводников.
Высокопрочные газы и жидкие диэлектрики легко заполняют изоляционные промежутки любой конфигурации, в том числе тончайшие зазоры, поры и щели, чем существенно повышают электрическую прочность, особенно длительную.
Использование жидких диэлектриков позволяет в ряде случаев значительно улучшить условия охлаждения за счет естественной или принудительной циркуляции изоляционной жидкости.
4.2 Виды внутренней изоляции и материалы, используемые для их изготовления
В установках высокого напряжения и оборудования энергосистем используется несколько видов внутренней изоляции. Наиболее широкое распространение получили бумажно-пропитанная (бумажно-масляная) изоляция, маслобарьерная изоляция, изоляция на основе слюды, пластмассовая и газовая.
Эти разновидности обладают определенными достоинствами и недостатками, имеют свои области применения. Однако их объединяют некоторые общие свойства:
сложный характер зависимости электрической прочности от длительности воздействия напряжения;
в большинстве случаев необратимость разрушения при пробое;
влияние на поведение в эксплуатации механических, тепловых и других внешних воздействий;
в большинстве случаев подверженность старению.
Бумажно-пропитанная изоляция (БПИ). Исходными материалами служат специальные электроизоляционные бумаги и минеральные (нефтяные) масла или синтетические жидкие диэлектрики.
Основу БПИ составляют слои бумаги. Рулонная БПИ (ширина рулона до 3,5 м) применяется в секциях силовых конденсаторов и в вводах (проходных изоляторах); ленточная (ширина ленты от 20 до 400 мм) - в конструкциях с электродами относительно сложной конфигурации или большой длины (вводы высших классов напряжения, силовые кабели). Слои ленточной изоляции могут наматываться на электрод внахлест или с зазором между соседними витками. После намотки бумаги изоляция подвергается вакуумной сушке при температуре 100-120С до остаточного давления 0,1-100 Па. Затем под вакуумом производится пропитка бумаги тщательно дегазированным маслом.
Подобные документы
Понятия разрядного напряжения и резконеоднородного поля. Внешняя и внутренняя изоляция электрических установок. Коронный разряд у электродов с малым радиусом кривизны во внешней изоляции. Целесообразность применения внутренней изоляции электроустановок.
реферат [24,3 K], добавлен 07.01.2011Назначение и сущность расчета заземляющего устройства подстанции, особенности его монтажа, определение допустимого сопротивления, выбор формы и размеров электродов. Защита подстанции от прямых ударов молнии, характеристика методик и цели раcчета.
контрольная работа [1,0 M], добавлен 30.09.2012Классификация перенапряжений в электроустановках. Распространение электромагнитных волн в линиях электропередач. Регулирование электрического поля с помощью конденсаторных обкладок. Меры повышения надежности изоляции в условиях интенсивных загрязнений.
контрольная работа [799,9 K], добавлен 19.02.2012Электрическая прочность изоляции как одна из важных характеристик трансформатора. Внутренняя и внешняя изоляция, ее основные элементы. Влияние температуры на характеристики изоляции. Схема классификации изоляции силового масляного трансформатора.
контрольная работа [733,6 K], добавлен 24.03.2016Изолирующая подвеска проводов, расчет напряженности электрического поля под проводами. Определение параметров воздушной линии электропередачи и примыкающих систем, отключений при ударах молнии и обратных перекрытиях. Расчет коммутационных перенапряжений.
курсовая работа [1,8 M], добавлен 16.11.2010Расчет электрических величин трансформатора, определение его основных размеров. Конструкция изоляции и минимально допустимые изоляционные расстояния. Главная изоляция обмоток, изоляция от заземленных частей и между обмотками. Механические силы в обмотках.
курсовая работа [834,3 K], добавлен 18.04.2014Виды электроизоляционных материалов и требования к изоляции. Особенности изоляции маслонаполненных и воздушных выключателей. Технические характеристики ограничителей перенапряжения. Выбор гирлянды изоляторов и расстояний опоры линии электропередачи.
курсовая работа [586,5 K], добавлен 19.04.2012Измерение высоких напряжений шаровыми разрядниками, электростатическим киловольтметром. Омические делители для измерения импульсного напряжения. Порядок проведения калибровки киловольтметра. Измерение амплитудного значения переменного напряжения.
реферат [1,1 M], добавлен 30.03.2015Расчет электронов в лавине, развивающейся в воздухе при различных атмосферных условиях. Понятие короны как вида разряда. Построение кривых относительного распределения напряжений трансформатора. Годовое число грозовых отключений по территории Молдовы.
контрольная работа [1,2 M], добавлен 14.06.2010Изучение методов испытания изоляции, пробоя воздушного промежутка при различной форме электродов. Проверка электрической прочности трансформаторного масла. Описание испытательной установки АИИ-70 для создания напряжений постоянного и переменного токов.
лабораторная работа [270,1 K], добавлен 02.11.2014